
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

FORTRAN 77 Language Reference

Forte Developer 6 update 2
(Sun WorkShop 6 update 2)

Part No. 806-7986-10
July 2001, Revision A

Please
Recycle

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,

or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Cray Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Cray Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

Contents

Before You Begin 1

How This Book Is Organized 1

Typographic Conventions 2

Shell Prompts 3

Supported Platforms 3

Accessing Sun WorkShop Development Tools and Man Pages 4

Accessing Sun WorkShop Documentation 6

Accessing Related Documentation 6

Ordering Sun Documentation 7

Sending Your Comments 7

1. Elements of FORTRAN 9

Standards Conformance 9

Extensions 10

Basic Terms 10

Character Set 10

Symbolic Names 12

Program Units 14

Statements 14

Source Line Formats 15
v

2. Data Types and Data Items 21

Types 21

CHARACTER 24

COMPLEX 24

DOUBLE PRECISION 25

INTEGER 26

LOGICAL 27

REAL 28

Constants 31

Variables 45

Arrays 46

Substrings 52

✠Structures 54

✠Pointers 61

3. Expressions 67

Expressions, Operators, and Operands 67

Arithmetic Expressions 68

Character Expressions 74

Logical Expressions 77

Relational Operator 79

Constant Expressions 80

✠Record Assignment 81

Evaluation of Expressions 82

4. Statements 83

✠ACCEPT 84

ASSIGN 85

Assignment, v = e 87
vi FORTRAN 77 Language Reference • July 2001

✠AUTOMATIC 92

BACKSPACE 94

BLOCK DATA 96

✠BYTE 98

CALL 99

CHARACTER 103

CLOSE 106

COMMON108

COMPLEX 110

CONTINUE 113

DATA 114

✠DECODE/ENCODE 117

DIMENSION 119

DO 122

✠DO WHILE 127

✠DOUBLE COMPLEX130

DOUBLE PRECISION 132

ELSE 133

ELSE IF 135

✠ENCODE/DECODE 137

END 138

END DO 139

END FILE 140

END IF 142

END MAP 143

✠END STRUCTURE 144

✠END UNION 145

ENTRY 146
Contents vii

EQUIVALENCE 149

EXTERNAL 151

FORMAT 153

FUNCTION (External) 157

GO TO (Assigned) 160

GO TO (Computed) 162

GO TO (Unconditional) 164

IF (Arithmetic) 165

IF (Block) 166

IF (Logical) 169

IMPLICIT 170

✠INCLUDE 173

INQUIRE 176

INTEGER 182

INTRINSIC 184

LOGICAL 186

LOGICAL 187

✠MAP 189

✠NAMELIST 190

OPEN 192

✠OPTIONS 200

PARAMETER 202

PAUSE 205

✠POINTER 207

PRINT 212

PROGRAM215

READ 216

REAL 222
viii FORTRAN 77 Language Reference • July 2001

✠RECORD 224

RETURN 227

REWIND 229

SAVE 231

Statement Function, f(...) = e 233

✠STATIC 236

STOP 237

✠STRUCTURE 238

SUBROUTINE 241

✠TYPE 243

The Type Statement 244

✠UNION and MAP 247

✠VIRTUAL 249

✠VOLATILE 250

WRITE 251

5. Input and Output 257

Essential FORTRAN I/O Concepts 257

Direct Access 264

Internal Files 266

Formatted I/O 267

Unformatted I/O 301

✠ Binary I/O 304

List-Directed I/O 306

NAMELIST I/O 309

6. Intrinsic Functions 319

Arithmetic and Mathematical Functions 320

Character Functions 329
Contents ix

Miscellaneous Functions 330

Remarks 332

Notes on Functions 334

✠ VMS Intrinsic Functions 338

A. ASCII Character Set 345

B. Sample Statements 349

C. Data Representations 359

Real, Double, and Quadruple Precision 359

Extreme Exponents 360

IEEE Representation of Selected Numbers 361

Arithmetic Operations on Extreme Values 361

Bits and Bytes by Architecture 363

D. VMS Language Extensions 365

Background 365

VMS Language Features in f77 365

VMS Features Requiring -xl or -vax= spec 369

Index 375
x FORTRAN 77 Language Reference • July 2001

Tables

TABLE 1-1 Special Character Usage 11

TABLE 1-2 Items with Symbolic Names 12

TABLE 1-3 Sample Symbolic Names 13

TABLE 1-4 FORTRAN Statements 15

TABLE 2-1 Default Data Sizes and Alignments (in Bytes) 29

TABLE 2-2 Data Defaults Changed by -i2, -r8, -dbl 30

TABLE 2-3 Backslash Escape Sequences 34

TABLE 3-1 Arithmetic Operators 68

TABLE 3-2 Arithmetic Expressions 69

TABLE 3-3 Arithmetic Operator Precedence 69

TABLE 3-4 Logical Operators 77

TABLE 3-5 Logical Operator Precedence 77

TABLE 3-6 Operator Precedence 78

TABLE 3-7 Logical Expressions and Their Meanings 78

TABLE 3-8 Relational Operators 79

TABLE 4-1 INQUIRE Statement Specifiers 177

TABLE 4-2 Intrinsics That Cannot Be Passed As Actual Arguments 185

TABLE 4-3 OPEN Statement Specifiers 193

TABLE 4-4 OPTIONS Statement Qualifiers 200
xi

TABLE 5-1 Summary of f77 Input and Output 259

TABLE 5-2 Format Specifiers 269

TABLE 5-3 Default w, d, e Values in Format Field Descriptors 270

TABLE 5-4 Carriage Control with Blank, 0, 1, and + 273

TABLE 5-5 Maximum Characters in Noncharacter Type Hollerith (nHaaa) 277

TABLE 5-6 Sample Octal/Hex Input Values 282

TABLE 5-7 Sample Octal/Hex Output Value 283

TABLE 5-8 Default Formats for List-Directed Output 308

TABLE 6-1 Arithmetic Functions 321

TABLE 6-2 Type Conversion Functions 323

TABLE 6-3 Trigonometric Functions 325

TABLE 6-4 Other Mathematical Functions 327

TABLE 6-5 Character Functions 329

TABLE 6-6 Bitwise Functions 330

TABLE 6-7 Environmental Inquiry Functions 331

TABLE 6-8 Memory Functions 332

TABLE 6-9 VMS Double-Precision Complex Functions 339

TABLE 6-10 VMS Degree-Based Trigonometric Functions 339

TABLE 6-11 VMS Bit-Manipulation Functions 340

TABLE 6-12 VMS Integer Functions 342

TABLE 6-13 Translated Functions that VMS Coerces to a Particular Type 343

TABLE 6-14 VMS Functions That Are Translated into f77 Generic Names 344

TABLE 6-15 Zero-Extend Functions 344

TABLE A-1 ASCII Character Set 346

TABLE A-2 Control Characters ^=Control Key s^ =Shift and Control Keys 347

TABLE B-1 FORTRAN Statement Samples 349

TABLE C-1 Floating-point Representation 359

TABLE C-2 IEEE Representation of Selected Numbers 361

TABLE C-3 Extreme Value Abbreviations 361
xii FORTRAN 77 Language Reference • July 2001

TABLE C-4 Extreme Values: Addition and Subtraction 362

TABLE C-5 Extreme Values: Multiplication 362

TABLE C-6 Extreme Values: Division 363

TABLE C-7 Extreme Values: Comparison 363

TABLE C-8 Bits and Bytes for Intel and VAX Computers 364

TABLE C-9 Bits and Bytes for 680x0 and SPARC Computers 364
Tables xiii

xiv FORTRAN 77 Language Reference • July 2001

Before You Begin

The FORTRAN 77 Language Reference specifies the FORTRAN 77 programming

language and extensions accepted by the Sun WorkShop™ 6 update 2 f77 compiler.

This guide is intended for scientists, engineers, and programmers who have a

working knowledge of the Fortran language and wish to learn how to use the Sun

Fortran compilers effectively. Familiarity with the Solaris™ operating environment

or UNIX® in general is also assumed.

The companion Fortran User’s Guide describes the compile-time environment and

command-line options for the Sun WorkShop 6 Fortran compilers: f77
(FORTRAN 77) and f95 (Fortran 95).

Discussion of Fortran programming issues on Solaris operating environments,

including input/output, application development, library creating and use, program

analysis, porting, optimization, and parallelization can be found in the Fortran
Programming Guide.

Also in this collection is the Fortran Library Reference. See “Accessing Related

Documentation” on page 6.

How This Book Is Organized

The FORTRAN 77 Language Reference contains the following chapters and

appendixes:

Chapter 1 introduces the basic parts of Sun WorkShop FORTRAN 77, standards

conformance, and elements of the language.

Chapter 2 describes the data types and data structures in the language, including

arrays, substrings, structures, and pointers.
1

Chapter 3 discusses FORTRAN expressions and how they are evaluated.

Chapter 4 details the statements in the FORTRAN 77 language and the extensions

recognized by the Sun WorkShop compiler.

Chapter 5 describes the general concepts of FORTRAN input/output and provides

details on the different I/O operations.

Chapter 6 tabulates and explains the intrinsic functions that are part of Sun

WorkShop FORTRAN 77, including VAX VMS extensions.

Appendix A lists the standard ASCII character set.

Appendix B shows samples of selected FORTRAN 77 statements for quick reference.

Appendix C introduces the way data is represented in FORTRAN.

Appendix D describes the VAX VMS language extensions provided in Sun

WorkShop FORTRAN 77.

Typographic Conventions

The following table and notes describe the typographical conventions used in the

manual.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.
2 FORTRAN 77 Language Reference • July 2001

■ The symbol ∆ stands for a blank space where a blank is significant:

■ Nonstandard features are tagged with the symbol “✠”. Standards are discussed in

Chapter 1.

■ FORTRAN examples appear in tab format, not fixed columns. See the discussion

of source line formats in the Fortran User’s Guide for details.

■ The FORTRAN 77 standard uses an older convention of spelling the name

"FORTRAN" capitalized. Sun documentation uses both FORTRAN and Fortran.

The current convention is to use lower case: "Fortran 95".

■ References to online man pages appear with the topic name and section number.

For example, a reference to GETENV will appear as getenv (3F), implying that

the man command to access this page would be: man -s 3F getenv

■ System Administrators may install the Sun WorkShop Fortran compilers and

supporting material at: <install_point>/SUNWspro/ where <install_point> is

usually /opt for a standard install. This is the location assumed in this book.

Shell Prompts

Supported Platforms

This Sun WorkShop™ release of the Fortran compilers supports only versions 2.6, 7,

and 8 of the Solaris™ SPARC™ Platform Edition.

∆∆36.001

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
Before You Begin 3

Accessing Sun WorkShop Development

Tools and Man Pages

The Sun WorkShop product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Sun

WorkShop compilers and tools, you must have the Sun WorkShop component

directory in your PATHenvironment variable. To access the Sun WorkShop man

pages, you must have the Sun WorkShop man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 update 2 Installation Guide or your system

administrator.

Note – The information in this section assumes that your Sun WorkShop 6 update 2

products are installed in the /opt directory. If your product software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Sun WorkShop Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Sun WorkShop compilers and tools.

To Determine If You Need to Set Your PATHEnvironment
Variable

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

% echo $PATH
4 FORTRAN 77 Language Reference • July 2001

To Set Your PATHEnvironment Variable to Enable Access to
Sun WorkShop Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Sun WorkShop Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Sun WorkShop man pages.

To Determine If You Need to Set Your MANPATHEnvironment
Variable

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in the next

section for setting your MANPATHenvironment variable.

To Set Your MANPATHEnvironment Variable to Enable Access
to Sun WorkShop Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

% man workshop
Before You Begin 5

Accessing Sun WorkShop

Documentation

You can access Sun WorkShop product documentation at the following locations:

■ The product documentation is available from the documentation index
installed with the product on your local system or network.

Point your Netscape™ Communicator 4.0 or compatible Netscape version browser

to the following file:

/opt/SUNWspro/docs/index.html

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Manuals are available from the docs.sun.comsm Web site.

The docs.sun.com Web site (http://docs.sun.com) enables you to read,

print, and buy Sun Microsystems manuals through the Internet. If you cannot

find a manual, see the documentation index installed with the product on your

local system or network.

Accessing Related Documentation

The following table describes related documentation that is available through the

docs.sun.com Web site.

Document Collection Document Title Description

Forte™ for High

Performance Computing

Collection

Fortran Programming Guide Discusses issues relating to

input/output, libraries,

program analysis, debugging,

and performance.

Fortran Library Reference Provides details about the

library routines supplied with

the Fortran compilers

Fortran User’s Guide Provides information on

command-line options and

how to use the compilers.
6 FORTRAN 77 Language Reference • July 2001

Ordering Sun Documentation

You can order product documentation directly from Sun through the

docs.sun.com Web site or from Fatbrain.com, an Internet bookstore. You can find

the Sun Documentation Center on Fatbrain.com at the following URL:

http://www.fatbrain.com/documentation/sun

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Numerical Computation

Guide Collection

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Solaris 8 Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris 8 Software

Developer Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris 8 Software

Developer Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.

Document Collection Document Title Description
Before You Begin 7

8 FORTRAN 77 Language Reference • July 2001

CHAPTER 1

Elements of FORTRAN

This chapter introduces the basic elements of Sun WorkShop FORTRAN 77.

Standards Conformance
■ f77 was designed to be compatible with the ANSI X3.9-1978 FORTRAN standard

and the corresponding International Organization for Standardization (ISO)

1539-1980, as well as standards FIPS 69-1, BS 6832, and MIL-STD-1753. (This is no

longer the current Fortran standard.)

■ Floating-point arithmetic for both compilers is based on IEEE standard 754-1985,

and international standard IEC 60559:1989.

■ On SPARC platforms, both compilers provide support for the optimization-

exploiting features of SPARC V8, and SPARC V9, including the UltraSPARC™

implementation. These features are defined in the SPARC Architecture Manuals,

Version 8 (ISBN 0-13-825001-4), and Version 9 (ISBN 0-13-099227-5), published by

Prentice-Hall for SPARC International.

■ In this document, "Standard" means conforming to the versions of the standards

listed above. "Non-standard" or "Extension" refers to features that go beyond

these versions of these standards.

The responsible standards bodies may revise these standards from time to time. The

versions of the applicable standards to which these compilers conform may be

revised or replaced, resulting in features in future releases of the Fortran compilers

that create incompatibilities with earlier releases.
9

Extensions

Extensions to the standard FORTRAN 77 language include recursion, pointers,

double-precision complex, quadruple-precision real, quadruple-precision complex,

and many VAX™ and VMS™ FORTRAN 5.0 extensions, including NAMELIST, DO
WHILE, structures, records, unions, maps, and variable formats. Multiprocessor

FORTRAN includes automatic and explicit loop parallelization.

Sun FORTRAN 77 accepts many VMS extensions, so that programs originally

written for VAX systems will port easily to Solaris environments.

Features implemented in Sun f77 that are not part of the applicable standards

mentioned in “Standards Conformance” on page 9 are flagged with the special

character mark ✠ throughout this manual.

Basic Terms

Some of the FORTRAN basic terms and concepts are:

■ A program consists of one or more program units.

■ A program unit is a sequence of statements, terminated by an END.

■ A statement consists of zero or more key words, symbolic names, literal constants,

statement labels, operators, and special characters.

■ Each key word, symbolic name, literal constant, and operator consists of one or more

characters from the FORTRAN character set.

■ A character constant can include any valid ASCII character.

■ A statement label consists of 1 to 5 digits, with at least one nonzero.

Character Set

The character set consists of the following:

■ Uppercase and lowercase letters, A – Z and a – z

■ Numerals 0 – 9
10 FORTRAN 77 Language Reference • July 2001

■ Special characters—The following table shows the special characters that are used

for punctuation:

Note the following usage and restrictions:

TABLE 1-1 Special Character Usage

Character Name Usage

Space Space Ignored in statements, except as part of a character constant

Tab Tab Establish the line as a tab-format source line ✠

= Equals Assignment

+ Plus Add, unary operator

– Minus Subtract, unary operator

* Asterisk Multiply, alternate returns, comments, exponentiation, stdin ,

stdout , list-directed I/O

/ Slash Divide, delimit data, labeled commons, structures, end-of-

record

() Parentheses Enclose expressions, complex constants, equivalence, parameter,

or implicit groups, formats, argument lists, subscripts

, Comma Separator for data, expressions, complex constants, equivalence

groups, formats, argument lists, subscripts

. Period Radix point, delimiter for logical constants and operators,

record fields

' Apostrophe Quoted character literals

" Quote Quoted character literals, octal constants ✠

$ Dollar sign Delimit namelist input, edit descriptor, directives ✠

! Exclamation Comments ✠

: Colon Array declarators, substrings, edit descriptor

% Percent Special functions: %REF, %VAL, %LOC✠

& Ampersand Continuation, alternate return, delimit namelist input; use in

column 1 establishes the line as a tab-format source line ✠

? Question

mark

Request names in namelist group ✠

\ Backslash Escape character ✠

< > Angle

brackets

Enclose variable expressions in formats ✠
Chapter 1 Elements of FORTRAN 11

■ Uppercase or lowercase is not significant in the key words of FORTRAN

statements or in symbolic names. The –U option of f77 makes case significant in

symbolic names. ✠

■ Most control characters are allowed as data even though they are not in the

character set. The exceptions are: Control A, Control B, Control C, which are not
allowed as data. These characters can be entered into the program in other ways,

such as with the char() function. ✠

■ Any ASCII character is valid as literal data in a character string. ✠

For the backslash (\) character, you may need to use an escape sequence or use the

–xl compiler option. For the newline (\n) character, you must use an escape

sequence. See also TABLE 2-3.

Symbolic Names

The items in the following table can have symbolic names:

The following restrictions apply:

■ Symbolic names can be any number of characters long ✠. The standard is 6.

■ Symbolic names consist of letters, digits, the dollar sign ($), and the underscore

character (_). $ and _ are not standard. ✠

■ Symbolic names generally start with a letter—never with a digit or dollar sign ($).

Names that start with an underscore (_) are allowed, but may conflict with names

in the Fortran and system libraries.

Note – Procedure names that begin with exactly two underscores are considered

special support functions internal to the compiler. Avoid naming functions or

subroutines with exactly two initial underscores (for example _ _xfunc) as this will

conflict with the compiler’s usage. ✠

TABLE 1-2 Items with Symbolic Names

Symbolic constants

Variables

Arrays

Structures ✠

Records ✠

Record fields ✠

Labeled commons

Namelist groups ✠

Main programs

Block data

Subroutines

Functions

Entry points
12 FORTRAN 77 Language Reference • July 2001

■ Uppercase and lowercase are not significant; the compiler converts them all to

lowercase. The –U option on the f77 command line overrides this default, thereby

preserving any uppercase used in your source file. ✠

Example: These names are equivalent with the default in effect:

■ The space character is not significant.

Example: These names are equivalent:

Here are some sample symbolic names:

■ In general, for any single program unit, different entities cannot have the same

symbolic name. The exceptions are:

■ A variable or array can have the same name as a common block.

■ A field of a record can have the same name as a structure. ✠

■ A field of a record can have the same name as a field at a different level of the

structure. ✠

■ Throughout any program of more than one programming unit, no two of the

following can have the same name:

■ Block data subprograms

■ Common blocks

■ Entry points

■ Function subprograms

■ Main program

■ Subroutines

ATAD = 1.0E-6
Atad = 1.0e-6

IF (X .LT. ATAD) GO TO 9
IF (X .LT. A TAD) GO TO 9
IF(X.LT.ATAD)GOTO9

TABLE 1-3 Sample Symbolic Names

Valid Invalid Reason

X2 2X Starts with a digit.

DELTA_TEMP _ _DELTA_TEMP Starts with an _ _ (reserved for the compiler).

Y$Dot Y|Dot There is an invalid character | .
Chapter 1 Elements of FORTRAN 13

Program Units

A program unit is a sequence of statements, terminated by an END statement. Every

program unit is either a main program or a subprogram. If a program is to be

executable, it must have a main program.

There are three types of subprograms: subroutines, functions, and block data

subprograms. The subroutines and functions are called procedures, which are

invoked from other procedures or from the main program. The block data

subprograms are handled by the loader.

Statements

A statement consists of one or more key words, symbolic names, literal constants,

and operators, with appropriate punctuation. In FORTRAN, no keywords are

reserved in all contexts. Most statements begin with a keyword; the exceptions are

the statement function and assignment statements.

Executable and Nonexecutable Statements

Every statement is either executable or nonexecutable. In general, if a statement

specifies an action to be taken at runtime, it is executable. Otherwise, it is

nonexecutable.

The nonexecutable statements specify attributes, such as type and size; determine

arrangement or order; define initial data values; specify editing instructions; define

statement functions; classify program units; and define entry points. In general,

nonexecutable statements are completed before execution of the first executable

statement.
14 FORTRAN 77 Language Reference • July 2001

FORTRAN Statements

The asterisk (*) in the table indicates an executable statement. The ✠ symbol indicates

a non-standard statement.

Source Line Formats

A statement takes one or more lines; the first line is called the initial line; the

subsequent lines are called the continuation lines.

You can format a source line in either of two ways:

■ Standard fixed format

■ Tab format ✠

Standard Fixed Format

The standard fixed format source lines are defined as follows:

■ The first 72 columns of each line are scanned. See “Extended Lines” on page 16.

■ The first five columns must be blank or contain a numeric label.

■ Continuation lines are identified by a nonblank, nonzero in column 6.

TABLE 1-4 FORTRAN Statements

ACCEPT*✠
ASSIGN*
Assignment*
AUTOMATIC ✠

BACKSPACE*
BLOCK DATA
BYTE ✠

CALL*
CHARACTER
CLOSE*
COMMON
COMPLEX
CONTINUE*
DATA
DECODE*✠
DIMENSION
DO*
DO WHILE*✠

DOUBLE COMPLEX✠
DOUBLE PRECISION
ELSE*
ELSE IF*
ENCODE*✠
END*
END DO*
END FILE*
END IF*
END MAP✠

END STRUCTURE✠
END UNION ✠

ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GOTO*

GOTO(Assigned)*
GOTO(Unconditional)*
IF (Arithmetic)*
IF (Block)*
IF (Logical)*
IMPLICIT
INCLUDE
INQUIRE*
INTEGER
INTRINSIC
LOGICAL
MAP ✠

NAMELIST ✠

OPEN*
OPTIONS ✠

PARAMETER
PAUSE*
POINTER ✠

PRINT*
PROGRAM
REAL
RECORD✠

RETURN*
REWIND*
SAVE
Statement Function

STATIC* ✠

STOP*
STRUCTURE✠

SUBROUTINE
TYPE ✠

UNION ✠

VIRTUAL ✠

VOLATILE ✠

WRITE*
Chapter 1 Elements of FORTRAN 15

■ Short lines are padded to 72 characters.

■ Long lines are truncated. See “Extended Lines” on page 16.

Tab-Format

The tab-format source lines are defined as follows: ✠

■ A tab in any of columns 1 through 6, or an ampersand in column 1, establishes

the line as a tab-format source line.

■ If the tab is the first nonblank character, the text following the tab is scanned as if

it started in column 7.

■ A comment indicator or a statement number can precede the tab.

■ Continuation lines are identified by an ampersand (&) in column 1, or a nonzero

digit after the first tab.

Mixing Formats

You can format lines both ways in one program unit, but not in the same line.

Continuation Lines

The default maximum number of continuation lines is 99 ✠ (1 initial and 99

continuation). To change this number of lines, use the -Nl n option. ✠

Extended Lines

To extend the source line length to 132 characters, use the –e option.✠ Otherwise,

by default, f77 ignores any characters after column 72.

Example: Compile to allow extended lines:

demo% f77 -e prog.f
16 FORTRAN 77 Language Reference • July 2001

Padding

Padding is significant in lines such as the two in the following DATA statement:

Comments and Blank Lines

A line with a c, C, *, d, D, or! in column one is a comment line, except that if the

-xld option is set, then the lines starting with D or d are compiled as debug lines.

The d, D, and! are nonstandard. ✠

If you put an exclamation mark (!) in any column of the statement field, except

within character literals, then everything after the ! on that line is a comment. ✠

A totally blank line is a comment line.

Example: c , C, d, D, * ,! , and blank comments:

Directives

A directive passes information to a compiler in a special form of comment. ✠

Directives are also called compiler pragmas. There are two kinds of directives:

C 1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012
 DATA SIXTYH/60H
 1 /

c Start expression analyzer
CHARACTER S, STACK*80
COMMON /PRMS/ N, S, STACK
…

* Crack the expression:
IF (S .GE. '0' .AND. S .LE. '9') THEN ! EoL comment

CALL PUSH ! Save on stack. EoL comment
d PRINT *, S ! Debug comment & EoL comment

ELSE
CALL TOLOWER ! To lowercase EoL comment

END IF
D PRINT *, N! Debug comment & EoL comment

…
C Finished
! expression analyzer
Chapter 1 Elements of FORTRAN 17

■ General directives

■ Parallel directives

See the Sun WorkShop Fortran User’s Guide and the Fortran Programming Guide for

details on the specific directives available with f77 .

General Directives

The form of a general directive is one of the following:✠

■ C$PRAGMAid
■ C$PRAGMAid (a [, a] …) [, id (a [, a] …)] ,…

■ C$PRAGMA SUNid[= options]

The variable id identifies the directive keyword; a is an argument.

Syntax

A directive has the following syntax:

■ In column one, any of the comment-indicator characters c , C, ! , or *
■ In any column, the ! comment-indicator character

■ The next 7 characters are $PRAGMA, no blanks, any uppercase or lowercase

Rules and Restrictions

After the first eight characters, blanks are ignored, and uppercase and lowercase are

equivalent, as in FORTRAN text.

Because it is a comment, a directive cannot be continued, but you can have many

C$PRAGMAlines, one after the other, as needed.

If a comment satisfies the above syntax, it is expected to contain one or more

directives recognized by the compiler; if it does not, a warning is issued.

Parallelization Directives

Parallelization directives explicitly request the compiler attempt to parallelize the DO

loop that follows the directive. The syntax differs from general directives.

Parallelization directives are only recognized when compilation options -parallel
or -explicitpar are used. (f77 parallelization options are described in the Fortran
Programming Guide.)

Parallelization directives have the following syntax:
18 FORTRAN 77 Language Reference • July 2001

■ The first character must be in column one.

■ The first character can be any one of c , C, * , or ! .

■ The next four characters are $PAR, no blanks, either upper or lower case.

■ Next follows the directive keyword and options, separated by blanks.

The explicit parallelization directive keywords are:

TASKCOMMON, DOALL, DOSERIAL,and DOSERIAL*

Each parallelization directive has its own set of optional qualifiers that follow the

keyword.

Example: Specifying a loop with a shared variable:

See the Fortran Programming Guide for details about parallelization and these

directives. Fortran parallelization features require a Forte for High Performance Computing
(HPC) license.

C$PAR DOALL SHARED(yvalue)
Chapter 1 Elements of FORTRAN 19

20 FORTRAN 77 Language Reference • July 2001

CHAPTER 2

Data Types and Data Items

This chapter describes f77 data types and data structures.

Nonstandard features are tagged with a small black cross (✠).

Types

Except for specifically typeless constants, any constant, constant expression,

variable, array, array element, substring, or function usually represents typed data.

On the other hand, data types are not associated with the names of programs or

subroutines, block data routines, common blocks, namelist groups, or structured

records.

Rules for Data Typing

The name determines the type; that is, the name of a datum or function determines

its data type, explicitly or implicitly, according to the following rules of data typing;

■ A symbolic name of a constant, variable, array, or function has only one data type

for each program unit, except for generic functions.

■ If you explicitly list a name in a type statement, then that determines the data

type.

■ If you do not explicitly list a name in a type statement, then the first letter of the

name determines the data type implicitly.

■ The default implicit typing rule is that if the first letter of the name is I , J , K, L, M,

or N, then the data type is integer, otherwise it is real.
21

■ You can change the default-implied types by using the IMPLICIT statement, even

to the extent of turning off all implicit typing with the IMPLICIT NONE statement.

You can also turn off all implicit typing by specifying the –u compiler flag on the

command line; this is equivalent to beginning each program unit with the

IMPLICIT NONE statement.

Array Elements

An array element has the same type as the array name.

Functions

Each intrinsic function has a specified type. An intrinsic function does not require an

explicit type statement, but that is allowed. A generic function does not have a

predetermined type; the type is determined by the type of the arguments, as shown

in “Intrinsic Functions” on page 319.

An external function can have its type specified in any of the following ways:

■ Explicitly by putting its name in a type statement

■ Explicitly in its FUNCTIONstatement, by preceding the word FUNCTIONwith the

name of a data type

■ Implicitly by its name, as with variables

Example: Explicitly by putting its name in a type statement:

Example: Explicitly in its FUNCTIONstatement:

FUNCTION F (X)
INTEGER F, X
F = X + 1
RETURN
END

INTEGER FUNCTION F (X)
INTEGER X
F = X + 1
RETURN
END
22 FORTRAN 77 Language Reference • July 2001

Example: Implicitly by its name, as with variables:

Implicit typing can affect the type of a function, either by default implicit typing or

by an IMPLICIT statement. You must make the data type of the function be the

same within the function subprogram as it is in the calling program unit. The f77
compiler does no type checking across program units.

Properties of Data Types

This section describes the data types in Sun FORTRAN 77.

Default data declarations, those that do not explicitly declare a data size can have

their meanings changed by certain compiler options. The next section, “Size and

Alignment of Data Types” on page 29 summarizes data sizes and alignments and the

effects of these options.

BYTE✠

The BYTEdata type provides a data type that uses only one byte of storage. It is a

logical data type, and has the synonym, LOGICAL*1 .

A variable of type BYTEcan hold any of the following:

■ One eight-bit data item

■ An integer between -128 and 127

■ The logical values, .TRUE. or .FALSE .

If it is interpreted as a logical value, a value of 0 represents .FALSE. , and any other

value is interpreted as .TRUE.

f77 allows the BYTE type as an array index, just as it allows the REAL type, but it

does not allow BYTEas a DOloop index (where it allows only INTEGER, REAL, and

DOUBLE PRECISION). Wherever the compiler expects INTEGERexplicitly, it will not

allow BYTE.

FUNCTION NXT (X)
INTEGER X
NXT = X + 1
RETURN
END
Chapter 2 Data Types and Data Items 23

Examples:

A BYTEitem occupies 1 byte (8 bits) of storage, and is aligned on 1-byte boundaries.

CHARACTER

The character data type, CHARACTER, which has the synonym, CHARACTER*1, holds

one character.

The character is enclosed in apostrophes (') or quotes ("). ✠ Allowing quotes (") is

nonstandard; if you compile with the –xl option, quotes mean something else, and

you must use apostrophes to enclose a string.

The data of type CHARACTERis always unsigned. A CHARACTERitem occupies 1 byte

(8 bits) of storage and is aligned on 1-byte boundaries.

CHARACTER*n

The character string data type, CHARACTER*n, where n > 0, holds a string of n
characters.

A CHARACTER*n data type occupies n bytes of storage and is aligned on 1-byte

boundaries.

Every character string constant is aligned on 2-byte boundaries. If it does not appear

in a DATAstatement, it is followed by a null character to ease communication with C

routines.

COMPLEX

A complex datum is an approximation of a complex number. The complex data type,

COMPLEX, which defaults to a synonym for COMPLEX*8, is a pair of REAL*4 values

that represent a complex number. The first element represents the real part and the

second represents the imaginary part.

The default size for a COMPLEXitem (no size specified) is 8 bytes. The default

alignment is on 4-byte boundaries. However, these defaults can be changed by

compiling with certain special options (see “Size and Alignment of Data Types” on

page 29).

BYTE Bit3 / 8 /, C1 / 'W' /,
& Counter / 0 /, Switch / .FALSE. /
24 FORTRAN 77 Language Reference • July 2001

COMPLEX*8 ✠

The complex data type COMPLEX*8is a synonym for COMPLEX, except that it always

has a size of 8 bytes, independent of any compiler options.

COMPLEX*16 (Double Complex) ✠

The complex data type COMPLEX*16is a synonym for DOUBLE COMPLEX, except that

it always has a size of 16 bytes, independent of any compiler options.

COMPLEX*32 (Quad Complex) ✠

The complex data type COMPLEX*32is a quadruple-precision complex. It is a pair of

REAL*16 elements, where each has a sign bit, a 15-bit exponent, and a 112-bit

fraction. These REAL*16 elements in f77 conform to the IEEE standard.

The size for COMPLEX*32is 32 bytes.

DOUBLE COMPLEX✠

The complex data type, DOUBLE COMPLEX, which usually has the synonym,

COMPLEX*16, is a pair of DOUBLE PRECISION(REAL*8) values that represents a

complex number. The first element represents the real part; the second represents the

imaginary part.

The default size for DOUBLE COMPLEXwith no size specified is 16.

DOUBLE PRECISION

A double-precision datum is an approximation of a real number. The double-

precision data type, DOUBLE PRECISION, which has the synonym, REAL*8, holds

one double-precision datum.

The default size for DOUBLE PRECISIONwith no size specified is 8 bytes.

A DOUBLE PRECISIONelement has a sign bit, an 11-bit exponent, and a 52-bit

fraction. These DOUBLE PRECISIONelements in f77 conform to the IEEE standard

for double-precision floating-point data. The layout is shown in “Data

Representations” on page 359.
Chapter 2 Data Types and Data Items 25

INTEGER

The integer data type, INTEGER, holds a signed integer.

The default size for INTEGERwith no size specified is 4, and is aligned on 4-byte

boundaries. However, these defaults can be changed by compiling with certain

special options (see “Size and Alignment of Data Types” on page 29).

INTEGER*2 ✠

The short integer data type, INTEGER*2, holds a signed integer. An expression

involving only objects of type INTEGER*2 is of that type. Using this feature may

have adverse performance implications, and is not recommended.

Generic functions return short or long integers depending on the default integer

type. If a procedure is compiled with the –i2 flag, all integer constants that fit and

all variables of type INTEGER(no explicit size) are of type INTEGER*2. If the

precision of an integer-valued intrinsic function is not determined by the generic

function rules, one is chosen that returns the prevailing length (INTEGER*2) when

the –i2 compilation option is in effect. With –i2 , the default length of LOGICAL
quantities is 2 bytes.

Ordinary integers follow the FORTRAN rules about occupying the same space as a

REALvariable. They are assumed to be equivalent to the C type long int , and

2-byte integers are of C type short int . These short integer and logical quantities

do not obey the standard rules for storage association.

An INTEGER*2 occupies 2 bytes.

INTEGER*2 is aligned on 2-byte boundaries.

INTEGER*4 ✠

The integer data type, INTEGER*4, holds a signed integer.

An INTEGER*4 occupies 4 bytes.

INTEGER*4 is aligned on 4-byte boundaries.

INTEGER*8 ✠

The integer data type, INTEGER*8, holds a signed 64-bit integer.

An INTEGER*8 occupies 8 bytes.

INTEGER*8 is aligned on 8-byte boundaries.
26 FORTRAN 77 Language Reference • July 2001

LOGICAL

The logical data type, LOGICAL, holds a logical value .TRUE. or .FALSE. The value

0 represents .FALSE. ; any other value represents .TRUE.

The usual default size for an LOGICAL item with no size specified is 4, and is aligned

on 4-byte boundaries. However, these defaults can be changed by compiling with

certain special options.

LOGICAL*1 ✠

The one-byte logical data type, LOGICAL*1 , which has the synonym, BYTE, can hold

any of the following:

■ One character

■ An integer between -128 and 127

■ The logical values .TRUE. or .FALSE .

The value is as defined for LOGICAL, but it can hold a character or small integer. An

example:

A LOGICAL*1 item occupies one byte of storage.

LOGICAL*1 is aligned on one-byte boundaries.

LOGICAL*2 ✠

The data type, LOGICAL*2 , holds logical value .TRUE. or .FALSE. The value is

defined as for LOGICAL.

A LOGICAL*2 occupies 2 bytes.

LOGICAL*2 is aligned on 2-byte boundaries.

LOGICAL*4 ✠

The logical data type, LOGICAL*4 holds a logical value .TRUE. or .FALSE. The

value is defined as for LOGICAL.

A LOGICAL*4 occupies 4 bytes.

LOGICAL*1 Bit3 / 8 /, C1 / 'W' /,
& Counter / 0 /, Switch / .FALSE. /
Chapter 2 Data Types and Data Items 27

LOGICAL*4 is aligned on 4-byte boundaries.

LOGICAL*8 ✠

The logical data type, LOGICAL*8 , holds the logical value .TRUE. or .FALSE. The

value is defined the same way as for the LOGICAL data type.

A LOGICAL*8 occupies 8 bytes.

LOGICAL*8 is aligned on 8-byte boundaries.

REAL

A real datum is an approximation of a real number. The real data type, REAL, which

usually has the synonym, REAL*4, holds one real datum.

The usual default size for a REAL item with no size specified is 4 bytes, and is

aligned on 4-byte boundaries. However, these defaults can be changed by compiling

with certain special options.

A REAL element has a sign bit, an 8-bit exponent, and a 23-bit fraction. These REAL

elements in f77 conform to the IEEE standard.

REAL*4 ✠

The REAL*4 data type is a synonym for REAL, except that it always has a size of 4

bytes, independent of any compiler options.

REAL*8 (Double-Precision Real) ✠

The REAL*8, data type is a synonym for DOUBLE PRECISION, except that it always

has a size of 8 bytes, independent of any compiler options.

REAL*16 (Quad Real) ✠

The REAL*16 data type is a quadruple-precision real. The size for a REAL*16 item is

16 bytes. A REAL*16 element has a sign bit, a 15-bit exponent, and a 112-bit

fraction. These REAL*16 elements in f77 conform to the IEEE standard for extended

precision.
28 FORTRAN 77 Language Reference • July 2001

Size and Alignment of Data Types

Storage and alignment are always given in bytes. Values that can fit into a single

byte are byte-aligned.

The size and alignment of types depends on various compiler options and platforms,

and how variables are declared. The default maximum alignment in COMMON

blocks is to 4-byte boundaries.

Default data alignment and storage allocation can be changed by compiling with

special options, such as -aligncommon , -f , -dalign , -dbl_align_all , -dbl ,

-xmemalign , -r8 , -i2 , and -xtypemap . The default descriptions in this manual

assume that these options are not in force.

Refer to the Fortran User’s Guide for details of specific compiler options.

The following table summarizes the default size and alignment, ignoring other

aspects of types and options.

TABLE 2-1 Default Data Sizes and Alignments (in Bytes)

Fortran 77 Data Type Size
Default

Alignment
Alignment in

COMMON

BYTE X
CHARACTER X
CHARACTER*n X

1

1

n

1

1

1

1

1

1

COMPLEX X
COMPLEX*8 X
DOUBLE COMPLEX X
COMPLEX*16 X
COMPLEX*32 X

8

8

16

16

32

4

4

8

8

8/16

4

4

4

4

4

DOUBLE PRECISION X
REAL X
REAL*4 X
REAL*8 X
REAL*16 X

8

4

4

8

16

8

4

4

8

8/16

4

4

4

4

4

INTEGER X
INTEGER*2 X
INTEGER*4 X
INTEGER*8 X

4

2

4

8

4

2

4

8

4

2

4

4

LOGICAL X
LOGICAL*1 X
LOGICAL*2 X
LOGICAL*4 X
LOGICAL*8 X

4

1

2

4

8

4

1

2

4

8

4

1

2

4

4

Chapter 2 Data Types and Data Items 29

Note the following:

■ REAL*16 and COMPLEX*32: in 64-bit environments (compiling with -xarch=v9
or v9a) the default alignment is on 16-byte (rather than 8-byte) boundaries, as

indicated by 8/16 in the table.

■ Arrays and structures align according to their elements or fields. An array aligns

the same as the array element. A structure aligns the same as the field with the

widest alignment.

Compiling with options -i2 ,-r8, or -dbl changes the defaults for certain data

declarations that appear without an explicit size:

Do not combine –i2 with –r8 as this can produce unexpected results.

With -dbl or -r8 , INTEGERand LOGICAL are allocated the larger space indicated

above. This is done to maintain the FORTRAN requirement that an integer item and

a real item have the same amount of storage. However, with -r8 8 bytes are

allocated but only 4-byte arithmetic is done. With -dbl , 8 bytes are allocated and

full 8-byte arithmetic is done. In all other ways, -dbl and -r8 produce the same

results. A disadvantage of using -r8 or -dbl is that it also promotes DOUBLE
PRECISION data to QUAD PRECISION, possibly degrading performance.

Use of the more flexible -xtypemap option is preferred over the older -r8 and -dbl
options. Both -dbl and -r8 have their -xtypemap equivalents:

-dbl same as: -xtypemap=real:64,double:128,integer:64
-r8 same as: -xtypemap=real:64,double:128,integer:mixed

The mapping integer:mixed indicates 8 byte integers but only 4 byte arithmetic.

There are two additional possibilities:

-xtypemap=real:64,double:64,integer:mixed
-xtypemap=real:64,double:64,integer:64

TABLE 2-2 Data Defaults Changed by -i2, -r8, -dbl

Default Type With -i2 With -r8 or -dbl

INTEGER INTEGER*2 INTEGER*8

LOGICAL LOGICAL*2 LOGICAL*8

REAL REAL*4 REAL*8

DOUBLE REAL*8 REAL*16

COMPLEX COMPLEX*8 COMPLEX*16

DOUBLE COMPLEX COMPLEX*16 COMPLEX*32
30 FORTRAN 77 Language Reference • July 2001

which map both default REALand DOUBLEto 8 bytes, and should be preferable over

using -r8 or -dbl .

Note that INTEGERand LOGICAL are treated the same, and COMPLEXis mapped as

two REAL value s. Also, DOUBLE COMPLEXwill be treated the way DOUBLEis

mapped.

Options -f or -dalign force alignment of all 8, 16, or 32-byte data onto 8-byte

boundaries. Option -dbl_align_all causes all data to be aligned on 8-byte

boundaries. Programs that depend on the use of these options may not be portable.

See the Fortran User’s Guide for details on these compiler options.

Constants

A literal constant is a datum whose value cannot change throughout the program

unit. The form of the string representing a constant determines the value and data

type of the constant. (For a named constant, defined by a PARAMETERstatement, the

name defines the data type.)

There are three general kinds of constants:

■ Arithmetic

■ Logical

■ Character

Blank characters within an arithmetic or logical constant do not affect the value of

the constant. Within character constants, they do affect the value.

Here are the different kinds of arithmetic constants:

A signed constant is an arithmetic constant with a leading plus or minus sign. An

unsigned constant is an arithmetic constant without a leading sign.

Typed Constants Typeless Constants

Complex Binary

Double complex Octal

Double precision Hexadecimal

Integer Hollerith

Real
Chapter 2 Data Types and Data Items 31

For integer, real, and double-precision data, zero is neither positive nor negative.

The value of a signed zero is the same as that of an unsigned zero.

Compiling with any of the options -i2 , -dbl , -r8 , or -xtypemap alters the default

size of integer, real, complex, and double precision constants. These options are

described in Chapter 2, and in the Fortran User’s Guide.

Character Constants

A character-string constant is a string of characters enclosed in apostrophes or

quotes. The apostrophes are standard; the quotes are not. ✠

If you compile with the –xl option, then the quotes mean something else, and you

must use apostrophes to enclose a string.

To include an apostrophe in an apostrophe-delimited string, repeat it. To include a

quote in a quote-delimited string, repeat it. Examples:

If a string begins with one kind of delimiter, the other kind can be embedded within

it without using the repeated quote or backslash escapes. See TABLE 2-3.

Example: Character constants:

Null Characters ✠

Each character string constant appearing outside a DATAstatement is followed by a

null character to ease communication with C routines. You can make character string

constants consisting of no characters, but only as arguments being passed to a

subprogram. Such zero length character string constants are not FORTRAN

standard.

'abc' "abc"
'ain''t'"in vi type ""h9Y"

"abc" "abc"
"ain't"'in vi type "h9Y'
32 FORTRAN 77 Language Reference • July 2001

Example: Null character string:

However, if you put such a null character constant into a character variable, the

variable will contain a blank, and have a length of at least 1 byte.

Example: Length of null character string:

demo% cat NulChr.f
write(*,*) 'a', '', 'b'
stop
end

demo% f77 NulChr.f
NulChr.f:
 MAIN:
demo% a.out
ab
demo%

demo% cat NulVar.f
character*1 x / 'a' /, y / '' /, z / 'c' /
write(*,*) x, y, z
write(*,*) len(y)
end

demo% f77 NulVar.f
NulVar.f:
 MAIN:
demo% a.out
a c
 1
demo%
Chapter 2 Data Types and Data Items 33

Escape Sequences ✠

For compatibility with C usage, the following backslash escapes are recognized. If

you include the escape sequence in a character string, then you get the indicated

character.

If you compile with the –xl option, then the backslash character (\) is treated as an

ordinary character. That is, with the –xl option, you cannot use these escape

sequences to get special characters.

Technically, the escape sequences are not nonstandard, but are implementation-

defined.

Complex Constants

A complex constant is an ordered pair of real or integer constants (or PARAMETER
constants✠). The constants are separated by a comma, and the pair is enclosed in

parentheses. The first constant is the real part, and the second is the imaginary part.

A complex constant, COMPLEX*8, uses 8 bytes of storage.

TABLE 2-3 Backslash Escape Sequences

Escape Sequence Character

\n Newline

\r Carriage return

\t Tab

\b Backspace

\f Form feed

\v Vertical tab

\0 Null

\' Apostrophe, which does not terminate a string

\" Quotation mark, which does not terminate a string

\\ \

\x x, where x is any other character
34 FORTRAN 77 Language Reference • July 2001

Example: Complex constants:

COMPLEX*16 Constants

A double-complex constant, COMPLEX*16, is an ordered pair of real or integer

constants, where one of the constants is REAL*8, and the other is INTEGER, REAL*4,

or REAL*8. ✠

The constants are separated by a comma, and the pair is enclosed in parentheses.

The first constant is the real part, and the second is the imaginary part. A double-

complex constant, COMPLEX*16, uses 16 bytes of storage.

Example: Double-complex constants:

COMPLEX*32 (Quad Complex) Constants

A quad complex constant ✠ is an ordered pair of real or integer constants, where one

of the constants is REAL*16 , and the other is INTEGER, REAL*4, REAL*8, or

REAL*16 . ✠

The constants are separated by a comma, and the pair is enclosed in parentheses.

The first constant is the real part, and the second is the imaginary part. A quad

complex constant, COMPLEX*32✠, uses 32 bytes of storage.

(9.01, .603)
(+1.0, -2.0)
(+1.0, -2)
(1, 2)
(4.51,) Invalid —need second part

(9.01D6, .603)
(+1.0, -2.0D0)
(1D0, 2)
(4.51D6,) Invalid—need second part
(+1.0, -2.0) Not DOUBLE COMPLEX—need a REAL*8
Chapter 2 Data Types and Data Items 35

Example: Quad complex constants:

Integer Constants

An integer constant consists of an optional plus or minus sign, followed by a string

of decimal digits.

Restrictions:

■ No other characters are allowed except, of course, a space.

■ If no sign is present, the constant is assumed to be nonnegative.

■ The value must be in the INTEGER*4 range (-2147483648, 2147483647), unless

compiled with an option that promotes integers to 64 bits, in which case the range

becomes INTEGER*8 (-9223372036854775808,9223372036854775807). See “Size and

Alignment of Data Types” on page 29.

Example: Integer constants:

(9.01Q6, .603)
(+1.0, -2.0Q0)
(1Q0, 2)
(3.3Q-4932, 9)
(1, 1.1Q+4932)
(4.51Q6,) Invalid—need second part
(+1.0, -2.0) Not quad complex —need a REAL*16

-2147483648
-2147483649 Invalid—too small, error message
-10
0
+199
29002
2.71828 Not INTEGER—decimal point not allowed
1E6 Not INTEGER—E not allowed
29,002 Invalid—comma not allowed, error message
2147483647
2147483648 Invalid— too large, error message
36 FORTRAN 77 Language Reference • July 2001

Alternate Octal Notation ✠

You can also specify integer constants with the following alternate octal notation.

Precede an integer string with a double quote (") and compile with the –xl option.

These are octal constants of type INTEGER.

Example: The following two statements are equivalent:

You can also specify typeless constants as binary, octal, hexadecimal, or Hollerith. See

“Typeless Constants (Binary, Octal, Hexadecimal)” on page 41.

Long Integers ✠

Compiling with an option that promotes the range from INTEGER*4
(-21474836, 21474836) to INTEGER*8 (-9223372036854775808, 9223372036854775807).

The integer constant is stored or passed as an 8-byte integer, data type INTEGER*8.

Short Integers ✠

If a constant argument is in the range (-32768, 32767), it is usually widened to a 4-

byte integer, data type INTEGER*4; but compiling with the –i2 option will cause it

to be stored or passed as a 2-byte integer, data type INTEGER*2.

Logical Constants

A logical constant is either the logical value true or false. The only logical constants

are .TRUE. and .FALSE. ; no others are possible. The period delimiters are

necessary.

A logical constant takes 4 bytes of storage. If it is an actual argument, it is passed as

4 bytes, unless compiled with the –i2 option, in which case it is passed as 2.

Real Constants

A real constant is an approximation of a real number. It can be positive, negative, or

zero. It has a decimal point or an exponent. If no sign is present, the constant is

assumed to be nonnegative.

JCOUNT = ICOUNT + "703
JCOUNT = ICOUNT + 451
Chapter 2 Data Types and Data Items 37

Real constants, REAL*4, use 4 bytes of storage.

Basic Real Constant

A basic real constant consists of an optional plus or minus sign, followed by an

integer part, followed by a decimal point, followed by a fractional part.

The integer part and the fractional part are each strings of digits, and you can omit

either of these parts, but not both.

Example: Basic real constants:

Real Exponent

A real exponent consists of the letter E, followed by an optional plus or minus sign,

followed by an integer.

Example: Real exponents:

Real Constant

A real constant has one of these forms:

■ Basic real constant

■ Basic real constant followed by a real exponent

■ Integer constant followed by a real exponent

A real exponent denotes a power of ten. The value of a real constant is the product

of that power of ten and the constant that precedes the E.

+82.
-32.
90.
98.5

E+12
E-3
E6
38 FORTRAN 77 Language Reference • July 2001

Example: Real constants:

The restrictions are:

■ Other than the optional plus or minus sign, a decimal point, the digits 0 through

9, and the letter E, no other characters are allowed.

■ The magnitude of a normalized single-precision floating-point value must be in

the approximate range (1.175494E-38, 3.402823E+38).

REAL*8 (Double-Precision Real) Constants

A double-precision constant is an approximation of a real number. It can be positive,

negative, or zero. If no sign is present, the constant is assumed to be nonnegative. A

double-precision constant has a double-precision exponent and an optional decimal

point. Double-precision constants, REAL*8, use 8 bytes of storage. The REAL*8
notation is nonstandard. ✠

Double-Precision Exponent

A double-precision exponent consists of the letter D, followed by an optional plus or

minus sign, followed by an integer.

A double-precision exponent denotes a power of 10. The value of a double-precision

constant is the product of that power of 10 and the constant that precedes the D. The

form and interpretation are the same as for a real exponent, except that a D is used

instead of an E.

-32.
-32.18
1.6E-9
7E3
1.6E12
$1.0E2.0 Invalid— $ not allowed, error message
82 Not REAL—need decimal point or exponent
29,002.0 Invalid —comma not allowed, error message
1.6E39 Invalid—too large, machine infinity is used
1.6E-39 Invalid —too small, some precision is lost
Chapter 2 Data Types and Data Items 39

Examples of double-precision constants are:

The restrictions are:

■ Other than the optional plus or minus sign, a decimal point, the digits 0 through

9, a blank, and the letter D. No other characters are allowed.

■ The magnitude of an IEEE normalized double-precision floating-point value must

be in the approximate range (2.225074D-308, 1.797693D+308).

REAL*16 (Quad Real) Constants

A quadruple-precision constant is a basic real constant or an integer constant, such

that it is followed by a quadruple-precision exponent. See “Real Constants” on

page 37. ✠

A quadruple-precision exponent consists of the letter Q, followed by an optional plus or

minus sign, followed by an integer.

A quadruple-precision constant can be positive, negative, or zero. If no sign is

present, the constant is assumed to be nonnegative.

Example: Quadruple-precision constants:

The form and interpretation are the same as for a real constant, except that a Q is

used instead of an E.

1.6D-9
7D3
$1.0D2.0 Invalid—$ not allowed, error message
82 Not DOUBLE PRECISION—need decimal point or exponent
29,002.0D0 Invalid—comma not allowed, error message
1.8D308 Invalid—too large, machine infinity is used
1.0D-324 Invalid—too small, some precision is lost

1.6Q-9
7Q3
3.3Q-4932
1.1Q+4932
$1.0Q2.0 Invalid—$ not allowed, error message
82 Not quad—need exponent
29,002.0Q0 Invalid—comma not allowed, error message
1.6Q5000 Invalid—too large, machine infinity is used
1.6Q-5000 Invalid—too small, some precision is lost
40 FORTRAN 77 Language Reference • July 2001

The restrictions are:

■ Other than the optional plus or minus sign, a decimal point, the digits 0 through

9, a blank, and the letter Q. No other characters are allowed.

■ The magnitude of an IEEE normalized quadruple-precision floating-point value

must be in the approximate range (3.362Q-4932, 1.20Q+4932).

■ It occupies 16 bytes of storage.

■ Each such datum is aligned on 8-byte boundaries.

Typeless Constants (Binary, Octal, Hexadecimal)

Typeless numeric constants are so named because their expressions assume data

types based on how they are used. ✠

These constants are not converted before use. However, in f77, they must be

distinguished from character strings.

The general form is to enclose a string of appropriate digits in apostrophes and

prefix it with the letter B, O, X, or Z. The B is for binary, the O is for octal, and the X

or Z are for hexadecimal.

Example: Binary, octal, and hexadecimal constants, DATAand PARAMETER:

Note the edit descriptors in FORMATstatements: O for octal, and Z for hexadecimal.

Each of the above integer constants has the value 31 decimal.

Example: Binary, octal, and hexadecimal, other than in DATAand PARAMETER:

PARAMETER (P1 = Z'1F')
INTEGER*2 N1, N2, N3, N4
DATA N1 /B'0011111'/, N2/O'37'/, N3/X'1f'/, N4/Z'1f'/
WRITE (*, 1) N1, N2, N3, N4, P1

1 FORMAT (1X, O4, O4, Z4, Z4, Z4)
END

INTEGER*4 M, ICOUNT/1/, JCOUNT
REAL*4 TEMP
M = ICOUNT + B'0001000'
JCOUNT = ICOUNT + O'777'
TEMP = X'FFF99A'
WRITE(*,*) M, JCOUNT, TEMP
END
Chapter 2 Data Types and Data Items 41

In the above example, the context defines B'0001000' and O'777' as INTEGER*4
and X'FFF99A' as REAL*4. For a real number, using IEEE floating-point, a given bit

pattern yields the same value on different architectures.

The above statements are treated as the following:

Control Characters

You can enter control characters with typeless constants, although the CHARfunction

is standard, and this way is not.

Example: Control characters with typeless constants:

Alternate Notation for Typeless Constants

For compatibility with other versions of FORTRAN, the following alternate notation

is allowed for octal and hexadecimal notation. This alternate does not work for

binary, nor does it work in DATAor PARAMETERstatements.

For an octal notation, enclose a string of octal digits in apostrophes and append the

letter O.

Example: Octal alternate notation for typeless constants:

For hexadecimals, enclose a string of hex digits in apostrophes and append the letter

X.

M = ICOUNT + 8
JCOUNT = ICOUNT + 511
TEMP = 2.35076E-38

CHARACTER BELL, ETX / X'03' /
PARAMETER (BELL = X'07')

'37'O
37'O Invalid -- missing initial apostrophe
'37' Not numeric -- missing letter O
'397'O Invalid -- invalid digit
42 FORTRAN 77 Language Reference • July 2001

Example: Hex alternate notation for typeless constants:

Here are the rules and restrictions for binary, octal, and hexadecimal constants:

■ These constants are for use anywhere numeric constants are allowed.

■ These constants are typeless. They are stored in the variables without any

conversion to match the type of the variable, but they are stored in the

appropriate part of the receiving field—low end, high end.

■ If the receiving data type has more digits than are specified in the constant, zeros

are filled on the left.

■ If the receiving data type has fewer digits than are specified in the constant, digits

are truncated on the left. If nonzero digits are lost, an error message is displayed.

■ Specified leading zeros are ignored.

■ You can specify up to 8 bytes of data for any one constant—at least that's all that

are used.

■ If a typeless constant is an actual argument, it has no data type, but it is always 4

bytes that are passed.

■ For binary constants, each digit must be 0 or 1.

■ For octal constants, each digit must be in the range 0 to 7.

■ For hexadecimal constants, each digit must be in the range 0 to 9 or in the range

A to F, or a to f.

■ Outside of DATAstatements, such constants are treated as the type required by the

context. If a typeless constant is used with a binary operator, it gets the data type

of the other operand (8.0 + '37'O).

■ In DATAstatements, such constants are treated as typeless binary, hexadecimal, or

octal constants.

Hollerith Constants ✠

A Hollerith constant consists of an unsigned, nonzero, integer constant, followed by

the letter H, followed by a string of printable characters where the integer constant

designates the number of characters in the string, including any spaces and tabs.

A Hollerith constant occupies 1 byte of storage for each character.

'ab'X
3fff'X
'1f'X
'1fX Invalid—missing trailing apostrophe
'3f' Not numeric— missing X
'3g7'X Invalid—invalid digit g
Chapter 2 Data Types and Data Items 43

A Hollerith constant is aligned on 2-byte boundaries.

The FORTRAN standard does not have this old Hollerith notation, although the

standard recommends implementing the Hollerith feature to improve compatibility

with old programs.

Hollerith data can be used in place of character-string constants. They can also be

used in IF tests, and to initialize noncharacter variables in DATAstatements and

assignment statements, though none of these are recommended, and none are

standard. These are typeless constants.

Example: Typeless constants:

The rules and restrictions on Hollerith constants are:

■ The number of characters has no practical limit.

■ The characters can continue over to a continuation line, but that gets tricky. Short

standard fixed format lines are padded on the right with blanks up to 72 columns,

but short tab-format lines stop at the newline.

■ If a Hollerith constant is used with a binary operator, it gets the data type of the

other operand.

■ If you assign a Hollerith constant to a variable, and the length of the constant is

less than the length of the data type of the variable, then spaces (ASCII 32) are

appended on the right.

If the length of a Hollerith constant or variable is greater than the length of the data

type of the variable, then characters are truncated on the right.

■ If a Hollerith constant is used as an actual argument, it is passed as a 4-byte item.

■ If a Hollerith constant is used, and the context does not determine the data type,

then INTEGER*4 is used.

✠Fortran 95-Style Constants

The f77 compiler recognizes the Fortran 95-style syntax for integer and real

constants that allows literal specification of the size of the data item. In Fortran 95

terminology, a constant literal may include an optional trailing underscore followed

by a “kind type parameter”. ✠

CHARACTER C*1, CODE*2
INTEGER TAG*2
DATA TAG / 2Hok /
CODE = 2Hno
IF (C .EQ. 1HZ) CALL PUNT
44 FORTRAN 77 Language Reference • July 2001

In the Sun Fortran 77 implementation, the “kind type parameter” is limited to the

digits 1, 2, 4, 8, or 16, and its use specifies the data size, in bytes, of the literal

constant. For example:

With complex constants, the real and imaginary parts may be specified with

different kind type parameters, (1.0_8,2.0_4) , but the resulting data item will

have the real and imaginary parts with the same size, taking the larger one specified.

This construction is valuable when calling subprograms with constant arguments

when a specific data type is required, as in the following example:

Variables

A variable is a symbolic name paired with a storage location. A variable has a name,

a value, and a type. Whatever datum is stored in the location is the value of the

variable. This does not include arrays, array elements, records, or record fields, so

this definition is more restrictive than the usual usage of the word “variable.”

You can specify the type of a variable in a type statement. If the type is not explicitly

specified in a type statement, it is implied by the first letter of the variable name:

either by the usual default implied typing, or by any implied typing of IMPLICIT
statements. See “Types” on page 21 for more details on the rules for data typing.

At any given time during the execution of a program, a variable is either defined or

undefined. If a variable has a predictable value, it is defined; otherwise, it is

undefined. A previously defined variable may become undefined, as when a

subprogram is exited.

You can define a variable with an assignment statement, an input statement, or a

DATAstatement. If a variable is assigned a value in a DATAstatement, then it is

initially defined.

12_8 specifies an 8-byte integer constant, value = 12
12.012_16 specifies a 16-byte real constant, value = 12.012
1.345E-10_8 specifies an 8-byte real constant, value = 1.345E-10
(-1.5_8,.895E-3_8) specifies a complex constant with 8-byte real and imaginary parts

 call suby(A,1.5_8,0_8,Y)
 ...
 subroutine suby(H0, M, N, W)
 INTEGER *8 M, N,
 ...
Chapter 2 Data Types and Data Items 45

Two variables are associated if each is associated with the same storage location. You

can associate variables by use of EQUIVALENCE, COMMON, or MAPstatements. Actual

and dummy arguments can also associate variables.

Arrays

An array is a named collection of elements of the same type. It is a nonempty

sequence of data and occupies a group of contiguous storage locations. An array has

a name, a set of elements, and a type.

An array name is a symbolic name for the whole sequence of data.

An array element is one member of the sequence of data. Each storage location holds

one element of the array.

An array element name is an array name qualified by a subscript. See “Array

Subscripts” on page 49 for details.

You can declare an array in any of the following statements:

■ DIMENSIONstatement

■ COMMONstatement

■ Type statements: BYTE, CHARACTER, INTEGER, REAL, and so forth

Array Declarators

An array declarator specifies the name and properties of an array.

The syntax of an array declarator is:

where:

■ a is the name of the array

■ d is a dimension declarator

A dimension declarator has the form:

[dl:] du

where:

■ dl is the lower dimension bound

a (d [, d] …)
46 FORTRAN 77 Language Reference • July 2001

■ du is the upper dimension bound

An array must appear only once in an array declarator within a program unit (main

program, subroutine, function, or block common). The compiler flags multiple or

duplicate array declarations within the same unit as errors.

The number of dimensions in an array is the number of dimension declarators. The

minimum number of dimensions is one. The maximum allowed by the Fortran 77

standard is seven, but the f77 compiler will allow twenty✠.

The lower bound indicates the first element of the dimension, and the upper bound
indicates the last element of the dimension. In a one-dimensional array, these are the

first and last elements of the array.

Example: Array declarator, lower and upper bounds:

In the above example, V is an array of real numbers, with 1 dimension and 11

elements. The first element is V(-5) ; the last element is V(5) .

Example: Default lower bound of 1:

In the above example, V is an array of real numbers, with 1 dimension and 1000

elements. The first element is V(1) ; the last element is V(1000) .

Example: Standard-conforming arrays can have as many as 7 dimensions:

Example: Lower bounds other than one:

Example: Character arrays:

The array Mhas 12 elements, each of which consists of 7 characters.

REAL V(-5:5)

REAL V(1000)

REAL TAO(2,2,3,4,5,6,10)

REAL A(3:5, 7, 3:5), B(0:2)

CHARACTER M(3,4)*7, V(9)*4
Chapter 2 Data Types and Data Items 47

The array V has 9 elements, each of which consists of 4 characters.

The following restrictions on bounds apply:

■ Both the upper and the lower bounds can be negative, zero, or positive.

■ The upper bound must be greater than or equal to the lower bound.

■ If only one bound is specified, it is the upper, and the lower is one.

■ In assumed-size arrays, the upper bound of the last dimension is an asterisk.

■ Each bound is an integer expression, and each operand of the expression is a

constant, a dummy argument, or a variable in a common block. No array

references or user-defined functions are allowed.

Adjustable Arrays

An adjustable array is an array that is a dummy argument or local array✠ with one or

more of its dimensions or bounds as an expression of integer variables that are either

themselves dummy arguments, or are in a common block.

You can declare adjustable arrays in the usual DIMENSIONor type statements. In f77,

you can also declare adjustable arrays in a RECORDstatement, if that RECORD
statement is not inside a structure declaration block.

Example: Adjustable arrays;

The restrictions are:

■ The size of an adjustable array cannot exceed the size of the corresponding actual

argument.

■ In the first caller of the call sequence, the corresponding array must be

dimensioned with constants.

■ You cannot declare an adjustable array in COMMON.

If the array is local to the routine, memory is allocated on entry to the routine and

deallocated on return to the caller.✠

Assumed-Size Arrays

An assumed-size array is an array that is a dummy argument, and which has an

asterisk as the upper bound of the last dimension.

SUBROUTINE POPUP (A, B, N)
COMMON / DEFS / M, L
REAL A(3:5, L, M:N), B(N+1:2*N) ! These arrays are dummy args
REAL C(N+1,2*N) ! This array is local
48 FORTRAN 77 Language Reference • July 2001

You can declare assumed-size arrays in the usual DIMENSION, COMMON, or type

statements.

The following f77 extensions allow you to:✠

■ declare assumed-size arrays in a RECORDstatement, if that RECORDstatement is

not inside a structure declaration block.

■ use an assumed-size array as a unit identifier for an internal file in an I/O

statement.

■ use an assumed-size array as a runtime format specifier in an I/O statement.

Example: Assumed-size with the upper bound of the last dimension an asterisk:

An assumed-size array cannot be used in an I/O list.

Array Names with No Subscripts

An array name with no subscripts indicates the entire array. It can appear in any of

the following statements:

■ COMMON
■ DATA
■ I/O statements

■ NAMELIST
■ RECORDstatements

■ SAVE
■ Type statements

In an EQUIVALENCEstatement, the array name without subscripts indicates the first

element of the array.

Array Subscripts

An array element name is an array name qualified by a subscript.

Form of a Subscript

A subscript is a parenthesized list of subscript expressions. There must be one

subscript expression for each dimension of the array.

SUBROUTINE PULLDOWN (A, B, C)
 INTEGER A(5, *), B(*), C(0:1, 2:*)
Chapter 2 Data Types and Data Items 49

The form of a subscript is:

(s [, s] …)

where s is a subscript expression. The parentheses are part of the subscript.

Example: Declare a two-by-three array with the declarator:

With the above declaration, you can assign a value to a particular element, as

follows:

The above code assigns 0.0 to the element in row 1, column 2, of array M.

Subscript Expressions

Subscript expressions have the following properties and restrictions:

■ A subscript expression is an integer, real, complex, logical, or byte expression.

According to the FORTRAN Standard, it must be an integer expression.

■ A subscript expression can contain array element references and function

references.

■ Evaluation of a function reference must not alter the value of any other subscript

expression within the same subscript.

■ Each subscript expression is an index into the appropriate dimension of the array.

■ Each subscript expression must be within the bounds for the appropriate

dimension of the array.

■ A subscript of the form (L1, …, Ln), where each Li is the lower bound of the

respective dimension, references the first element of the array.

■ A subscript of the form (U1, …, Un), where each Ui is the upper bound of the

respective dimension, references the last element of the array.

■ Array element A(n) is not necessarily the nth element of array A:

In the above example, the fourth element of V is set to zero.

REAL M(2,3)

M(1,2) = 0.0

REAL V(-1:8)
V(2) = 0.0
50 FORTRAN 77 Language Reference • July 2001

Subscript expressions cannot exceed the range of INTEGER*4 in 32-bit

environments. It is not controlled, but if the subscript expression is not in the range

(-2147483648, 2147483647), then the results are unpredictable. When compiled for 64-

bit environments, INTEGER*8 subscript expressions are allowed.

Array Ordering

Array elements are usually considered as being arranged with the first subscript as

the row number and the second subscript as the column number. This corresponds

to traditional mathematical nxm matrix notation:

Element ai,j is located in row i, column j.

For example:

The elements of A are conceptually arranged in 3 rows and 2 columns:

Array elements are stored in column-major order.

Example: For the array A, they are located in memory as follows:

The inner (leftmost) subscript changes more rapidly.

a1,1 a1,2 a1,3 ... a1,m

a2,1 a2,2 ... a2,m

... ... ai,j ... ai,m

an,1 an,2 ... an,m

INTEGER*4 A(3,2)

A(1,1) A(1,2)

A(2,1) A(2,2)

A(3,1) A(3,2)

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)
Chapter 2 Data Types and Data Items 51

Substrings

A character datum is a sequence of one or more characters. A character substring is a

contiguous portion of a character variable or of a character array element or of a

character field of a structured record.

A substring name can be in either of the following two forms:

v([e1] : [e2])

a(s [, s] …) ([e1] : [e2])

where:

Both e1 and e2 are integer expressions. They cannot exceed the range of INTEGER*4
on 32-bit environments. If the expression is not in the range (-2147483648,

2147483647), then the results are unpredictable. When compiled for 64-bit

environments, the substring character position expressions can be in the range of

INTEGER*8.

Example: The string with initial character from the Ith character of S and with the

last character from the Lth character of S:

In the above example, there are L-I+1 characters in the substring.

The following string has an initial character from the Mth character of the array

element A(J,K), with the last character from the Nth character of that element.

In the above example, there are N-M+1 characters in the substring.

Here are the rules and restrictions for substrings:

v Character variable name

a(s [, s] …) Character array element name

e1 Leftmost character position of the substring

e2 Rightmost character position of the substring

S(I:L)

A(J,K)(M:N)
52 FORTRAN 77 Language Reference • July 2001

■ Character positions within a substring are numbered from left to right.

■ The first character position is numbered 1, not 0.

■ The initial and last character positions must be integer expressions.

■ If the first expression is omitted, it is 1.

■ If the second expression is omitted, it is the declared length.

■ The result is undefined unless 0 < I ≤ L ≤ the declared length, where I is the initial
position, and L is the last position.

■ Substrings can be used on the left and right sides of assignments and as

procedure actual arguments.

■ Substrings must not be overlapping. ASTR(2:4) = ASTR(3:5) is illegal.

Examples: Substrings—the value of the element in column 2, row 3 is e23:

demo% cat sub.f
character v*8 / 'abcdefgh' /,

& m(2,3)*3 / 'e11', 'e21',
& 'e12', 'e22',
& 'e13', 'e23' /

print *, v(3:5)
print *, v(1:)
print *, v(:8)
print *, v(:)
print *, m(1,1)
print *, m(2,1)
print *, m(1,2)
print *, m(2,2)
print *, m(1,3)
print *, m(2,3)
print *, m(1,3)(2:3)
end

demo% f77 sub.f
sub.f:
 MAIN:
demo% a.out
 cde
 abcdefgh
 abcdefgh
 abcdefgh
 e11
 e21
 e12
 e22
 e13
 e23
 13
demo%
Chapter 2 Data Types and Data Items 53

✠Structures

A structure is a generalization of an array. ✠

Just as an array is a collection of elements of the same type, a structure is a collection

of elements that are not necessarily of the same type.

As elements of arrays are referenced by using numeric subscripts, so elements of

structures are referenced by using element (or field) names.

The structure declaration defines the form of a record by specifying the name, type,

size, and order of the fields that constitute the record. Once a structure is defined and

named, it can be used in RECORDstatements, as explained in the following

subsections.

Syntax

The structure declaration has the following syntax:

Field Declaration

Each field declaration can be one of the following:

■ A substructure—either another structure declaration, or a record that has been

previously defined

■ A union declaration, which is described later

■ A FORTRAN type declaration

STRUCTURE [/structure-name/] [field-list]
field-declaration

[field-declaration]
. . .
[field-declaration]

END STRUCTURE

structure-name Name of the structure

field-list List of fields of the specified structure

field-declaration Defines a field of the record.

field-declaration is defined in the next section.
54 FORTRAN 77 Language Reference • July 2001

Example: A STRUCTUREdeclaration:

In the above example, a structure named PRODUCTis defined to consist of the five

fields ID , NAME, MODEL, COST, and PRICE. For an example with a field-list, see

“Structure Within a Structure” on page 59.

Rules and Restrictions for Structures

Note the following:

■ The name is enclosed in slashes, and is optional only in nested structures.

■ If slashes are present, a name must be present.

■ You can specify the field-list within nested structures only.

■ There must be at least one field-declaration.

■ Each structure-name must be unique among structures, although you can use

structure names for fields in other structures or as variable names.

■ The only statements allowed between the STRUCTUREstatement and the END
STRUCTUREstatement are field-declaration statements and PARAMETERstatements.

A PARAMETERstatement inside a structure declaration block is equivalent to one

outside.

Rules and Restrictions for Fields

Fields that are type declarations use the identical syntax of normal FORTRANtype

statements. All f77 types are allowed, subject to the following rules and restrictions:

■ Any dimensioning needed must be in the type statement. The DIMENSION
statement has no effect on field names.

■ You can specify the pseudo-name %FILL for a field name. %FILL is provided for

compatibility with other versions of FORTRAN. It is not needed in f77 because the

alignment problems are taken care of for you. It may be a useful feature if you

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE
END STRUCTURE
Chapter 2 Data Types and Data Items 55

want to make one or more fields that you cannot reference in some particular

subroutine. The only thing that %FILL does is provide a field of the specified size

and type, and preclude referencing it.

■ You must explicitly type all field names. The IMPLICIT statement does not apply

to statements in a STRUCTUREdeclaration, nor do the implicit I ,J ,K,L,M,N rules

apply.

■ You cannot use arrays with adjustable or assumed size in field declarations, nor

can you include passed-length CHARACTERdeclarations.

In a structure declaration, the offset of field n is the offset of the preceding field, plus

the length of the preceding field, possibly corrected for any adjustments made to

maintain alignment. See “Data Representations” on page 359 for a summary of

storage allocation.

Record Declaration

The RECORDstatement declares variables to be records with a specified structure, or

declares arrays to be arrays of such records.

The syntax of a RECORDstatement is:

Example: A RECORDthat uses the previous STRUCTUREexample:

Each of the three variables, CURRENT, PRIOR, and NEXT, is a record which has the

PRODUCTstructure; LINE is an array of 10 such records.

Note the following rules and restrictions for records:

■ Each record is allocated separately in memory.

■ Initially, records have undefined values, unless explicitly initialized.

RECORD /structure-name/ record-list
[,/structure-name/ record-list]

…
[,/structure-name/ record-list]

structure-name Name of a previously declared structure

record-list List of variables, arrays, or arrays with dimensioning and index

ranges, separated by commas.

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
56 FORTRAN 77 Language Reference • July 2001

■ Records, record fields, record arrays, and record-array elements are allowed as

arguments and dummy arguments. When you pass records as arguments, their

fields must match in type, order, and dimension. The record declarations in the

calling and called procedures must match. Within a union declaration, the order

of the map fields is not relevant. See “Unions and Maps” on page 60.

■ Records can be in common blocks, but not record fields. That is, record structure

names can appear on COMMONstatements, but not record field names.

■ Records and record fields are not allowed in DATA, EQUIVALENCE, or NAMELIST
statements. Record fields are not allowed in SAVEstatements.

Record and Field Reference

You can refer to a whole record, or to an individual field in a record, and since

structures can be nested, a field can itself be a structure, so you can refer to fields

within fields, within fields, and so forth.

The syntax of record and field reference is:

Example: References that are based on structure and records of the above two

examples:

In the above example:

■ The first assignment statement copies one whole record (all five fields) to another

record.

■ The second assignment statement copies a whole record into the first element of

an array of records.

■ The WRITE statement writes a whole record.

■ The last statement sets the ID of one record to 82.

record-name[. field-name] … [. field-name]

record-name Name of a previously defined record variable

field-name Name of a field in the record immediately to the left.

…
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT
LINE(1) = CURRENT
WRITE (9) CURRENT
NEXT.ID = 82
Chapter 2 Data Types and Data Items 57

Example: Structure and record declarations, record and field assignments:

Substructure Declaration

A structure can have a field that is also a structure. Such a field is called a

substructure. You can declare a substructure in one of two ways:

■ A RECORDdeclaration within a structure declaration

■ A structure declaration within a structure declaration (nesting)

Record Within a Structure

A nested structure declaration is one that is contained within either a structure

declaration or a union declaration. You can use a previously defined record within a

structure declaration.

Example: Define structure SALE using previously defined record PRODUCT:

demo% cat str1.f
* str1.f Simple structure

STRUCTURE / S /
INTEGER*4 I
REAL*4 R
END STRUCTURE
RECORD / S / R1, R2
R1.I = 82
R1.R = 2.7182818
R2 = R1
WRITE (*, *) R2.I, R2.R
STOP
END

demo% f77 -silent str1. f
demo% a.out
82 2.718280
demo%

STRUCTURE /SALE/
CHARACTER*32 BUYER
INTEGER*2 QUANTITY
RECORD /PRODUCT/ ITEM

END STRUCTURE
58 FORTRAN 77 Language Reference • July 2001

In the above example, the structure SALE contains three fields, BUYER, QUANTITY,
and ITEM, where ITEM is a record with the structure, /PRODUCT/.

Structure Within a Structure

You can nest a declaration within a declaration.

Example: If /PRODUCT/ is not declared previously, then you can declare it within the

declaration of SALE:

Here, the structure SALE still contains the same three fields as in the prior example:

BUYER, QUANTITY, and ITEM. The field ITEM is an example of a field-list (in this case,

a single-element list), as defined under “Structure Declaration.”

The size and complexity of the various structures determine which style of

substructure declaration is best to use in a given situation.

Field Reference in Substructures

You can refer to fields within substructures.

Example: Refer to fields of substructures (PRODUCTand SALE, from the previous

examples, are defined in the current program unit):

STRUCTURE /SALE/
CHARACTER*32 BUYER
INTEGER*2 QUANTITY
STRUCTURE /PRODUCT/ ITEM

INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
END STRUCTURE

…
RECORD /SALE/ JAPAN
…
N = JAPAN.QUANTITY
I = JAPAN.ITEM.ID
…

Chapter 2 Data Types and Data Items 59

Rules and Restrictions for Substructures

Note the following:

■ You must define at least one field name for any substructure.

■ No two fields at the same nesting level can have the same name. Fields at

different levels of a structure can have the same name; however, doing so might

be questionable programming practice.

■ You can use the pseudo-name, %FILL , to align fields in a record, and create an

unnamed empty field.

■ You must not include a structure as a substructure of itself, at any level of nesting.

Unions and Maps

A union declaration defines groups of fields that share memory at runtime.

Syntaxes

The syntax of a union declaration is:

The syntax of a map declaration is as follows.

Fields in a Map

Each field-declaration in a map declaration can be one of the following:

UNION
 map-declaration
 map-declaration
[map-declaration]

…
[map-declaration]

END UNION

MAP
 field-declaration

[field-declaration]
…

[field-declaration]
END MAP
60 FORTRAN 77 Language Reference • July 2001

■ Structure declaration

■ Record

■ Union declaration

■ Declaration of a typed data field

A map declaration defines alternate groups of fields in a union. During execution,

one map at a time is associated with a shared storage location. When you reference a

field in a map, the fields in any previous map become undefined and are succeeded

by the fields in the map of the newly referenced field. The amount of memory used

by a union is that of its biggest map.

Example: Declare the structure /STUDENT/ to contain either NAME, CLASS, and

MAJOR—or NAME, CLASS, CREDITS, and GRAD_DATE:

If you define the variable PERSONto have the structure /STUDENT/ from the above

example, then PERSON.MAJORreferences a field from the first map, and

PERSON.CREDITSreferences a field from the second map. If the variables of the

second map field are initialized, and then the program references the variable

PERSON.MAJOR, the first map becomes active, and the variables of the second map

become undefined.

✠Pointers

The POINTERstatement establishes pairs of variables and pointers. ✠ Each pointer

contains the address of its paired variable.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE
Chapter 2 Data Types and Data Items 61

Syntax Rules

The POINTER statement has the following syntax:

where:

■ v1, v2 are pointer-based variables, also called pointees.

■ p1, p2 are the corresponding pointers.

A pointer-based variable is a variable paired with a pointer in a POINTERstatement. A

pointer-based variable is usually just called a based variable, or a pointee. The pointer is

the integer variable that contains the address. (Variable names appearing on a

POINTERstatement are considered VOLATILE by the compiler.)

Example: A simple POINTERstatement:

Here, V is a pointee, and P is its associated pointer.

See “@POINTER” on page 207, for more examples.

Usage of Pointers

Normal use of pointer-based variables involves the following steps. The first two

steps can be in either order.

1. Define the pairing of the pointer-based variable and the pointer in a POINTER
statement.

2. Define the type of the pointer-based variable.

The pointer itself is integer type and should not appear in a type declaration.

3. Set the pointer to the address of an area of memory that has the appropriate size
and type.

You do not normally do anything else explicitly with the pointer.

4. Reference the pointer-based variable.

Just use the pointer-based variable in normal FORTRAN statements—the address of

that variable is always from its associated pointer.

POINTER (p1, v1) [, (p2, v2) …]

POINTER (P, V)
62 FORTRAN 77 Language Reference • July 2001

Address and Memory

No storage for the variable is allocated when a pointer-based variable is defined, so

you must provide an address of a variable of the appropriate type and size, and

assign the address to a pointer, usually with the normal assignment statement or

data statement.

The loc(), malloc(), and free() routines associate and deassociate memory

addresses with pointers. (These routines are described in Chapter 6.)

When compiled for 64-bit environments, pointers declared by the POINTER
statement are INTEGER*8 values.

Address by LOC() Function

You can obtain the address from the intrinsic function LOC() .

Example: Use the LOC() function to get an address:

In the above example, the CHARACTERstatement allocates 12 bytes of storage for A,

but no storage for V. It merely specifies the type of V because V is a pointer-based

variable, then assign the address of A to P, so now any use of V will refer to A by the

pointer P. The program prints an E.

When compiled for 64-bit environments, LOC() returns an INTEGER*8 value. The

receiving variable must be either a pointer or an INTEGER*8 variable to avoid

possible address truncation.

Memory and Address by MALLOC() Function

The function MALLOC() allocates an area of memory and returns the address of the

start of that area. The argument to the function is an integer specifying the amount

of memory to be allocated, in bytes. If successful, it returns a pointer to the first item

of the region; otherwise, it returns an integer 0. The region of memory is not

initialized in any way.

* ptr1.f: Assign an address via LOC()
POINTER (P, V)
CHARACTER A*12, V*12
DATA A / 'ABCDEFGHIJKL' /
P = LOC(A)
PRINT *, V(5:5)
END
Chapter 2 Data Types and Data Items 63

Example: Memory allocation for pointers, by MALLOC:

In the above example, MALLOC() allocates 10,000 bytes of memory and associates

the address of that block of memory with the pointer P1.

Deallocation of Memory by FREE() Subroutine

The subroutine FREE() deallocates a region of memory previously allocated by

MALLOC(). The argument given to FREE() must be a pointer previously returned by

MALLOC(), but not already given to FREE() . The memory is returned to the

memory manager, making it unavailable to the programmer.

Example: Deallocate via FREE:

In the above example, MALLOC() allocates 10,000 bytes of memory, which are

associated with pointer P1. FREE() later returns those same 10,000 bytes to the

memory manager.

Special Considerations

Here are some special considerations when working with pointers and memory

allocation with malloc(), loc(), and free() :

■ The pointers are of type integer, and are automatically typed that way by the

compiler. You must not type them yourself.

■ A pointer-based variable cannot itself be a pointer.

■ The pointer-based variables can be of any type, including structures.

COMPLEX Z
REAL X, Y
POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (10000)
…

POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (10000)
…
CALL FREE (P1)
…

64 FORTRAN 77 Language Reference • July 2001

■ No storage is allocated when such a pointer-based variable is declared, even if

there is a size specification in the type statement.

■ You cannot use a pointer-based variable as a dummy argument or in COMMON,
EQUIVALENCE, DATA, or NAMELISTstatements.

■ The dimension expressions for pointer-based variables must be constant

expressions in main programs. In subroutines and functions, the same rules apply

for pointer-based array variables as for dummy arguments—the expression can

contain dummy arguments and variables in common. Any variables in the

expressions must be defined with an integer value at the time the subroutine or

function is called.

■ Address expressions cannot exceed the range of INTEGER*4 on 32-bit

environments. If the expression is not in the range (-2147483648, 2147483647),

then the results are unpredictable.

■ When compiling for 64-bit environments, use malloc64() to access the 64-bit

address space. Routine malloc64() takes an INTEGER*8 argument and returns a

64-bit pointer value. In 64-bit programs, pointers defined by the POINTER
statement are 64-bit INTEGER*8 values. See the Fortran Library Reference Manual
and the malloc(3F) man pages.

Optimization and Pointers

Pointers have the annoying side effect of reducing the assumptions that the global

optimizer can make. For one thing, compare the following:

■ Without pointers, if you call a subroutine or function, the optimizer knows that

the call will change only variables in common or those passed as arguments to

that call.

■ With pointers, this is no longer valid, since a routine can take the address of an

argument and save it in a pointer in common for use in a subsequent call to itself

or to another routine.

Therefore, the optimizer must assume that a variable passed as an argument in a

subroutine or function call can be changed by any other call. Such an unrestricted

use of pointers would degrade optimization for the vast majority of programs that

do not use pointers.

General Guidelines

There are two alternatives for optimization with pointers.

■ Do not use pointers with optimization level -O4 .
Chapter 2 Data Types and Data Items 65

■ Use a pointer only to identify the location of the data for calculations and pass the

pointer to a subprogram. Almost anything else you do to the pointer can yield

incorrect results.

The second choice also has a suboption: localize pointers to one routine and do not

optimize it, but do optimize the routines that do the calculations. If you put the

calling the routines on different files, you can optimize one and not optimize the

other.

Example: A relatively “safe” kind of coding with -O3 or -O4 :

If you want to optimize only CALCat level -O4 , then avoid using pointers in CALC.

Some Problematic Code Practices

Any of the following coding practices, and many others, could cause problems with

an optimization level of -O3 or -O4 :

■ A program unit does arithmetic with the pointer.

■ A subprogram saves the address of any of its arguments between calls.

■ A function returns the address of any of its arguments, although it can return the

value of a pointer argument.

■ A variable is referenced through a pointer, but the address of the variable is not

explicitly taken with the LOC() or MALLOC() functions.

Example: Code that could cause trouble with -O3 or -O4 :

The compiler assumes that a reference through P may change A, but not B; this

assumption could produce incorrect code.

REAL A, B, V(100,100) This programming unit does
POINTER (P, V) nothing else with P other than
P = MALLOC(10000) getting the address and passing it.
…
CALL CALC (P, A)
...
END
SUBROUTINE CALC (ARRAY, X)
...
RETURN
END

COMMON A, B, C
POINTER (P, V)
P = LOC(A) + 4 Possible problems here if optimized
66 FORTRAN 77 Language Reference • July 2001

CHAPTER 3

Expressions

This chapter discusses Fortran expressions and how they are evaluated by f77 .

Expressions, Operators, and Operands

An expression is a combination of one or more operands, zero or more operators, and

zero or more pairs of parentheses.

There are three kinds of expressions:

■ An arithmetic expression evaluates to a single arithmetic value.

■ A character expression evaluates to a single value of type character.

■ A logical or relational expression evaluates to a single logical value.

The operators indicate what action or operation to perform.

The operands indicate what items to apply the action to. An operand can be any of

the following kinds of data items:

■ Constant

■ Variable

■ Array element

■ Function

■ Substring

■ Structured record field (if it evaluates to a scalar data item)

■ An expression
67

Arithmetic Expressions

An arithmetic expression evaluates to a single arithmetic value, and its operands have

the following types. ✠ indicates a nonstandard feature.

■ BYTE✠

■ COMPLEX
■ COMPLEX*32 ✠

■ DOUBLE COMPLEX✠
■ DOUBLE PRECISION
■ INTEGER
■ LOGICAL
■ REAL
■ REAL*16 ✠

The operators for an arithmetic expression are any of the following:

If BYTEor LOGICAL operands are combined with arithmetic operators, they are

interpreted as integer data.

Each of these operators is a binary operator in an expression of the form:

where a and b are operands, and ⊕ is any one of the ** , * , / , - , or + operators.

Examples: Binary operators:

TABLE 3-1 Arithmetic Operators

Operator Meaning

**
*
/
-
+

Exponentiation

Multiplication

Division

Subtraction or Unary Minus

Addition or Unary Plus

a ⊕ b

A-Z
X*B
68 FORTRAN 77 Language Reference • July 2001

The operators + and - are unary operators in an expression of the form:

where b is an operand, and ⊕ is either of the - or + operators.

Examples: Unary operators:

Basic Arithmetic Expressions

Each arithmetic operator is shown in its basic expression in the following table:

In the absence of parentheses, if there is more than one operator in an expression,

then the operators are applied in the order of precedence. With one exception, if the

operators are of equal precedence, they are applied left to right.

For the left-to-right rule, the one exception is shown by the following example:

⊕ b

-Z
+B

TABLE 3-2 Arithmetic Expressions

Expression Meaning

a ** z
a / z
a * z
a - z
-z
a + z
+z

Raise a to the power z
Divide a by z
Multiply a by z
Subtract z from a
Negate z
Add z to a
Same as z

TABLE 3-3 Arithmetic Operator Precedence

Operator Precedence

**
* /
+ -

First

Second

Last

F ** S ** Z
Chapter 3 Expressions 69

The above is evaluated as:

f77 allows two successive operators. ✠

Example: Two successive operators:

The above expression is evaluated as follows:

In the above example, the compiler starts to evaluate the ** , but it needs to know

what power to raise X to; so it looks at the rest of the expression and must choose

between - and * . It first does the * , then the - , then the ** .

Mixed Mode

Except for BYTE operands, if both operands have the same type, then the resulting

value has that type. (The result of an arithmetic operation with both operands type

BYTE is default integer.) If operands have different types, then the weaker of two

types is promoted to the stronger type, where the weaker type is the one with less

precision or fewer storage units. The ranking is summarized in the following table:

F ** (S ** Z)

X ** -A * Z

X ** (-(A * Z))

Data Type Rank

BYTE or LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER*2
INTEGER*4
INTEGER*8
LOGICAL*8
REAL*4 (REAL)
REAL*8 (DOUBLE PRECISION)
REAL*16 (QUAD PRECISION)
COMPLEX*8 (COMPLEX)
COMPLEX*16 (DOUBLE COMPLEX)
COMPLEX*32 (QUAD COMPLEX)

1 (Weakest)

2

3

4

5

6

6

6

7

8

9

10

11 (Strongest)
70 FORTRAN 77 Language Reference • July 2001

Note – REAL*4, INTEGER*8, and LOGICAL*8 are of the same rank, but they can be

the results of different pairs of operands. For example, INTEGER*8 results if you

combine INTEGER*8 and any of the types between 1-5. Likewise, REAL*4 results if

one of the operands is REAL*4, and the other is any of the types between 1-5.

LOGICAL*8 dictates only the 8-byte size of the result.

Example of mixed mode: If R is real, and I is integer, then the expression:

has the type real, because first I is promoted to real, and then the multiplication is

performed.

Rules

Note these rules for the data type of an expression:

■ If there is more than one operator in an expression, then the type of the last

operation performed becomes the type of the final value of the expression.

■ Integer operators apply to only integer operands.

Example: An expression that evaluates to zero:

■ When an INTEGER*8 operand is mixed with REAL*4 operands, the result is

REAL*8.

There is one extension to this: a logical or byte operand in an arithmetic context is

used as an integer.

■ Real operators apply to only real operands, or to combinations of byte, logical,

integer, and real operands. An integer operand mixed with a real operand is

promoted to real; the fractional part of the new real number is zero. For example,

if R is real, and I is integer, then R+I is real. However, (2/3)*4.0 is 0.

■ Double precision operators apply to only double precision operands, and any

operand of lower precision is promoted to double precision. The new least

significant bits of the new double precision number are set to zero. Promoting a

real operand does not increase the accuracy of the operand.

■ Complex operators apply to only complex operands. Any integer operands are

promoted to real, and they are then used as the real part of a complex operand,

with the imaginary part set to zero.

R * I

2/3 + 3/4
Chapter 3 Expressions 71

■ Numeric operations are allowed on logical variables. ✠ You can use a logical value

any place where the FORTRAN Standard requires a numeric value. The numeric

can be integer , real , complex , double precision , double complex , or

real*16 . The compiler implicitly converts the logical to the appropriate numeric.

If you use these features, your program may not be portable.

Example: Some combinations of both integer and logical types:

Resultant Type

For integer operands with a logical operator, the operation is done bit by bit. The

result is an integer.

If the operands are mixed integer and logical, then the logicals are converted to

integers, and the result is an integer.

Arithmetic Assignment

The arithmetic assignment statement assigns a value to a variable, array element, or

record field. The syntax is:

Assigning logicals to numerics is allowed, but nonstandard, and may not be

portable. The resultant data type is, of course, the data type of v. ✠

COMPLEX C1 / (1.0, 2.0) /
INTEGER*2 I1, I2, I3
LOGICAL L1, L2, L3, L4, L5
REAL R1 / 1.0 /
DATA I1 / 8 /, I2 / 'W' /, I3 / 0 /
DATA L1/.TRUE./, L2/.TRUE./, L3/.TRUE./, L4/.TRUE./,

& L5/.TRUE./
L1 = L1 + 1
I2 = .NOT. I2
L2 = I1 .AND. I3
L3 = I1 .OR. I2
L4 = L4 + C1
L5 = L5 + R1

v = e

e Arithmetic expression, a character constant, or a logical expression

v Numeric variable, array element, or record field
72 FORTRAN 77 Language Reference • July 2001

Execution of an arithmetic assignment statement causes the evaluation of the

expression e, and conversion to the type of v (if types differ), and assignment of v
with the resulting value typed according to the table below.

Character constants can be assigned to variables of type integer or real. Such a

constant can be a Hollerith constant or a string in apostrophes or quotes. The

characters are transferred to the variables without any conversion of data. This

practice is nonstandard and may not be portable. ✠

Note – Compiling with any of the options -i2 , -dbl , -r8 , or -xtypemap will have

an effect on the assumed type of e. This is discussed in Chapter 2. See also the

Fortran User’s Guide for a description of these options.

Example: Arithmetic assignment:

Type of v Conversion of e

INTEGER*2, INTEGER*4, or INTEGER*8
REAL
REAL*8
REAL*16
DOUBLE PRECISION
COMPLEX*8
COMPLEX*16
COMPLEX*32

INT(e)
REAL(e)
DBLE(e)
QREAL(e)
DBLE(e)
CMPLX(e)
DCMPLX(e)
QCMPLX(e)

INTEGER I2*2, J2*2, I4*4
LOGICAL L1, L2
REAL R4*4, R16*16
DOUBLE PRECISION DP
COMPLEX C8, C16*16
J2 = 29002
I2 = J2
I4 = (I2 * 2) + 1
DP = 6.4D0
QP = 9.8Q1
R4 = DP
R16 = QP
C8 = R1
C8 = (3.0, 5.0)
I2 = C8
C16 = C8
C8 = L1
R4 = L2
Chapter 3 Expressions 73

Character Expressions

A character expression is an expression whose operands have the character type. It

evaluates to a single value of type character, with a size of one or more characters.

The only character operator is the concatenation operator, // .

The result of concatenating two strings is a third string that contains the characters of

the left operand followed immediately by the characters of the right operand. The

value of a concatenation operation a//z is a character string whose value is the

value of a concatenated on the right with the value of z , and whose length is the

sum of the lengths of a and z .

The operands can be any of the following kinds of data items:

■ Character constant

■ Character variable

■ Character array element

■ Character function

■ Substring

■ Structured record field (if it evaluates to a scalar character data item)

Examples: Character expressions, assuming C, S, and R.C are characters:

Note the following (nonstandard) exceptions:✠

■ Control characters—One way to enter control characters is to hold down the

Control key and press another key. Most control characters can be entered this

way, but not Control-A, Control-B, Control-C, or Control-J.

Expression Meaning

a // z Concatenate a with z.

'wxy'
'AB' // 'wxy'
C
C // S
C(4:7)
R.C
74 FORTRAN 77 Language Reference • July 2001

Example: A valid way to enter a Control-C:

■ —.

Character String Assignment

The form of the character string assignment is:

The meaning of character assignment is to copy characters from the right to the left

side.

Execution of a character assignment statement causes evaluation of the character

expression and assignment of the resulting value to v.

■ If e is longer than v, characters on the right are truncated.

■ If e is shorter than v, blank characters are padded on the right.

Example: The following program below displays joined ∆∆:

Also, this program displays the equal string:

CHARACTER etx
etx = CHAR(3)

v = e

e Expression giving the value to be assigned

v Variable, array element, substring, or character record field

CHARACTER A*4, B*2, C*8
A = 'join'
B = 'ed'
C = A // B
PRINT *, C
END

IF (('ab' // 'cd') .EQ. 'abcd') PRINT *, 'equal'
END
Chapter 3 Expressions 75

Example: Character assignment:

The results are:

Example 4: A Hollerith assignment: ✠

Rules of Assignment

Here are the rules for character assignments:

■ If the left side is longer than the right, it is padded with trailing blanks.

CHARACTER BELL*1, C2*2, C3*3, C5*5, C6*6
REAL Z
C2 = 'z'
C3 = 'uvwxyz'
C5 = 'vwxyz'
C5(1:2) = 'AB'
C6 = C5 // C2
I = 'abcd'
Z = 'wxyz'
BELL = CHAR(7) Control Character (^G)

Variable Receiving Value Comment

C2 'z ∆' A trailing blank

C3 'uvw'

C5 'ABxyz'

C6 'ABxyzz' The final 'z' comes from C2

I 'abcd'

Z 'wxyz'

BELL 07 hex Control-G, a bell

CHARACTER S*4
INTEGER I2*2, I4*4
REAL R
S = 4Hwxyz
I2 = 2Hyz
I4 = 4Hwxyz
R = 4Hwxyz
76 FORTRAN 77 Language Reference • July 2001

■ If the left side is shorter than the right, trailing characters are discarded.

■ The left and right sides of a character substring assignment cannot overlap. See

the “Substrings” on page 52 .

Logical Expressions

A logical expression is a sequence of one or more logical operands and logical

operators. It evaluates to a single logical value. The operators can be any of the

following.

The period delimiters are necessary.

Two logical operators cannot appear consecutively, unless the second one is the

.NOT. operator.

Logical operators are evaluated according to the following precedence:

If the logical operators are of equal precedence, they are evaluated left to right.

TABLE 3-4 Logical Operators

Operator Standard Name

.AND.

.OR.

.NEQV.

.XOR.

.EQV.

.NOT.

Logical conjunction

Logical disjunction (inclusive OR)

Logical nonequivalence

Logical exclusive OR
Logical equivalence

Logical negation

TABLE 3-5 Logical Operator Precedence

Operator Precedence

.NOT.

.AND.

.OR.

.NEQV.,.XOR., .EQV.

Highest

Lowest
Chapter 3 Expressions 77

If the logical operators appear along with the various other operators in a logical

expression, the precedence is as follows.

The following table shows the meanings of simple expressions:

Logical operations on operands of different sizes result in a logical value promoted

to the size of the largest operand. For example L2.AND.L4 gives a LOGICAL*4
result if L2 is LOGICAL*2 and L4 is LOGICAL*4.

BYTE✠ variables are treated the same as LOGICAL*1 .

Logical Assignment

This is the syntax for the assignment of the value of a logical expression to a logical

variable:

TABLE 3-6 Operator Precedence

Operator Precedence

Arithmetic

Character

Relational

Logical

Highest

Lowest

TABLE 3-7 Logical Expressions and Their Meanings

Expression Meaning

X .AND. Y
X .OR. Y
X .NEQV. Y
X .XOR. Y
X .EQV. Y
.NOT. X

Both X and Y are true.

Either X or Y, or both, are true.

X and Y are not both true and not both false.

Either X or Y is true, but not both.

X and Y are both true or both false.

Logical negation.

v = e

e A logical expression, an integer between –128 and 127, or a single character constant✠

v A logical variable, array element, or record field
78 FORTRAN 77 Language Reference • July 2001

Execution of a logical assignment statement causes evaluation of the logical

expression e and assignment of the resulting value to v. If e is a logical expression,

rather than an integer between -128 and 127, or a single character constant, then e
must have a value of either true or false.

Logical expressions of any size can be assigned to logical variables of any size.

Assigning numerics to logicals is allowed. (All non-zero values are treated as

.TRUE. , and zero is .FALSE.) This practice is nonstandard, however, and is not

portable. ✠

Example: A logical assignment:

Relational Operator

A relational operator compares two arithmetic expressions, or two character

expressions, and evaluates to a single logical value. The operators can be any of the

following:

The period delimiters are necessary.

All relational operators have equal precedence. Character and arithmetic operators

have higher precedence than relational operators.

For a relational expression, first each of the two operands is evaluated, and then the

two values are compared. If the specified relationship holds, then the value is true;

otherwise, it is false.

LOGICAL B1*1, B2*1
LOGICAL L3, L4
B2 = B1
B1 = L3
L4 = .TRUE.

TABLE 3-8 Relational Operators

Operator Meaning

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

Less than

Less than or equal

Equal

Not equal

Greater than

Greater than or equal
Chapter 3 Expressions 79

Example: Relational operators:

For character relational expressions:

■ “Less than” means “precedes in the ASCII collating sequence.”

■ If one operand is shorter than the other, the shorter one is padded on the right

with blanks to the length of the longer.

Constant Expressions

A constant expression is made up of explicit constants and parameters and the

FORTRAN operators. Each operand is either itself another constant expression, a

constant, a symbolic name of a constant, or one of the intrinsic functions called with

constant arguments✠.

Examples: Constant expressions:

There are a few restrictions on constant expressions:

■ Constant expressions are permitted wherever a constant is allowed, except they

are not allowed in DATAor standard FORMATstatements.

■ Constant expressions are permitted in variable format expressions. ✠

■ Exponentiation to a floating-point power is not allowed; a warning is issued.

NODE .GE. 0
X .LT. Y
U*V .GT. U-V
M+N .GT. U-V Mixed mode: integer M+N is promoted to real
STR1 .LT. STR2 STR1 and STR2 are character type
S .EQ. 'a' S is character type

PARAMETER (L=29002), (P=3.14159), (C='along the ')
PARAMETER (I=L*2, V=4.0*P/3.0, S=C//'riverrun')
PARAMETER (M=MIN(I,L), IA=ICHAR('A'))
PARAMETER (Q=6.4Q6, D=2.3D9)
K = 66 * 80
VOLUME = V*10**3
DO I = 1, 20*3
80 FORTRAN 77 Language Reference • July 2001

Example: Exponentiation to a floating-point power is not allowed:

✠Record Assignment

The general form of record assignment is: ✠

Both e and v must have the same structure. That is, each must have the same number

of fields, and corresponding fields must be of the same type and size.

demo% cat ConstExpr.f
parameter (T=2.0*(3.0**2.5))
write(*,*) t
end

demo% f77 ConstExpr.f
ConstExpr.f:
 MAIN:
"ConstExpr.f", line 1: Warning:

parameter t set to a nonconstant
demo% a.out
 31.1769
demo%

v = e

e A record or record field

v A record or record field
Chapter 3 Expressions 81

Example: A record assignment and a record-field assignment:

In the above example, the first assignment statement copies one whole record (all

five fields) to another record; the second assignment statement copies a whole record

into the first element of an array of records; the WRITEstatement writes a whole

record; and the last statement sets the ID of one record to 82.

Evaluation of Expressions

The following restrictions apply to all arithmetic, character, relational, and logical

expressions:

■ If you reference any one of these items in an expression, variable, array element,

character substring, record field, pointer, or function, then that item must be

defined at the time the reference is executed.

■ An integer operand must be defined with an integer value, and not with a

statement label value by an ASSIGN statement.

■ All the characters of a substring that are referenced must be defined at the time

the reference is executed.

■ The execution of a function reference must not alter the value of any other entity

within the same statement.

■ The execution of a function reference must not alter the value of any entity that

affects the value of any other function reference in the same statement.

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE
END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT
LINE(1) = CURRENT
WRITE (9) CURRENT
NEXT.ID = 82
82 FORTRAN 77 Language Reference • July 2001

CHAPTER 4

Statements

This chapter describes the statements recognized by the FORTRAN 77 compiler, f77 .

Nonstandard features are indicated by the symbol “✠”. (See Chapter 1 for a

discussion of the conforming standards). A table of sample statements appears in

Appendix B.
83

✠ACCEPT
The ACCEPT✠ statement reads from standard input and requires the following

syntax:

ACCEPTf [, iolist]

ACCEPTgrname

Description

ACCEPTf [, iolist] is equivalent to READf [, iolist] and is for compatibility with

older versions of FORTRAN. An example of list-directed input:

Parameter Description

f Format identifier

iolist List of variables, substrings, arrays, and records

grname Name of the namelist group

REAL VECTOR(10)
ACCEPT *, NODE, VECTOR
84 FORTRAN 77 Language Reference • July 2001

ASSIGN
The ASSIGN statement assigns a statement label to a variable.

ASSIGN s TO i

Description

The label s is the label of an executable statement or a FORMATstatement.

The statement label must be the label of a statement that is defined in the same

program unit as the ASSIGN statement.

The integer variable i, once assigned a statement label, can be reassigned the same

statement label, a different label, or an integer. It can not be declared INTEGER*2.

After assigning a statement label to a variable, you can reference it in:

■ An assigned GO TOstatement

■ An input/output statement, as a format identifier

Restrictions

The variable must be assigned a statement label before referencing it as a label in an

assigned GO TOstatement, or as a format identifier.

While i is assigned a statement label value, do no arithmetic with i.

On 64-bit platforms, the actual value stored in variable i by the ASSIGNstatement is

not available to the program, except by the assigned GO TOstatement, or as a format

identifier in an I/O statement. Also, only variables set by an ASSIGN statement can

be used in an assigned GO TOor as a format identifier.

Parameter Description

s Statement label

i Integer variable
Chapter 4 Statements 85

Examples

Example 1: Assign the statement number of an executable statement:

Example 2: Assign the statement number of a format statement:

IF(LB.EQ.0) ASSIGN 9 TO K
…
GO TO K
…

9 AKX = 0.0

INTEGER PHORMAT
2 FORMAT (A80)

ASSIGN 2 TO PHORMAT
…
WRITE (*, PHORMAT) 'Assigned a FORMAT statement no.'
86 FORTRAN 77 Language Reference • July 2001

Assignment, v = e
The assignment statement assigns a value to a variable, substring, array element,

record, or record field.

v = e

Description

The value can be a constant or the result of an expression. The kinds of assignment

statements: are arithmetic, logical, character, and record assignments.

Arithmetic Assignment

v is of numeric type and is the name of a variable, array element, or record field.

e is an arithmetic expression, a character constant, or a logical expression. Assigning

logicals to numerics is nonstandard, and may not be portable; the resultant data type

is, of course, the data type of v. ✠

Execution of an arithmetic assignment statement causes the evaluation of the

expression e, and conversion to the type of v (if types differ), and assignment of v
with the resulting value typed according to the following table.

Parameter Description

v Variable, substring, array element, record, or record field

e Expression giving the value to be assigned

Type of v Type of e

INTEGER*2, INTEGER*4, or INTEGER*8
REAL
REAL*8
REAL*16
DOUBLE PRECISION
COMPLEX*8
COMPLEX*16
COMPLEX*32

INT(e)
REAL(e)
REAL*8
QREAL(e)
DBLE(e)
CMPLX(e)
DCMPLX(e)
QCMPLX(e)
Chapter 4 Statements 87

Note – Compiling with any of the options -i2 , -dbl , -r8 , or -xtypemap can alter

the default data size of variables and expressions. This is discussed in Chapter 2. See

also the Fortran User’s Guide for a description of these options.

Example: An assignment statement:

The above code is compiled exactly as if it were the following:

Logical Assignment

v is the name of a variable, array element, or record field of type logical.

e is a logical expression, or an integer between -128 and 127, or a single character

constant.

Execution of a logical assignment statement causes evaluation of the logical

expression e and assignment of the resulting value to v. If e is a logical expression

(rather than an integer between -128 and 127, or a single character constant), then e
must have a value of either true or false.

Logical expressions of any size can be assigned to logical variables of any size. The

section on the LOGICAL statement provides more details on the size of logical

variables.

Character Assignment

The constant can be a Hollerith constant or a string of characters delimited by

apostrophes (') or quotes ("). The character string cannot include the control

characters Control-A, Control-B, or Control-C; that is, you cannot hold down the

Control key and press the A, B, or C keys. If you need those control characters, use

the char() function.

REAL A, B
DOUBLE PRECISION V
V = A * B

REAL A, B
DOUBLE PRECISION V
V = DBLE(A * B)
88 FORTRAN 77 Language Reference • July 2001

If you use quotes to delimit a character constant, then you cannot compile with the

-xl option, because, in that case, a quote introduces an octal constant. The

characters are transferred to the variables without any conversion of data, and may

not be portable.

Character expressions which include the // operator can be assigned only to items

of type CHARACTER. Here, the v is the name of a variable, substring, array element,

or record field of type CHARACTER; e is a character expression.

Execution of a character assignment statement causes evaluation of the character

expression and assignment of the resulting value to v. If the length of e is more than

that of v, characters on the right are truncated. If the length of e is less than that of v,

blank characters are padded on the right.

Record Assignment

v and e are each a record or record field. ✠

The e and v must have the same structure. They have the same structure if any of the

following occur:

■ Both e and v are fields with the same elementary data type.

■ Both e and v are records with the same number of fields such that corresponding

fields are the same elementary data type.

■ Both e and v are records with the same number of fields such that corresponding

fields are substructures with the same structure as defined

in 2, above.

The sections on the RECORDand STRUCTUREstatements have more details on the

structure of records.
Chapter 4 Statements 89

Examples

Example 1: Arithmetic assignment:

Example 2: Logical assignment:

Example 3: Hollerith assignment:

INTEGER I2*2, J2*2, I4*4
REAL R1, QP*16
DOUBLE PRECISION DP
COMPLEX C8, C16*16, QC*32
J2 = 29002
I2 = J2
I4 = (I2 * 2) + 1
DP = 6.4D9
QP = 6.4Q9
R1 = DP
C8 = R1
C8 = (3.0, 5.0)
I2 = C8
C16 = C8
C32 = C8

LOGICAL B1*1, B2*1
LOGICAL L3, L4
L4 = .TRUE.
B1 = L4
B2 = B1

CHARACTER S*4
INTEGER I2*2, I4*4
REAL R
S = 4Hwxyz
I2 = 2Hyz
I4 = 4Hwxyz
R = 4Hwxyz
90 FORTRAN 77 Language Reference • July 2001

Example 4: Character assignment:

The results of the above are:

Example 5: Record assignment and record field assignment:

CHARACTER BELL*1, C2*2, C3*3, C5*5, C6*6
REAL Z
C2 = 'z'
C3 = 'uvwxyz'
C5 = 'vwxyz'
C5(1:2) = 'AB'
C6 = C5 // C2
BELL = CHAR(7) Control Character (^G)

C2
C3
C5
C6

receives 'z ∆' a trailing blank
receives 'uvw '

receives 'ABxyz '

receives 'ABxyzz ' an extra z left over from C5

BELL receives 07 hex Control-G, a bell

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT Record to record
LINE(1) = CURRENT Record to array element
WRITE (9) CURRENT Write whole record
NEXT.ID = 82 Assign a value to a field
Chapter 4 Statements 91

✠AUTOMATIC
The AUTOMATIC✠ statement makes each recursive invocation of the subprogram

have its own copy of the specified items. It also makes the specified items become

undefined outside the subprogram when the subprogram exits through a RETURN
statement.

AUTOMATIC vlist

Description

For automatic variables, there is one copy for each invocation of the procedure. To

avoid local variables becoming undefined between invocations, f77 classifies every

variable as either static or automatic with all local variables being static by default.

For other than the default, you can declare variables as static or automatic in a

STATIC ✠, AUTOMATIC✠, or IMPLICIT statement. See also the discussion of the

-stackvar option in the Fortran User’s Guide.

One usage of AUTOMATICis to declare all automatic at the start of a function.

Example: Recursive function with implicit automatic:

Local variables and arrays are static by default, so in general, there is no need to use

SAVE. You should use SAVEto ensure portability. Also, SAVEis safer if you leave a

subprogram by some way other than a RETURN.

Parameter Description

vlist List of variables and arrays

INTEGER FUNCTION NFCTRL(I)
IMPLICIT AUTOMATIC (A-Z)
...
RETURN
END
92 FORTRAN 77 Language Reference • July 2001

Restrictions

Automatic variables and arrays cannot appear in DATAor SAVEstatements.

Arguments and function values cannot appear in DATA, RECORD, STATIC, or SAVE
statements because f77 always makes them automatic.

Examples

Example: Some other uses of AUTOMATIC:

Example: Structures are unpredictable if AUTOMATIC:

Restrictions

An AUTOMATICstatement and a type statement cannot be combined to make an

AUTOMATICtype statement. For example, AUTOMATIC REAL Xdoes not declare the

variable X to be both AUTOMATICand REAL; it declares the variable REALXto be

AUTOMATIC.

AUTOMATIC A, B, C
REAL P, D, Q
AUTOMATIC P, D, Q
IMPLICIT AUTOMATIC (X-Z)

demo% cat autostru.f
AUTOMATIC X
STRUCTURE /ABC/
INTEGER I
END STRUCTURE
RECORD /ABC/ X X is automatic. It cannot be a structure.
X.I = 1
PRINT '(I2)', X.I
END

demo% f77 -silent autostru.f
demo% a.out
*** TERMINATING a.out
*** Received signal 10 (SIGBUS)
Bus Error (core dumped)
demo%
Chapter 4 Statements 93

BACKSPACE
The BACKSPACEstatement positions the specified file to just before the preceding

record.

BACKSPACEu

BACKSPACE ([UNIT=] u [, IOSTAT= ios] [, ERR= s])

Description

BACKSPACEin a terminal file has no effect.

u must be connected for sequential access. Execution of a BACKSPACEstatement on a

direct-access file is not defined in the FORTRAN 77 Standard, and is unpredictable.

We do not recommend using a BACKSPACEstatement on a direct-access file or an

append access file. BACKSPACEon a file opened as FORM=’BINARY’ is not allowed

and causes a runtime error.

Execution of the BACKSPACEstatement modifies the file position, as follows:

Parameter Description

u Unit identifier of the external unit connected to the file

ios I/O status specifier, integer variable, or an integer array

element

s Error specifier: s must be the label of an executable

statement in the same program unit in which the

BACKSPACEstatement occurs. Program control is

transferred to the label in case of an error during the

execution of the BACKSPACEstatement.

Prior to Execution After Execution

Beginning of the file Remains unchanged

Beyond the endfile record Before the endfile record

Beginning of the previous record Start of the same record
94 FORTRAN 77 Language Reference • July 2001

Examples

Example 1: Simple backspace:

Example 2: Backspace with error trap:

BACKSPACE 2
LUNIT = 2
BACKSPACE LUNIT

INTEGER CODE
BACKSPACE (2, IOSTAT=CODE, ERR=9)
…

9 WRITE (*,*) 'Error during BACKSPACE'
STOP
Chapter 4 Statements 95

BLOCK DATA
The BLOCK DATAstatement identifies a subprogram that initializes variables and

arrays in labeled common blocks.

BLOCK DATA [name]

Description

A block data subprogram can contain as many labeled common blocks and data

initializations as desired.

The BLOCK DATAstatement must be the first statement in a block data subprogram.

The only other statements that can appear in a block data subprogram are:

■ COMMON
■ DATA
■ DIMENSION
■ END
■ EQUIVALENCE
■ IMPLICIT
■ PARAMETER
■ RECORD
■ SAVE
■ STRUCTURE
■ Type statements

Only an entity defined in a labeled common block can be initially defined in a block

data subprogram.

If an entity in a labeled common block is initially defined, all entities having storage

units in the common block storage sequence must be specified, even if they are not

all initially defined.

Parameter Description

name Symbolic name of the block data subprogram in which the

BLOCK DATAstatement appears. This parameter is

optional. It is a global name.
96 FORTRAN 77 Language Reference • July 2001

Restrictions

Only one unnamed block data subprogram can appear in the executable program.

The same labeled common block cannot be specified in more than one block data

subprogram in the same executable program.

The optional parameter name must not be the same as the name of an external

procedure, main program, common block, or other block data subprogram in the

same executable program. The name must not be the same as any local name in the

subprogram.

Example

BLOCK DATA INIT
COMMON /RANGE/ X0, X1
DATA X0, X1 / 2.0, 6.0 /
END
Chapter 4 Statements 97

✠BYTE
The BYTE✠ statement specifies the type to be 1-byte integer. It optionally specifies

array dimensions and initializes with values.

BYTE v [/ c/] …

Description

This is a synonym for LOGICAL*1 . A BYTE type item can hold the logical values

.TRUE. , .FALSE. , one eight-bit data item, or an integer between –128 and 127.

Example

Parameter Description

v Name of a symbolic constant, variable, array, array

declarator, function, or dummy function

c List of constants for the immediately preceding name

BYTE BIT3 /8/, C1/'W'/, M/127/, SWITCH/.FALSE./
98 FORTRAN 77 Language Reference • July 2001

CALL
The CALL statement branches to the specified subroutine, executes the subroutine,

and returns to the calling program after finishing the subroutine.

CALL sub [([ar[, ar]…])]

Description

Arguments are separated by commas.

The FORTRAN 77 Standard requires that actual arguments in a CALL statement

must agree in order, number, and type with the corresponding formal arguments of

the referenced subroutine. The compiler checks this only when the -XlistE option

is on.

Recursion is allowed. A subprogram can call itself directly, or indirectly by calling

another subprogram that in turns calls this subroutine. Such recursion is

nonstandard. ✠

An actual argument, ar, must be one of the following:

■ An expression

■ An intrinsic function permitted to be passed as an argument; for a list of the

intrinsics that cannot be actual arguments, see TABLE 4-2.

■ An external function name

■ A subroutine name

■ An alternate return specifier, * or &, followed by a statement number. The & is

nonstandard. ✠

The simplest expressions, and most frequently used, include such constructs as:

■ Constant

■ Variable name

■ Array name

■ Formal argument, if the CALL statement is inside a subroutine

■ Record name

Parameter Description

sub Name of the subroutine to be called

ar Actual argument to be passed to the subroutine
Chapter 4 Statements 99

If a subroutine has no arguments, then a CALL statement that references that

subroutine must not have any actual arguments. A pair of empty matching

parentheses can follow the subroutine name.

Execution of the CALL statement proceeds as follows:

1. All expressions (arguments) are evaluated.

2. All actual arguments are associated with the corresponding formal arguments, and
the body of the subroutine is executed.

3. Normally, the control is transferred back to the statement following the CALL
statement upon executing a RETURNstatement or an ENDstatement in the
subroutine. If an alternate return in the form of RETURNn is executed, then control
is transferred to the statement specified by the n alternate return specifier in the
CALL statement.

Note – A CALL to a subprogram defined as a FUNCTIONrather than as a

SUBROUTINEwill cause unexpected results and is not recommended. The compiler

does not automatically detect such inappropriate CALLs and no warning is issued

unless the -Xlist option is specified.

Examples

Example 1: Character string:

CHARACTER *25 TEXT
TEXT = 'Some kind of text string'
CALL OOPS (TEXT)
END
SUBROUTINE OOPS (S)

CHARACTER S*(*)
WRITE (*,*) S

END
100 FORTRAN 77 Language Reference • July 2001

Example 2: Alternate return:

Example 3: Another form of alternate return; the & is nonstandard: ✠

Example 4: Array, array element, and variable:

In this example, the real array Mmatches the real array, A, and the real array element

Q(1,2) matches the real variable, D.

CALL RANK (N, *8, *9)
WRITE (*,*) 'OK - Normal Return'
STOP

8 WRITE (*,*) 'Minor - 1st alternate return'
STOP

9 WRITE (*,*) 'Major - 2nd alternate return'
STOP
END

SUBROUTINE RANK (N, *, *)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2

END

CALL RANK (N, &8, &9)

REAL M(100,100), Q(2,2), Y
CALL SBRX (M, Q(1,2), Y)
…
END
SUBROUTINE SBRX (A, D, E)
REAL A(100,100), D, E
…
RETURN
END
Chapter 4 Statements 101

Example 5: A structured record and field; the record is nonstandard: ✠

In the above example, the record NEWmatches the record CURRENT, and the integer

variable, K, matches the record field, PRIOR.OLD.

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR
CALL SBRX (CURRENT, PRIOR.ID)
…
END
SUBROUTINE SBRX (NEW, K)
STRUCTURE /PRODUCT/

INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ NEW
…
RETURN
END
102 FORTRAN 77 Language Reference • July 2001

CHARACTER
The CHARACTERstatement specifies the type of a symbolic constant, variable, array,

function, or dummy function to be character.

Optionally, it initializes any of the items with values and specifies array dimensions.

CHARACTER [*len[,]] v [* len / c/]] …

Description

Each character occupies 8 bits of storage, aligned on a character boundary. Character

arrays and common blocks containing character variables are packed in an array of

character variables. The first character of one element follows the last character of

the preceding element, without holes.

The length, len must be greater than 0. If len is omitted, it is assumed equal to 1.

For local and common character variables, symbolic constants, dummy arguments,

or function names, len can be an integer constant, or a parenthesized integer constant

expression.

For dummy arguments or function names, len can have another form: a

parenthesized asterisk, that is, CHARACTER*(*) , which denotes that the function

name length is defined in referencing the program unit, and the dummy argument

has the length of the actual argument.

For symbolic constants, len can also be a parenthesized asterisk, which indicates that

the name is defined as having the length of the constant. This is shown in Example 5

in the next section.

The list c of constants can be used only for a variable, array, or array declarator.

There can be only one constant for the immediately preceding variable, and one

constant for each element of the immediately preceding array.

Parameter Description

v Name of a symbolic constant, variable, array, array

declarator, function, or dummy function

len Length in characters of the symbolic constant, variable,

array element, or function

c List of constants for the immediately preceding name
Chapter 4 Statements 103

Examples

Example 1: Character strings and arrays of character strings:

The above code is exactly equivalent to the following:

Both of the above two examples are equivalent to the nonstandard variation: ✠

There are no null (zero-length) character-string variables. A one-byte character string

assigned a null constant has the length zero.

Example 2: No null character-string variables:

During execution of the assignment statement, the variable S is precleared to blank,

and then zero characters are moved into S, so S contains one blank; because of the

declaration, the intrinsic function LEN(S) will return a length of 1. You cannot

declare a size of less than 1, so this is the smallest length string variable you can get.

Example 3: Dummy argument character string with constant length:

Example 4: Dummy argument character string with length the same as

corresponding actual argument:

CHARACTER*17 A, B(3,4), V(9)
CHARACTER*(6+3) C

CHARACTER A*17, B(3,4)*17, V(9)*17
CHARACTER C*(6+3)

CHARACTER A*17, B*17(3,4), V*17(9) nonstandard

CHARACTER S*1
S = ''

SUBROUTINE SWAN(A)
CHARACTER A*32

SUBROUTINE SWAN(A)
CHARACTER A*(*)
…

104 FORTRAN 77 Language Reference • July 2001

Example 5: Symbolic constant with parenthesized asterisk:

The intrinsic function LEN(INODE) returns the actual declared length of a character

string. This is mainly for use with CHAR*(*) dummy arguments.

Example 6: The LEN intrinsic function:

The above program displays 17 , not 3.

CHARACTER *(*) INODE
PARAMETER (INODE = 'Warning: INODE corrupted!')

CHARACTER A*17
A = "xyz"
PRINT *, LEN(A)

END
Chapter 4 Statements 105

CLOSE
The CLOSEstatement disconnects a file from a unit.

CLOSE([UNIT=] u [, STATUS= sta] [, IOSTAT = ios] [, ERR = s])

Description

The options can be specified in any order.

The DISP= and DISPOSE=options are allowable alternates for STATUS=, with a

warning, if the -ansi flag is set.

Execution of CLOSEproceeds as follows:

1. The specified unit is disconnected.

2. If sta is DELETE, the file connected to the specified unit is deleted.

3. If an IOSTAT argument is specified, ios is set to zero if no error was encountered;
otherwise, it is set to a positive value.

Parameter Description

u Unit identifier for an external unit. If UNIT= is not used,

then u must be first.

sta Determines the disposition of the file—sta is a character

expression whose value, when trailing blanks are

removed, can be KEEPor DELETE. The default value for

the status specifier is KEEP. For temporary (scratch) files,

sta is forced to DELETEalways. For other files besides

scratch files, the default sta is KEEP.

ios I/O status specifier—ios must be an integer variable or an

integer array element.

s Error specifier—s must be the label of an executable

statement in the same program containing the CLOSE
statement. The program control is transferred to this

statement in case an error occurs while executing the

CLOSEstatement.
106 FORTRAN 77 Language Reference • July 2001

Comments

All open files are closed with default sta at normal program termination. Regardless

of the specified sta, scratch files, when closed, are always deleted.

Execution of a CLOSEstatement specifying a unit that does not exist, or a unit that

has no file connected to it, has no effect.

Execution of a CLOSEstatement specifying a unit zero (standard error) is not

allowed, but you can reopen it to some other file.

The unit or file disconnected by the execution of a CLOSEstatement can be

connected again to the same, or a different, file or unit.

Note – For tape I/O, use the TOPEN() routines.

Examples

Example 1: Close and keep:

Example 2: Close and delete:

Example 3: Close and keep a scratch file even though the status is SCRATCH:

CLOSE (2, STATUS='KEEP')

CLOSE (2, STATUS='DELETE', IOSTAT=I)

OPEN (2, STATUS='SCRATCH')
…
CLOSE (2, STATUS='KEEP', IOSTAT=I)
Chapter 4 Statements 107

COMMON
The COMMONstatement defines a block of main memory storage so that different

program units can share the same data without using arguments.

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist] …

Description

If the common block name is omitted, then blank common block is assumed.

Any common block name including blank common can appear more than once in

COMMONstatements in the same program unit. The list nlist following each successive

appearance of the same common block name is treated as a continuation of the list

for that common block name.

The size of a common block is the sum of the sizes of all the entities in the common

block, plus space for alignment.

Within a program, all common blocks in different program units that have the same

name must be of the same size. However, blank common blocks within a program

are not required to be of the same size.

Restrictions

Formal argument names and function names cannot appear in a COMMONstatement.

An EQUIVALENCEstatement must not cause the storage sequences of two different

common blocks in the same program unit to be associated. See Example 2.

An EQUIVALENCEstatement must not cause a common block to be extended on the

left-hand side. See Example 4.

Record structure names can appear on COMMON statements, but not record field

names.✠

Parameter Description

cb Common block name

nlist List of variable names, array names, and array declarators
108 FORTRAN 77 Language Reference • July 2001

Examples

Example 1: Unlabeled common and labeled common:

In the above example, V and Mare in the unlabeled common block; I and J are

defined in the named common block, LIMITS .

Example 2: You cannot associate storage of two different common blocks in the same

program unit:

Example 3: An EQUIVALENCEstatement can extend a common block on the right-

hand side:

Example 4: An EQUIVALENCEstatement must not cause a common block to be

extended on the left-hand side:

DIMENSION V(100)
COMMON V, M
COMMON /LIMITS/I, J
…

COMMON /X/ A
COMMON /Y/ B
EQUIVALENCE (A, B) Not allowed

DIMENSION A(5)
COMMON /X/ B
EQUIVALENCE (B, A)

COMMON /X/ A
REAL B(2)
EQUIVALENCE (A, B(2)) Not allowed
Chapter 4 Statements 109

COMPLEX
The COMPLEXstatement specifies the type of a symbolic constant, variable, array,

function, or dummy function to be complex, optionally specifies array dimensions

and size, and initializes with values.

COMPLEX [*len[,]] v [* len[/ c/]] [, v [* len[/ c/]] …

Description

The declarations can be: COMPLEX, COMPLEX*8, COMPLEX*16, or COMPLEX*32.
Specifying the size is nonstandard. ✠

COMPLEX

For a declaration such as COMPLEX W, the variable Wis usually two REAL*4 elements

contiguous in memory, interpreted as a complex number.

If you do not specify the size, a default size is used.

The default size for a declaration such as COMPLEX Wcan be altered by compiling

with any of the options -dbl , -r8 , or -xtypemap . See the discussion in Chapter 2

for details.

COMPLEX*8 ✠

For a declaration such as COMPLEX*8 W, the variable Wis always two REAL*4
elements contiguous in memory, interpreted as a complex number.

Parameter Description

v Name of a symbolic constant, variable, array, array

declarator, function, or dummy function

len Either 8, 16, or 32, the length in bytes of the symbolic

constant, variable, array element, or function

c List of constants for the immediately preceding name
110 FORTRAN 77 Language Reference • July 2001

COMPLEX*16 ✠

For a declaration such as COMPLEX*16 W, Wis always two REAL*8 elements

contiguous in memory, interpreted as a double-width complex number.

COMPLEX*32 ✠

For a declaration such as COMPLEX*32 W, the variable Wis always two REAL*16
elements contiguous in memory, interpreted as a quadruple-width complex number.

Comments

There is a double-complex version of each complex built-in function. Generally, the

specific function names begin with Z or CDinstead of C, except for the two functions

DIMAGand DREAL, which return a real value.

There are specific complex functions for quad precision. In general, where there is a

specific REALa corresponding COMPLEXwith a C prefix, and a corresponding

COMPLEX DOUBLEwith a CDprefix, there is also a quad-precision COMPLEXfunction

with a CQprefix. Examples are: SIN() , CSIN() , CDSIN() , CQSIN() .

Examples

Example 1: Complex variables. These statements are equivalent.

Example 2: Initialize complex variables:

A complex constant is a pair of numbers, either integers or reals.

Example 3: Double complex, with initialization:

COMPLEX U, V
COMPLEX*8 U, V
COMPLEX U*8, V*8

COMPLEX U/(1, 9.0)/,V/(4.0, 5)/

COMPLEX U*16 / (1.0D0, 9) /, V*16 / (4.0, 5.0D0) /
COMPLEX*16 X / (1.0D0, 9.0) /, Y / (4.0D0, 5) /
Chapter 4 Statements 111

A double-complex constant is a pair of numbers, and at least one number of the pair

must be double precision.

Example 4: Quadruple complex, with initialization:

A quadruple complex constant is a pair of numbers, and at least one number of the

pair must be quadruple precision.

Example 5: Complex arrays, all of which are nonstandard:

COMPLEX U*32 / (1.0Q0, 9) /, V*32 / (4.0, 5.0Q0) /
COMPLEX*32 X / (1.0Q0, 9.0) /, Y / (4.0Q0, 5) /

COMPLEX R*16(5), S(5)*16
COMPLEX U*32(5), V(5)*32
COMPLEX X*8(5), Y(5)*8
112 FORTRAN 77 Language Reference • July 2001

CONTINUE
The CONTINUEstatement is a “do-nothing” statement.

[label] CONTINUE

Description

The CONTINUEstatement is often used as a place to hang a statement label, usually

it is the end of a DOloop.

The CONTINUEstatement is used primarily as a convenient point for placing a

statement label, particularly as the terminal statement in a DOloop. Execution of a

CONTINUEstatement has no effect.

If the CONTINUEstatement is used as the terminal statement of a DOloop, the next

statement executed depends on the DOloop exit condition.

Example

Parameter Description

label Executable statement number

DIMENSION U(100)
S = 0.0
DO 1 J = 1, 100

S = S + U(J)
IF (S .GE. 1000000) GO TO 2

1 CONTINUE
STOP

2 CONTINUE
. . .
Chapter 4 Statements 113

DATA
The DATAstatement initializes variables, substrings, arrays, and array elements.

DATA nlist / clist / [[,] nlist / clist /] …

Description

All initially defined items are defined with the specified values when an executable

program begins running.

r*c is equivalent to r successive occurrences of the constant c.

A DATAstatement is a nonexecutable statement, and must appear after all

specification statements, but it can be interspersed with statement functions and

executable statements, although this is non-standard✠.

Note – Initializing a local variable in a DATAstatement after an executable reference

to that variable is flagged as an error when compiling with the -stackvar option.

See the Fortran User’s Guide.

Taking into account the repeat factor, the number of constants in clist must be equal

to the number of items in the nlist. The appearance of an array in nlist is equivalent

to specifying a list of all elements in that array. Array elements can be indexed by

constant subscripts only.

Automatic variables or arrays cannot appear on a DATAstatement.

Normal type conversion takes place for each noncharacter member of the clist.

Parameter Description

nlist List of variables, arrays, array elements, substrings, and

implied DOlists separated by commas

clist List of the form: c [, c] …

c One of the forms: c or r*c, and c is a constant or the

symbolic name of a constant.

r Nonzero, unsigned integer constant or the symbolic name

of such constant
114 FORTRAN 77 Language Reference • July 2001

Character Constants in the DATAStatement

If the length of a character item in nlist is greater than the length of the

corresponding constant in clist, it is padded with blank characters on the right.

If the length of a character item in nlist is less than that of the corresponding

constant in clist, the additional rightmost characters are ignored.

If the constant in clist is of integer type and the item of nlist is of character type, they

must conform to the following rules:

■ The character item must have a length of one character.

■ The constant must be of type integer and have a value in the range 0 through 255.

For ^A, ^B, ^C, do not hold down the Control key and press A, B, or C; use the

CHARintrinsic function.

If the constant of clist is a character constant or a Hollerith constant, and the item of

nlist is of type INTEGER, then the number of characters that can be assigned is 2 or 4

for INTEGER*2 and INTEGER*4 respectively. If the character constant or the

Hollerith constant has fewer characters than the capacity of the item, the constant is

extended on the right with spaces. If the character or the Hollerith constant contains

more characters than can be stored, the constant is truncated on the right.

Implied DOLists

An nlist can specify an implied DOlist for initialization of array elements.

The form of an implied DOlist is:

(dlist, iv=m1, m2 [, m3])

The range of an implied DOloop is dlist. The iteration count for the implied DOis

computed from m1, m2, and m3, and it must be positive.

Implied DOlists may also appear within the variables lists on I/O statements PRINT,

READ, and WRITE.

Parameter Description

dlist List of array element names and implied DOlists

iv Integer variable, called the implied DOvariable

m1 Integer constant expression specifying the initial value of iv

m2 Integer constant expression specifying the limit value of iv

m3 Integer constant expression specifying the increment value

of iv. If m3 is omitted, then a default value of 1 is assumed.
Chapter 4 Statements 115

Variables

Variables can also be initialized in type statements. This is an extension of the

FORTRAN 77 Standard. Examples are given under each of the individual type

statements and under the general type statement. ✠

Examples

Example 1: Character, integer, and real scalars. Real arrays:

Example 2: Arrays—implied DO:

Example 3: Mixing an integer and a character:

CHARACTER TTL*16
REAL VEC(5), PAIR(2)
DATA TTL /'Arbitrary Titles'/,

& M /9/, N /0/,
& PAIR(1) /9.0/,
& VEC /3*9.0, 0.1, 0.9/

…

REAL R(3,2), S(4,4)
DATA (S(I,I), I=1,4)/4*1.0/,

& (R(I,J), J=1,3), I=1,2)/6*1.0/
…

CHARACTER CR*1
INTEGER I*2, N*4
DATA I /'00'/,N/4Hs12t/,CR/13/
…

116 FORTRAN 77 Language Reference • July 2001

✠DECODE/ENCODE
ENCODEwrites to a character variable, array, or array element.✠ DECODEreads from a

character variable, array, or array element. Data is edited according to the format

identifier.

Similar functionality can be accomplished, using internal files with formatted

sequential WRITEstatements and READstatements. ENCODEand DECODEare not in

the FORTRAN 77 Standard, and are provided for compatibility with older versions

of FORTRAN.

ENCODE (size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

DECODE (size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

Description

The entities in the I/O list can be: variables, substrings, arrays, array elements,

record fields. A simple unsubscripted array name specifies all of the elements of the

array in memory storage order, with the leftmost subscript increasing more rapidly.

Execution proceeds as follows:

1. The ENCODEstatement translates the list items to character form according to the

format identifier, and stores the characters in buf. A WRITEoperation on internal

files does the same.

Parameter Description

size Number of characters to be translated, an integer

expression

f Format identifier, either the label of a FORMATstatement,

or a character expression specifying the format string, or

an asterisk.

buf Variable, array, or array element

ios I/O status specifier, ios must be an integer variable or an

integer array element.

s The error specifier (statement label) s must be the label of

executable statement in the same program unit in which

the ENCODEand DECODEstatement occurs.

iolist List of input/output items.
Chapter 4 Statements 117

2. The DECODEstatement translates the character data in buf to internal (binary)

form according to the format identifier, and stores the items in the list. A READ
statement does the same.

3. If buf is an array, its elements are processed in the order of subscript progression,

with the leftmost subscript increasing more rapidly.

4. The number of characters that an ENCODEor a DECODEstatement can process

depends on the data type of buf. For example, an INTEGER*2 array can contain

two characters per element, so that the maximum number of characters is twice

the number of elements in that array. A character variable or character array

element can contain characters equal in number to its length. A character array

can contain characters equal in number to the length of each element multiplied

by the number of elements.

5. The interaction between the format identifier and the I/O list is the same as for a

formatted I/O statement.

Example

A program using DECODE/ENCODE:

The above program has this output:

The DECODEreads the characters of S as 3 integers, and stores them into V(1) , V(2) ,

and V(3) .

The ENCODEstatement writes the values V(3) , V(2) , and V(1) into T as characters;

T then contains '547698' .

CHARACTER S*6 / '987654' /, T*6
INTEGER V(3)*4
DECODE(6, '(3I2)', S) V
WRITE(*, '(3I3)') V
ENCODE(6, '(3I2)', T) V(3), V(2), V(1)
PRINT *, T
END

98 76 54
547698
118 FORTRAN 77 Language Reference • July 2001

DIMENSION
The DIMENSIONstatement specifies the number of dimensions for an array,

including the number of elements in each dimension.

Optionally, the DIMENSIONstatement initializes items with values.

DIMENSION a(d) [, a(d)] …

Description

This section contains descriptions for the dimension declarator and the arrays.

Dimension Declarator

The lower and upper limits of each dimension are designated by a dimension

declarator. The form of a dimension declarator is:

dd1 and dd2 are dimension bound expressions specifying the lower- and upper-

bound values. They can be arithmetic expressions of type integer or real. They can

be formed using constants, symbolic constants, formal arguments, or variables

defined in the COMMONstatement. Array references and references to user-defined

functions cannot be used in the dimension bound expression. dd2 can also be an

asterisk. If dd1 is not specified, a value of one is assumed. The value of dd1 must be

less than or equal to dd2.

Nonconstant dimension-bound expressions can be used in a subprogram to define

adjustable arrays, but not in a main program.

Noninteger dimension bound expressions are converted to integers before use. Any

fractional part is truncated.

Parameter Description

a Name of an array

d Specifies the dimensions of the array. It is a list of 1 to 7

declarators separated by commas.

[dd1 :] dd2
Chapter 4 Statements 119

Adjustable Array

If the dimension declarator is an arithmetic expression that contains formal

arguments or variables defined in the COMMONstatement, then the array is called an

adjustable array. In such cases, the dimension is equal to the initial value of the

argument upon entry into the subprogram.

Assumed-Size Array

The array is called an assumed-size array when the dimension declarator contains

an asterisk. In such cases, the upper bound of that dimension is not stipulated. An

asterisk can only appear for formal arrays and as the upper bound of the last

dimension in an array declarator.

Examples

Example 1: Arrays in a main program:

In the above example, Mis specified as an array of dimensions 4 ×4 and V is specified

as an array of dimension 1000.

Example 2: An adjustable array in a subroutine:

In the above example, the formal arguments are an array, M, and a variable N. Mis

specified to be a square array of dimensions N× N.

Example 3: Lower and upper bounds:

DIMENSION M(4,4), V(1000)
…
END

SUBROUTINE INV(M, N)
DIMENSION M(N, N)
…
END

DIMENSION HELIO (-3:3, 4, 3:9)
…
END
120 FORTRAN 77 Language Reference • July 2001

In the above example, HELIO is a 3-dimensional array. The first element is

HELIO(-3,1,3) and the last element is HELIO(3,4,9) .

Example 4: Dummy array with lower and upper bounds:

Example 5: Noninteger bounds:

In the above example, A is an array of dimension 9×28.

Example 6: Adjustable array with non-integer bounds:

Example 7: Assumed-size arrays:

SUBROUTINE ENHANCE(A, NLO, NHI)
DIMENSION A(NLO : NHI)
…
END

PARAMETER (LO = 1, HI = 9.3)
DIMENSION A(HI, HI*3 + LO)
…
END

SUBROUTINE ENHANCE(A, X, Y)
DIMENSION A(X : Y)
…
END

SUBROUTINE RUN(A,B,N)
DIMENSION A(*), B(N,*)
...
Chapter 4 Statements 121

DO
The DOstatement repeatedly executes a set of statements.

DO s [,] loop-control

or

DO loop-control ✠

where s is a statement number. The form of loop-control is

variable = e1, e2 [, e3]

Description

The DOstatement contains the following constructs.

Labeled DOLoop

A labeled DOloop consists of the following:

■ DOstatement

■ Set of executable statements called a block

■ Terminal statement, usually a CONTINUEstatement

Terminal Statement

The statement identified by s is called the terminal statement. It must follow the DO
statement in the sequence of statements within the same program unit as the DO
statement.

Parameter Description

variable Variable of type integer, real, or double precision.

e1, e2,
e3

Expressions of type integer, real or double precision,

specifying initial, limit, and increment values respectively.
122 FORTRAN 77 Language Reference • July 2001

The terminal statement should not be one of the following statements:

■ Unconditional GO TO
■ Assigned GO TO
■ Arithmetic IF
■ Block IF /ELSE IF
■ ELSE
■ END IF
■ RETURN
■ STOP
■ END DO

If the terminal statement is a logical IF statement, it can contain any executable

statement, except:

■ DO/DO WHILE
■ Block IF /ELSE IF
■ ELSE IF
■ ELSE
■ END IF
■ END
■ Logical IF

DOLoop Range

The range of a DOloop consists of all of the executable statements that appear

following the DOstatement, up to and including the terminal statement.

If a DOstatement appears within the range of another DOloop, its range must be

entirely contained within the range of the outer DOloop. More than one labeled DO
loop can have the same terminal statement.

If a DOstatement appears within an IF , ELSE IF, or ELSE block, the range of the

associated DOloop must be contained entirely within that block.

If a block IF statement appears within the range of a DOloop, the corresponding

END IF statement must also appear within the range of that DOloop.

Block DOLoop ✠

A block DOloop consists of:

■ DOstatement

■ Set of executable statements called a block

■ Terminal statement, an END DOstatement

This loop is nonstandard.
Chapter 4 Statements 123

Execution proceeds as follows:

1. The expressions e1, e2, and e3 are evaluated. If e3 is not present, its value is
assumed to be one.

2. The DOvariable is initialized with the value of e1.

3. The iteration count is established as the value of the expression:

MAX (INT ((e2 - e1 + e3)/), e3 0)

The iteration count is zero if either of the following is true:

■ e1 > e2 and e3 > zero.

■ e1 < e2 and e3 < zero.

If the –onetrip compile time option is specified, then the iteration count is never

less than one.

4. The iteration count is tested, and, if it is greater than zero, the range of the DOloop
is executed.

Terminal Statement Processing

After the terminal statement of a DOloop is executed, the following steps are

performed:

1. The value of the DOvariable, if any, is incremented by the value of e3 that was
computed when the DOstatement was executed.

2. The iteration count is decreased by one.

3. The iteration count is tested, and if it is greater than zero, the statements in the
range of the DOloop are executed again.

Restrictions

The DOvariable must not be modified in any way within the range of the DOloop.

Control must not jump into the range of a DOloop from outside its range.
124 FORTRAN 77 Language Reference • July 2001

Comments

In some cases, the DOvariable can overflow as a result of an increment that is

performed prior to testing it against the final value. When this happens, your

program has an error, and neither the compiler nor the runtime system detects it. In

this situation, though the DOvariable wraps around, the loop can terminate properly.

If there is a jump into the range of a DOloop from outside its range, a warning is

issued, but execution continues anyway.

When the jump is from outside to the terminal statement that is CONTINUE, and this

statement is the terminal statement of several nested DOloops, then the most inner

DOloop is always executed.

Examples

Example 1: Nested DOloops:

The inner loop is not executed, and at the WRITE, L is undefined. Here L is shown as

0, but that is implementation-dependent; do not rely on it.

N = 0
DO 210 I = 1, 10
J = I
DO 200 K = 5, 1

L = K
N = N + 1

200 CONTINUE
210 CONTINUE

WRITE(*,*)'I =',I, ', J =',J, ', K =',K,
& ', N =',N, ', L =',L

END
demo% f77 -silent DoNest1.f
"DoNest1.f", line 4: Warning: DO range never executed
demo% a.out
I = 11, J = 10, K = 5, N = 0, L = 0
demo%
Chapter 4 Statements 125

Example 2: The program DoNest2.f (DOvariable always defined):

The above program prints out:

INTEGER COUNT, OUTER
COUNT = 0

DO OUTER = 1, 5
NOUT = OUTER
DO INNER = 1, 3

NIN = INNER
COUNT = COUNT+1

END DO
END DO

WRITE(*,*) OUTER, NOUT, INNER, NIN, COUNT
END

6 5 4 3 15
126 FORTRAN 77 Language Reference • July 2001

✠DO WHILE
The DO WHILE✠ statement repeatedly executes a set of statements while the specified

condition is true.

DO [s [,]] WHILE (e)

Description

Execution proceeds as follows:

1. The specified expression is evaluated.

2. If the value of the expression is true, the statements in the range of the DO WHILE
loop are executed.

3. If the value of the expression is false, control is transferred to the statement
following the DO WHILEloop.

Terminal Statement

If s is specified, the statement identified by it is called the terminal statement, and it

must follow the DO WHILEstatement. The terminal statement must not be one of the

following statements:

■ Unconditional GO TO
■ Assigned GO TO
■ Arithmetic IF
■ Block IF / ELSE IF
■ ELSE
■ END IF
■ RETURN
■ STOP
■ END
■ DO / DO WHILE

Parameter Description

s Label of an executable statement

e Logical expression
Chapter 4 Statements 127

If the terminal statement is a logical IF statement, it can contain any executable

statement, except:

■ DO/ DO WHILE
■ Block IF / ELSE IF
■ ELSE
■ END IF
■ END
■ Logical IF

If s is not specified, the DO WHILEloop must end with an END DOstatement.

DO WHILELoop Range

The range of a DO WHILEloop consists of all the executable statements that appear

following the DO WHILEstatement, up to and including the terminal statement.

If a DO WHILEstatement appears within the range of another DO WHILEloop, its

range must be entirely contained within the range of the outer DO WHILEloop. More

than one DO WHILEloop can have the same terminal statement.

If a DO WHILEstatement appears within an IF , ELSE IF, or ELSE block, the range of

the associated DO WHILEloop must be entirely within that block.

If a block IF statement appears within the range of a DO WHILEloop, the

corresponding END IF statement must also appear within the range of that DO
WHILE loop.

Terminal Statement Processing

After the terminal statement of a DO WHILEloop is executed, control is transferred

back to the corresponding DO WHILEstatement.

Restrictions

Jumping into the range of a DO WHILEloop from outside its range can produce

unpredictable results.

Comments

The variables used in the e can be modified in any way within the range of the DO
WHILE loop.
128 FORTRAN 77 Language Reference • July 2001

Examples

Example 1: A DO WHILEwithout a statement number:

Example 2: A DO WHILEwith a statement number:

INTEGER A(4,4), C, R
…
C = 4
R = 1
DO WHILE (C .GT. R)

A(C,R) = 1
C = C - 1

END DO

INTEGER A(4,4), C, R
…
DO 10 WHILE (C .NE. R)

A(C,R) = A(C,R) + 1
C = C+1

10 CONTINUE
Chapter 4 Statements 129

✠DOUBLE COMPLEX
The DOUBLE COMPLEX✠ statement specifies the type to be double complex. It

optionally specifies array dimensions and size, and initializes with values.

DOUBLE COMPLEXv[/ c/] [, v[/ c/] …

Description

The declaration can be: DOUBLE COMPLEXor COMPLEX*16.

DOUBLE COMPLEX✠

For a declaration such as DOUBLE COMPLEX Z, the variable Z is two REAL*8
elements contiguous in memory, interpreted as one double-width complex number.

If you do not specify the size, a default size is used.

The default size, for a declaration such as DOUBLE COMPLEX Z, can be altered by

compiling with any of the options -dbl , -r8 , or -xtypemap . See the discussion in

Chapter 2 for details.

COMPLEX*16✠

For a declaration such as COMPLEX*16 Z, the variable Z is always two REAL*8
elements contiguous in memory, interpreted as one double-width complex number.

Parameter Description

v Name of a symbolic constant, variable, array, array

declarator, function, or dummy function

c List of constants for the immediately preceding name
130 FORTRAN 77 Language Reference • July 2001

Comments

There is a double-complex version of each complex built-in function. Generally, the

specific function names begin with Z or CDinstead of C, except for the two functions,

DIMAGand DREAL, which return a real value. Examples are: SIN() , CSIN() ,

CDSIN() .

Example: Double-complex scalars and arrays:

DOUBLE COMPLEX U, V
DOUBLE COMPLEX W(3,6)
COMPLEX*16 X, Y(5,5)
COMPLEX U*16(5), V(5)*16
Chapter 4 Statements 131

DOUBLE PRECISION
The DOUBLE PRECISIONstatement specifies the type to be double precision, and

optionally specifies array dimensions and initializes with values.

DOUBLE PRECISIONv[/ c/] [, v[/ c/] …

Description

The declaration can be: DOUBLE PRECISIONor REAL*8.

DOUBLE PRECISION

For a declaration such as DOUBLE PRECISION X, the variable X is a REAL*8 element

in memory, interpreted as one double-width real number.

If you do not specify the size, a default size is used. The default size, for a

declaration such as DOUBLE PRECISION X, can be altered by compiling with any of

the options -dbl , -r8 , or -xtypemap . See the discussion in Chapter 2 for details.

REAL*8 ✠

For a declaration such as REAL*8 X, the variable X is always an element of type

REAL*8 in memory, interpreted as a double-width real number.

Example

Parameter Description

v Name of a symbolic constant, variable, array, array

declarator, function, or dummy function

c List of constants for the immediately preceding name

DOUBLE PRECISION R, S(3,6)
REAL*8 T(-1:0,5)
132 FORTRAN 77 Language Reference • July 2001

ELSE
The ELSE statement indicates the beginning of an ELSE block.

IF (e) THEN

...

ELSE

...

END IF

where e is a logical expression.

Description

Execution of an ELSE statement has no effect on the program.

An ELSE block consists of all the executable statements following the ELSE
statements, up to but not including the next END IF statement at the same IF level

as the ELSE statement. See “IF (Block)” on page 166 for more information.

An ELSE block can be empty.

Restrictions

You cannot jump into an ELSE block from outside the ELSE block.

The statement label, if any, of an ELSE statement cannot be referenced by any

statement.

A matching END IF statement of the same IF level as the ELSE must appear before

any ELSE IF or ELSE statement at the same IF level.
Chapter 4 Statements 133

Examples

Example 1: ELSE:

Example 2: An invalid ELSE IF where an END IF is expected:

CHARACTER S
…
IF (S .GE. '0' .AND. S .LE. '9') THEN

CALL PUSH
ELSE

CALL TOLOWER
END IF
…

IF (K .GT. 5) THEN
N = 1

ELSE
N = 0

ELSE IF (K .EQ. 5) THEN Incorrect
…

134 FORTRAN 77 Language Reference • July 2001

ELSE IF
The ELSE IF provides a multiple alternative decision structure.

ELSE IF (e2) THEN

IF (e1) THEN

END IF…

where e1 and e2 are logical expressions.

Description

You can make a series of independent tests, and each test can have its own sequence

of statements.

An ELSE IF block consists of all the executable statements following the ELSE IF
statement up to, but not including, the next ELSE IF, ELSE, or END IF statement at

the same IF level as the ELSE IF statement.

An ELSE IF block can be empty.

Execution of the ELSE IF (e) proceeds as follows, depending on the value of the

logical expression, e:

1. e is evaluated.

2. If e is true, execution continues with the first statement of the ELSE IF block. If
e is true and the ELSE IF block is empty, control is transferred to the next END IF
statement at the same IF level as the ELSE IF statement.

3. If e is false, control is transferred to the next ELSE IF, ELSE, or END IF statement
at the same IF level as the ELSE IF statement.

Restrictions

You cannot jump into an ELSE IF block from outside the ELSE IF block.

The statement label, if any, of an ELSE IF statement cannot be referenced by any

statement.

A matching END IF statement of the same IF level as the ELSE IF must appear

before any ELSE IF or ELSE statement at the same IF level.
Chapter 4 Statements 135

Example

Example: ELSE IF :

READ (*,*) N
IF (N .LT. 0) THEN

WRITE(*,*) 'N<0'
ELSE IF (N .EQ. 0) THEN

WRITE(*,*) ’N=0’
ELSE

WRITE(*,*) ’N>0’
END IF
136 FORTRAN 77 Language Reference • July 2001

✠ENCODE/DECODE
The ENCODE✠ statement writes data from a list to memory.

ENCODE(size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

Description

ENCODEis provided for compatibility with older versions of FORTRAN. Similar

functionality can be accomplished using internal files with a formatted sequential

WRITEstatement. ENCODEis not in the FORTRAN 77 Standard.

Data are edited according to the format identifier.

Example

The DECODEreads the characters of S as 3 integers, and stores them into V(1) , V(2) ,

and V(3) . The ENCODEstatement writes the values V(3) , V(2) , and V(1) , into T as

characters; T then contains '547698' .

See “@DECODE/ENCODE” on page 117 for more information and a full example.

Parameter Description

size Number of characters to be translated

f Format identifier

buf Variable, array, or array element

ios I/O status specifier

s Error specifier (statement label)

iolist List of I/O items, each a character variable, array, or array

element

CHARACTER S*6, T*6
INTEGER V(3)*4
DATA S / '987654' /
DECODE(6, 1, S) V

1 FORMAT(3 I2)
ENCODE(6, 1, T) V(3), V(2), V(1)
Chapter 4 Statements 137

END
The ENDstatement indicates the end of a program unit with the following syntax:

END

Description

The ENDstatement:

■ Must be the last statement in the program unit.

■ Must be the only statement in a line.

■ Can have a label.

In a main program, an ENDstatement terminates the execution of the program. In a

function or subroutine, it has the effect of a RETURN. ✠

In the FORTRAN 77 Standard, the ENDstatement cannot be continued, but f77
allows this practice. ✠

No other statement, such as an END IF statement, can have an initial line that

appears to be an ENDstatement.

Example

Example: END:

PROGRAM MAIN
WRITE(*, *) 'Very little'
END
138 FORTRAN 77 Language Reference • July 2001

END DO
The END DO✠ statement terminates a DOloop and requires the following syntax:

END DO

Description

The END DOstatement is the delimiting statement of a Block DOstatement. If the

statement label is not specified in a DOstatement, the corresponding terminating

statement must be an END DOstatement. You can branch to an END DOstatement only

from within the range of the DOloop that it terminates.

Examples

Example 1: A DOloop with a statement number:

Example 2: A DOloop without statement number:

DO 10 N = 1, 100
…

10 END DO

DO N = 1, 100
…
END DO
Chapter 4 Statements 139

END FILE
The END FILE statement writes an end-of-file record as the next record of the file

connected to the specified unit.

END FILE u

END FILE ([UNIT=] u [, IOSTAT= ios] [, ERR= s])

Description

If you are using the ENDFILE statement and other standard FORTRAN I/O for

tapes, we recommend that you use the TOPEN() routines instead, because they are

more reliable.

Two endfile records signify the end-of-tape mark. When writing to a tape file,

ENDFILE writes two endfile records, then the tape backspaces over the second one.

If the file is closed at this point, both end-of-file and end-of-tape are marked. If more

records are written at this point, either by continued write statements or by another

program if you are using no-rewind magnetic tape, the first tape mark stands

(endfile record), and is followed by another data file, then by more tape marks, and

so on.

Restrictions

u must be connected for sequential access. Execution of an END FILE statement on a

direct-access file is not defined in the FORTRAN 77 Standard, and is unpredictable.

Do not use an END FILE statement on a direct-access file.

Parameter Description

u Unit identifier of an external unit connected to the file.

The options can be specified in any order, but if UNIT= is

omitted, then u must be first.

iost I/O status specifier, an integer variable or an integer

array element.

s Error specifier, s must be the label of an executable

statement in the same program in which the END FILE
statement occurs. The program control is transferred to

the label in the event of an error during the execution of

the END FILE statement.
140 FORTRAN 77 Language Reference • July 2001

Examples

Example 1: Constants:

Example 2: Variables:

Example 3: Error trap:

END FILE 2
END FILE (2)
END FILE (UNIT=2)

LOGUNIT = 2
END FILE LOGUNIT
END FILE (LOGUNIT)
END FILE (UNIT=LOGUNIT)

NOUT = 2
END FILE (UNIT=NOUT, IOSTAT=KODE, ERR=9)
…

9 WRITE(*,*) 'Error at END FILE, on unit', NOUT
STOP
Chapter 4 Statements 141

END IF
The END IF statement ends the block IF that the IF began and requires the

following syntax:

END IF

Description

For each block IF statement there must be a corresponding END IF statement in the

same program unit. An END IF statement matches if it is at the same IF level as the

block IF statement.

Examples

Example 1: IF/END IF :

Example 2: IF/ELSE/END IF :

IF (N .GT. 0)THEN
N = N+1

END IF

IF (N .EQ. 0) THEN
N = N+1

ELSE
N = N-1

END IF
142 FORTRAN 77 Language Reference • July 2001

END MAP
The END MAP✠ statement terminates the MAPdeclaration and requires the following

syntax:

END MAP

Description

See “@UNION and MAP” on page 247 for more information.

Restrictions

The MAPstatement must be within a UNIONstatement.

Example

…
MAP

CHARACTER *16 MAJOR
END MAP
…

Chapter 4 Statements 143

✠END STRUCTURE
The END STRUCTURE✠ statement terminates the STRUCTUREstatement and requires

the following syntax:

END STRUCTURE

Description

See “@STRUCTURE” on page 238 for more information.

Example

STRUCTURE /PROD/
INTEGER*4ID
CHARACTER*16NAME
CHARACTER*8MODEL
REAL*4COST
REAL*4PRICE

END STRUCTURE
144 FORTRAN 77 Language Reference • July 2001

✠END UNION
The END UNION✠ statement terminates the UNIONstatement and requires the

following syntax:

END UNION

Description

See “@UNION and MAP” on page 247 for more information.

Example

UNION
MAP

CHARACTER*16
END MAP
MAP

INTEGER*2 CREDITS
CHARACTER *8 GRAD_DATE

END MAP
END UNION
Chapter 4 Statements 145

ENTRY
The ENTRYstatement defines an alternate entry point within a subprogram.

ENTRY en [([fa[, fa]…])]

Description

Note these nuances for the ENTRYstatement:

Procedure References by Entry Names

An ENTRYname used in a subroutine subprogram is treated like a subroutine and

can be referenced with a CALL statement. Similarly, the ENTRYname used in a

function subprogram is treated like a function and can be referenced as a function

reference.

An entry name can be specified in an EXTERNALstatement and used as an actual

argument. It cannot be used as a dummy argument.

Execution of an ENTRYsubprogram (subroutine or function) begins with the first

executable statement after the ENTRYstatement.

The ENTRYstatement is a nonexecutable statement.

The entry name cannot be used in the executable statements that physically precede

the appearance of the entry name in an ENTRYstatement.

Argument Correspondence

The formal arguments of an ENTRYstatement need not be the same in order, number,

type, and name as those for FUNCTION, SUBROUTINE, and other ENTRYstatements

in the same subprogram. Each reference to a function, subroutine, or entry must use

Parameter Description

en Symbolic name of an entry point in a function or

subroutine subprogram

fa Formal argument—it can be a variable name, array name,

formal procedure name, or an asterisk specifying an

alternate return label.
146 FORTRAN 77 Language Reference • July 2001

an actual argument list that agrees in order, number, type, and name with the

dummy argument list in the corresponding FUNCTION, SUBROUTINE, or ENTRY
statement.

Alternate return arguments in ENTRYstatements can be specified by placing

asterisks in the dummy argument list. Ampersands are valid alternates. ✠ ENTRY
statements that specify alternate return arguments can be used only in subroutine

subprograms, not functions.

Restrictions

An ENTRYstatement cannot be used within a block IF construct or a DOloop.

If an ENTRYstatement appears in a character function subprogram, it must be

defined as type CHARACTERwith the same length as that of a function subprogram.

Examples

Example 1: Multiple entry points in a subroutine:

In the above example, the subroutine FIN has two alternate entries: the entry HLEP
has an argument list; the entry MOOZhas no argument list.

SUBROUTINE FIN(A, B, C)
INTEGER A, B
CHARACTER C*4
…
RETURN

ENTRY HLEP(A, B, C)
…
RETURN

ENTRY MOOZ
…
RETURN
END
Chapter 4 Statements 147

Example 2: In the calling routine, you can call the above subroutine and entries as

follows:

In the above example, the order of the call statements need not match the order of

the entry statements.

Example 3: Multiple entry points in a function:

INTEGER A, B
CHARACTER C*4
…
CALL FIN(A, B, C)
…
CALL MOOZ
…
CALL HLEP(A, B, C)
…

REAL FUNCTION F2 (X)
F2 = 2.0 * X
RETURN

ENTRY F3 (X)
F3 = 3.0 * X
RETURN

ENTRY FHALF (X)
FHALF = X / 2.0
RETURN
END
148 FORTRAN 77 Language Reference • July 2001

EQUIVALENCE
The EQUIVALENCEstatement specifies that two or more variables or arrays in a

program unit share the same memory.

EQUIVALENCE (nlist) [, (nlist)] …

Description

An EQUIVALENCEstatement stipulates that the storage sequence of the entities

whose names appear in the list nlist must have the same first memory location.

An EQUIVALENCEstatement can cause association of entities other than specified in

the nlist.

An array name, if present, refers to the first element of the array.

If an array element name appears in an EQUIVALENCEstatement, the number of

subscripts can be less than or equal to the number of dimensions specified in the

array declarator for the array name.

Restrictions

In nlist, dummy arguments and functions are not permitted.

Subscripts of array elements must be integer constants greater than the lower bound

and less than or equal to the upper bound.

EQUIVALENCEcan associate automatic variables only with other automatic variables

or undefined storage classes. These classes must be ones which are not in any of the

COMMON, STATIC, SAVE, DATA, or dummy arguments.

An EQUIVALENCEstatement can associate an element of type character with a

noncharacter element. ✠

Parameter Description

nlist List of variable names, array element names, array names,

and character substring names separated by commas
Chapter 4 Statements 149

An EQUIVALENCEstatement cannot specify that the same storage unit is to occur

more than once in a storage sequence. For example, the following statement is not

allowed:

An EQUIVALENCEstatement cannot specify that consecutive storage units are to be

nonconsecutive. For example, the following statement is not allowed:

When COMMONstatements and EQUIVALENCEstatements are used together, several

additional rules can apply. For such rules, refer to the notes on the COMMON
statement.

Example

The association of A, B, and C can be graphically illustrated as follows. The first

seven character positions are arranged in memory as follows:

DIMENSION A (2)
EQUIVALENCE (A(1),B), (A(2),B)

REAL A (2)
DOUBLE PRECISION D (2)
EQUIVALENCE (A(1), D(1)), (A(2), D(2))

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A,C(1)),(B,C(2))

01 02 03 04 05 06 07

A A(1) A(2) A(3) A(4)

B B(1) B(2) B(3) B(4)

C C(1)(1) C(1)(2) C(1)(3) C(2)(1) C(2)(2) C(2)(3)
150 FORTRAN 77 Language Reference • July 2001

EXTERNAL
The EXTERNALstatement specifies procedures or dummy procedures as external,

and allows their symbolic names to be used as actual arguments.

EXTERNALproc [, proc] …

Description

If an external procedure or a dummy procedure is an actual argument, it must be in

an EXTERNALstatement in the same program unit.

If an intrinsic function name appears in an EXTERNALstatement, that name refers to

some external subroutine or function. The corresponding intrinsic function is not

available in the program unit.

Restrictions

A subroutine or function name can appear in only one of the EXTERNALstatements

of a program unit.

A statement function name must not appear in an EXTERNALstatement.

Parameter Description

proc Name of external procedure, dummy procedure, or block

data routine.
Chapter 4 Statements 151

Examples

Example 1: Use your own version of TAN:

Example 2: Pass a user-defined function name as an argument:

EXTERNAL TAN
T = TAN(45.0)
…
END
FUNCTION TAN(X)
…
RETURN
END

REAL AREA, LOW, HIGH
EXTERNAL FCN
…
CALL RUNGE (FCN, LOW, HIGH, AREA)
…
END

FUNCTION FCN(X)
…
RETURN
END

SUBROUTINE RUNGE (F, X0, X1, A)
…
RETURN
END
152 FORTRAN 77 Language Reference • July 2001

FORMAT
The FORMATstatement specifies the layout of the input or output records.

label FORMAT (f)

The items in f have the form:

[r] desc

The repeatable edit descriptors are:

Here is a summary:

■ I , O, Z are for integers (decimal, octal, hex)

■ F, E, D, G are for reals (fixed-point, exponential, double, general)

■ A is for characters

■ L is for logicals

Parameter Description

label Statement number

f Format specification list

r An optional repeat factor

desc An edit descriptor. If r is present, then desc must be a

repeatable edit descriptor.

I
I w
I w.d
O
Ow
Ow.d
Z
Zw
Zw.d

F
Fw
Fw.d
A
Aw
L
Lw

E
Ew
Ew.d
Ew.d.e
Eew.dE

D
Dw
Dw.d
Dw.d.e
Dw.dEe

G
Gw
Gw.d
Gw.d.e
Gw.dEe
Chapter 4 Statements 153

The nonrepeatable edit descriptors are:

■ 'a1a2 … an' single quote-delimited character string

■ "a1a2 ... an" double quote-delimited character string

■ nHa1a2 ... an Hollerith string

■ $
■ /
■ :
■ [k]R (k defaults to 10)

■ [k]P (k defaults to 0)

■ B, BN, and BZ
■ S, SU, SP, and SS
■ Tn and nT
■ TL[n] and TR[n] (n defaults to 1)

■ [n]X (n defaults to 1)

See “Formatted I/O” on page 267 for full details of these edit descriptors.

Description

The FORMATstatement includes the explicit editing directives to produce or use the

layout of the record. It is used with formatted input/output statements and

ENCODE/DECODEstatements.

Repeat Factor

r must be a nonzero, unsigned, integer constant.

Repeatable Edit Descriptors

The descriptors I , O, Z, F, E, D, G, L, and A indicate the manner of editing and are

repeatable.

w and e are nonzero, unsigned integer constants.

d and m are unsigned integer constants.

Nonrepeatable Edit Descriptors

The descriptors are the following:

(") , ($) , (') , (/) , (:) , B, BN, BZ, H, P, R, Q, S, SU, SP, SS, T, TL, TR, X
154 FORTRAN 77 Language Reference • July 2001

These descriptors indicate the manner of editing and are not repeatable:

■ Each ai is any ASCII character.

■ n is a nonzero, unsigned integer constant.

■ k is an optionally signed integer constant.

Item Separator

Items in the format specification list are separated by commas. A comma can be

omitted before or after the slash and colon edit descriptors, between a P edit

descriptor, and the immediately following F, E, D, or G edit descriptors.

In some sense, the comma can be omitted anywhere the meaning is clear without it,

but, other than those cases listed above, this is nonstandard. u

Variable Format Expressions ✠

In general, any integer constant in a format can be replaced by an arbitrary

expression enclosed in angle brackets:

The n in an nH… edit descriptor cannot be a variable format expression.

Restrictions

The FORMATstatement label cannot be used in a GO TO, IF -arithmetic, DO, or

alternate return.

Warnings

For explicit formats, invalid format strings cause warnings or error messages at

compile time.

For formats in variables, invalid format strings cause warnings or error messages at

runtime.

For variable format expressions, of the form <e> , invalid format strings cause

warnings or error messages at compile time or runtime.

See “Runtime Formats” on page 299 for details.

1 FORMAT(… <e > …)
Chapter 4 Statements 155

Examples

Example 1: Some A, I , and F formats:

Example 2: Variable format expressions:

READ(2, 1) PART, ID, HEIGHT, WEIGHT
1 FORMAT(A8, 2X, I4, F8.2, F8.2)

WRITE(9, 2) PART, ID, HEIGHT, WEIGHT
2 FORMAT('Part:', A8, ' Id:', I4, ' Height:', F8.2,
& ' Weight:', F8.2)

DO 100 N = 1, 50
…

1 FORMAT(2X, F<N+1>.2)
156 FORTRAN 77 Language Reference • July 2001

FUNCTION(External)

The FUNCTIONstatement identifies a program unit as a function subprogram.

[type] FUNCTION fun ([ar[, ar]…])

An alternate nonstandard syntax for length specifier is as follows: ✠

[type] FUNCTION fun [* m]([ar[, ar]…])

Parameter Description

type BYTE ✠

CHARACTER
CHARACTER*n (where n must be greater than zero)

CHARACTER*(*)
COMPLEX
COMPLEX*8 ✠

COMPLEX*16 ✠

COMPLEX*32 ✠

DOUBLE COMPLEX✠
DOUBLE PRECISION
INTEGER
INTEGER*2 ✠

INTEGER*4 ✠

INTEGER*8 ✠

LOGICAL
LOGICAL*1 ✠

LOGICAL*2 ✠

LOGICAL*4 ✠

LOGICAL*8 ✠

REAL
REAL*4 ✠

REAL*8 ✠

REAL*16 ✠

fun Symbolic name assigned to function

ar Formal argument name

Parameter Description

m Unsigned, nonzero integer constant specifying length of

the data type.

ar Formal argument name
Chapter 4 Statements 157

Description

Note the type, value, and formal arguments for a FUNCTIONstatement.

Type of Function

The function statement involves type, name, and formal arguments.

If type is not present in the FUNCTIONstatement, then the type of the function is

determined by default and by any subsequent IMPLICIT or type statement. If type is

present, then the function name cannot appear in other type statements.

Note – Compiling with any of the options -dbl , -r8 , -i2 , or -xtypemap can alter

the default data size assumed in the call to or definition of functions unless the data

type size is explicitly declared. See Chapter 2 and the Fortran User Guide for details

on these options.

Value of Function

The symbolic name of the function must appear as a variable name in the

subprogram. The value of this variable, at the time of execution of the RETURNor

ENDstatement in the function subprogram, is the value of the function.

Formal Arguments

The list of arguments defines the number of formal arguments. The type of these

formal arguments is defined by some combination of default, type statements,

IMPLICIT statements, and DIMENSIONstatements.

The number of formal arguments must be the same as the number of actual

arguments at the invocation of this function subprogram.

A function can assign values to formal arguments. These values are returned to the

calling program when the RETURNor ENDstatements are executed in the function

subprogram.
158 FORTRAN 77 Language Reference • July 2001

Restrictions

Alternate return specifiers are not allowed in FUNCTIONstatements.

f77 provides recursive calls. A function or subroutine is called recursively if it calls

itself directly. If it calls another function or subroutine, which in turn calls this

function or subroutine before returning, then it is also called recursively.

Examples

Example 1: Character function:

In the above example, BOOLis defined as a function of type CHARACTERwith a

length of 5 characters. This function when called returns the string, TRUEor FALSE,

depending on the value of the variable, ARG.

Example 2: Real function:

In the above example, the function SQRis defined as function of type REALby

default, and returns the square of the number passed to it.

Example 3: Size of function, alternate syntax: ✠

The above nonstandard form is treated as:

CHARACTER*5 FUNCTION BOOL(ARG)
BOOL = 'TRUE'
IF (ARG .LE. 0) BOOL = 'FALSE'
RETURN
END

FUNCTION SQR (A)
SQR = A*A
RETURN
END

INTEGER FUNCTION FCN*2 (A, B, C)

INTEGER*2 FUNCTION FCN (A, B, C)
Chapter 4 Statements 159

GO TO(Assigned)

The assigned GO TOstatement branches to a statement label identified by the assigned

label value of a variable.

GO TO i [[,](s[, s]…)]

Description

Execution proceeds as follows:

1. At the time an assigned GO TOstatement is executed, the variable i must have been
assigned the label value of an executable statement in the same program unit as
the assigned GO TOstatement.

2. If an assigned GO TOstatement is executed, control transfers to a statement
identified by i.

3. If a list of statement labels is present, the statement label assigned to i must be
one of the labels in the list.

Restrictions

i must be assigned by an ASSIGN statement in the same program unit as the GO TO
statement.

i must be INTEGER*4 or INTEGER*8, not INTEGER*2.

s must be in the same program unit as the GO TOstatement.

The same statement label can appear more than once in a GO TOstatement.

The statement control jumps to must be executable, not DATA, ENTRY, FORMAT, or

INCLUDE.

Control cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the block.

Parameter Description

i Integer variable name

s Statement label of an executable statement
160 FORTRAN 77 Language Reference • July 2001

Example

Example: Assigned GO TO:

ASSIGN 10 TO N
…
GO TO N (10, 20, 30, 40)
…

10 CONTINUE
…

40 STOP
Chapter 4 Statements 161

GO TO(Computed)

The computed GO TOstatement selects one statement label from a list, depending on

the value of an integer or real expression, and transfers control to the selected one.

GO TO (s[, s]…)[,] e

Description

Execution proceeds as follows:

1. e is evaluated first. It is converted to integer, if required.

2. If 1 ≤ e ≤ n, where n is the number of statement labels specified, then the eth label
is selected from the specified list and control is transferred to it.

3. If the value of e is outside the range, that is, e < 1 or e > n, then the computed GO
TOstatement serves as a CONTINUEstatement.

Restrictions

s must be in the same program unit as the GO TOstatement.

The same statement label can appear more than once in a GO TOstatement.

The statement control jumps to must be executable, not DATA, ENTRY, FORMAT, or

INCLUDE.

Control cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the block.

Parameter Description

s Statement label of an executable statement

e Expression of type integer or real
162 FORTRAN 77 Language Reference • July 2001

Example

Example: Computed GO TO:

In the above example:

■ If N equals one, then go to 10.

■ If N equals two, then go to 20.

■ If N equals three, then go to 30.

■ If N equals four, then go to 40.

■ If N is less than one or N is greater than four, then fall through to 10.

…
GO TO (10, 20, 30, 40), N
…

10 CONTINUE
…

20 CONTINUE
…

40 CONTINUE
Chapter 4 Statements 163

GO TO(Unconditional)

The unconditional GO TOstatement transfers control to a specified statement.

GO TO s

Description

Execution of the GO TOstatement transfers control to the statement labeled s.

Restrictions

s must be in the same program unit as the GO TOstatement.

The statement control jumps to must be executable, not a DATA, ENTRY, FORMAT, or

INCLUDEstatement.

Control cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the block.

Example

Parameter Description

s Statement label of an executable statement

A = 100.0
B = 0.01
GO TO 90
…

90 CONTINUE
164 FORTRAN 77 Language Reference • July 2001

IF (Arithmetic)

The arithmetic IF statement branches to one of three specified statements, depending

on the value of an arithmetic expression.

IF (e) s1, s2, s3

Description

The IF statement transfers control to the first, second, or third label if the value of

the arithmetic expression is less than zero, equal to zero, or greater than zero,

respectively.

The restrictions are:

■ The s1, s2, s3 must be in the same program unit as the IF statement.

■ The same statement label can appear more than once in a IF statement.

■ The statement control jumps to must be executable, not DATA, ENTRY, FORMAT, or

INCLUDE.

■ Control cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the

block.

Example

Since the value of N is zero, control is transferred to statement label 20 .

Parameter Description

e Arithmetic expression: integer, real, double precision, or

quadruple precision

s1, s2, s3 Labels of executable statements

N = 0
IF (N) 10, 20, 30
Chapter 4 Statements 165

IF (Block)

The block IF statement executes one of two or more sequences of statements,

depending on the value of a logical expression.

IF (e) THEN

…

END IF

Description

The block IF statement evaluates a logical expression and, if the logical expression is

true, it executes a set of statements called the IF block. If the logical expression is

false, control transfers to the next ELSE, ELSE IF, or END IF statement at the same

IF -level.

IF -Level

The IF -level of a statement S is the value n1–n2, where n1 is the number of block IF
statements from the beginning of the program unit up to the end, including S; n2 is

the number of END IF statements in the program unit up to, but not including, S.

Example: In the following program, the IF -level of statement 9 is 2-1, or, 1:

The IF -level of every statement must be zero or positive. The IF -level of each block

IF , ELSE IF, ELSE, and END IF statement must be positive. The IF -level of the END
statement of each program unit must be zero.

Parameter Description

e A logical expression

IF (X .LT. 0.0) THEN
MIN = NODE

END IF
…

9 IF (Y .LT. 0.0) THEN
MIN = NODE - 1

END IF
166 FORTRAN 77 Language Reference • July 2001

IF Block

An IF block consists of all the executable statements following the block IF
statement, up to, but not including, the next ELSE, ELSE IF, or END IF statement

that has the same if level as the block IF statement. An IF block can be empty. In

the following example, the two assignment statements form an IF block:

Execution proceeds as follows:

1. The logical expression e is evaluated first. If e is true, execution continues with the
first statement of the IF block.

2. If e is true and the IF block is empty, control is transferred to the next END IF
statement with the same IF -level as the block IF statement.

3. If e is false, control is transferred to the next ELSE IF, ELSE, or END IF statement
with the same IF -level as the block IF statement.

4. If the last statement of the IF block does not result in a branch to a label, control
is transferred to the next END IF statement that has the same IF -level as the block
IF statement preceding the IF block.

Restrictions

Control cannot jump into an IF block from outside the IF block.

Examples

Example 1: IF-THEN-ELSE :

IF (X .LT. Y) THEN
M = 0
N = N+1

END IF

IF (L) THEN
N=N+1
CALL CALC

ELSE
K=K+1
CALL DISP

END IF
Chapter 4 Statements 167

Example 2: IF-THEN-ELSE-IF with ELSE-IF :

Example 3: Nested IF-THEN-ELSE :

IF (C .EQ. 'a') THEN
NA=NA+1
CALL APPEND

ELSE IF (C .EQ. 'b') THEN
NB=NB+1
CALL BEFORE

ELSE IF (C .EQ. 'c') THEN
NC=NC+1
CALL CENTER

END IF

IF (PRESSURE .GT 1000.0) THEN
IF (N .LT. 0.0) THEN

X = 0.0
Y = 0.0

ELSE
Z = 0.0

END IF
ELSE IF (TEMPERATURE .GT. 547.0) THEN

Z = 1.0
ELSE

X = 1.0
Y = 1.0

END IF
168 FORTRAN 77 Language Reference • July 2001

IF (Logical)

The logical IF statement executes one single statement, or does not execute it,

depending on the value of a logical expression.

IF (e) st

Description

The logical IF statement evaluates a logical expression and executes the specified

statement if the value of the logical expression is true. The specified statement is not

executed if the value of the logical expression is false, and execution continues as

though a CONTINUEstatement had been executed.

st can be any executable statement, except a DOblock, IF , ELSE IF, ELSE, END IF,

END, or another logical IF statement.

Example

Parameter Description

e Logical expression

st Executable statement

IF (VALUE .LE. ATAD) CALL PUNT ! Note that there is no THEN.
IF (TALLY .GE. 1000) RETURN
Chapter 4 Statements 169

IMPLICIT
The IMPLICIT statement confirms or changes the default type of names.

IMPLICIT type (a[, a]…) [, type (a[, a]…)]

IMPLICIT NONE

IMPLICIT UNDEFINED(A-Z) u

Description

The different uses for implicit typing and no implicit typing are described here.

Parameter Description

type BYTE u
CHARACTER
CHARACTER*n (where n must be greater than 0)
CHARACTER*(*)
COMPLEX
COMPLEX*8u

COMPLEX*16 u
COMPLEX*32 u
DOUBLE COMPLEX u
DOUBLE PRECISION
INTEGER
INTEGER*2 u
INTEGER*4 u

INTEGER*8 u

LOGICAL
LOGICAL*1 u
LOGICAL*2 u
LOGICAL*4 u
LOGICAL*8 u

REAL
REAL*4 u
REAL*8 u
REAL*16 u
AUTOMATICu

STATIC u

a Either a single letter or a range of single letters in

alphabetical order. A range of letters can be specified by

the first and last letters of the range, separated by a minus

sign.
170 FORTRAN 77 Language Reference • July 2001

Implicit Typing

The IMPLICIT statement can also indicate that no implicit typing rules apply in a

program unit.

An IMPLICIT statement specifies a type and size for all user-defined names that

begin with any letter, either a single letter or in a range of letters, appearing in the

specification.

An IMPLICIT statement does not change the type of the intrinsic functions.

An IMPLICIT statement applies only to the program unit that contains it.

A program unit can contain more than one IMPLICIT statement.

IMPLICIT types for particular user names are overridden by a type statement.

Note – Compiling with any of the options -dbl , -i2 , -r8 , or -xtypemap can alter

the assumed size of names typed with an IMPLICIT statement that does not specify

a size: IMPLICIT REAL (A-Z) . See Chapter 2 and the Fortran User’s Guide for

details.

No Implicit Typing

The second form of IMPLICIT specifies that no implicit typing should be done for

user-defined names, and all user-defined names shall have their types declared

explicitly.

If either IMPLICIT NONE or IMPLICIT UNDEFINED (A-Z) is specified, there cannot

be any other IMPLICIT statement in the program unit.

Restrictions

IMPLICIT statements must precede all other specification statements.

The same letter can appear more than once as a single letter, or in a range of letters in

all IMPLICIT statements of a program unit. ✠

The FORTRAN 77 Standard restricts this usage to only once. For f77 , if a letter is

used twice, each usage is declared in order. See Example 4.
Chapter 4 Statements 171

Examples

Example 1: IMPLICIT : everything is integer:

Example 2: Complex if it starts with U, V, or W; character if it starts with C or S:

Example 3: All items must be declared:

In the above example, once IMPLICIT NONE is specified in the beginning. All the

variables must be declared explicitly.

Example 4: A letter used twice: ✠

In the above example, D through Z implies INTEGER, and A through C implies REAL.

IMPLICIT INTEGER (A-Z)
X = 3
K = 1
STRING = 0

IMPLICIT COMPLEX (U,V,W), CHARACTER*4 (C,S)
U1 = (1.0, 3.0)
STRING = 'abcd'
I = 0
X = 0.0

IMPLICIT NONE
CHARACTER STR*8
INTEGER N
REAL Y
N = 100
Y = 1.0E5
STR = 'Length'

IMPLICIT INTEGER (A-Z)
IMPLICIT REAL (A-C)
C = 1.5E8
D = 9
172 FORTRAN 77 Language Reference • July 2001

✠INCLUDE
The INCLUDE✠ statement inserts a file into the source program.

INCLUDE ' file'

INCLUDE"file"

Description

The contents of the named file replace the INCLUDEstatement.

Search Path

If the name referred to by the INCLUDEstatement begins with the character / , then

it is taken by f77 to mean the absolute path name of the INCLUDE file. Otherwise,

f77 looks for the file in the following directories, in this order:

1. The directory that contains the source file with the INCLUDEstatement

2. The directories that are named in the -I loc options

3. The current directory in which the f77 command was issued

4. The directories in the default list., the default list is:

/opt/SUNWspro/ <release>/include/f77 /usr/include

For a non-standard install to a directory / mydir/ , the default list is:

/ mydir/SUNWspro/ <release>/include/f77 /usr/include

The <release> directory path varies with the release of the set of compilers.

These INCLUDEstatements can be nested ten deep.

Parameter Description

file Name of the file to be inserted
Chapter 4 Statements 173

Preprocessor #include

The paths and order searched for the INCLUDEstatement are not the same as those

searched for the preprocessor #include directive, described under -I in the Fortran
User’s Guide. Files included by the preprocessor #include directive can contain

#defines and the like; files included with the compiler INCLUDEstatement must

contain only FORTRAN statements.

VMS Logical File Names in the INCLUDEStatement

f77 interprets VMS logical file names on the INCLUDEstatement if:

■ The -xl[d] or -vax= spec compiler options are set.

■ The environment variable LOGICALNAMEMAPPINGis there to define the mapping

between the logical names and the UNIX path name.

f77 uses the following rules for the interpretation:

■ The environment variable should be set to a string with the syntax:

where each lname is a logical name and each path1, path2, and so forth is the path

name of a directory (without a trailing /).

■ All blanks are ignored when parsing this string. It strips any trailing /[no] list
from the file name in the INCLUDEstatement.

■ Logical names in a file name are delimited by the first : in the VMS file name,

so f77 converts file names of the lname1:file form to the path1/file form.

■ For logical names, uppercase and lowercase are significant. If a logical name is

encountered on the INCLUDEstatement which is not specified in the

LOGICALNAMEMAPPING, the file name is used, unchanged.

Examples

Example 1: INCLUDE, simple case:

The above line is replaced by the contents of the file stuff.

"lname1=path1; lname2=path2; … "

INCLUDE 'stuff'
174 FORTRAN 77 Language Reference • July 2001

Example 2: INCLUDE, search paths:

For the following conditions:

■ Your source file has the line:

■ Your current working directory is /usr/ftn .

■ Your source file is /usr/ftn/projA/myprg.f .

In this example, f77 seeks const.h in these directories, in the order shown.

For a standard install, f77 searches these directories:

■ /usr/ftn/projA/ver1
■ /usr/ftn/ver1
■ /opt/SUNWspro/ <release>/include/f77/ver1
■ /usr/include

For a non-standard install to a directory /mydir, replace /opt with /mydir. The

<release> directory path changes with each compiler release.

INCLUDE 'ver1/const.h'
Chapter 4 Statements 175

INQUIRE
The INQUIRE statement returns information about a unit or file.

INQUIRE([UNIT =] u, slist)

INQUIRE(FILE = fn, slist)

Description

You can determine such things about a file as whether it exists, is opened, or is

connected for sequential I/O. That is, files have such attributes as name, existence

(or nonexistence), and the ability to be connected in certain ways (FORMATTED,
UNFORMATTED, SEQUENTIAL, or DIRECT).

Inquire either by unit or by file, but not by both in the same statement.

In this system environment, the only way to discover what permissions you have for

a file is to use the ACCESS(3F) function. The INQUIRE statement does not determine

permissions.

Parameter Description

fn Name of the file being queried

u Number of the file being queried

slist The specifiers list slist can include one or more of the

following, in any order:

• ERR= s
• EXIST = ex
• OPENED= od
• NAMED= nmd
• ACCESS= acc
• SEQUENTIAL= seq
• DIRECT = dir
• FORM= fm
• FORMATTED= fmt
• UNFORMATTED= unf
• NAME= fn
• BLANK= blnk
• IOSTAT = ios
• NUMBER= num
• RECL= rcl
• NEXTREC= nr
176 FORTRAN 77 Language Reference • July 2001

The following table summarizes the INQUIRE specifiers:

* indicates non-standard for inquire-by-unit, but accepted by f77 .

† indicates non-standard for inquire-by-file, but accepted by f77 .

TABLE 4-1 INQUIRE Statement Specifiers

Form: SPECIFIER = Variable

SPECIFIER Value of Variable Data Type of Variable

ACCESS 'DIRECT'
'SEQUENTIAL'

CHARACTER

BLANK 'NULL'
'ZERO'

CHARACTER

DIRECT * 'YES'
'NO'
'UNKNOWN'

CHARACTER

ERR Statement number INTEGER

EXIST .TRUE.
.FALSE.

LOGICAL

FORM 'FORMATTED'
'UNFORMATTED'
’BINARY’ ✠

CHARACTER

FORMATTED * 'YES'
'NO'
'UNKNOWN'

CHARACTER

IOSTAT Error number INTEGER

NAME † Name of the file CHARACTER

NAMED † .TRUE.
.FALSE.

LOGICAL

NEXTREC Next record number INTEGER

NUMBER * Unit number INTEGER

OPENED .TRUE.
.FALSE.

LOGICAL

RECL Record length INTEGER

SEQUENTIAL * 'YES'
'NO'
'UNKNOWN'

CHARACTER

UNFORMATTED * 'YES'
'NO'
'UNKNOWN'

CHARACTER
Chapter 4 Statements 177

Also:

■ If a file is scratch, then NAMEDand NUMBERare not returned.

■ If there is no file with the specified name, then these variables are not returned:

DIRECT, FORMATTED, NAME, NAMED, SEQUENTIAL, and UNFORMATTED.

■ If OPENED=.FALSE., then these variables are not returned: ACCESS, BLANK,

FORM, NEXTREC, and RECL.

■ If no file is connected to the specified unit, then these variables are not returned:

ACCESS, BLANK, DIRECT, FORM, FORMATTED, NAME, NAMED, NEXTREC, NUMBER,
RECL, SEQUENTIAL, and UNFORMATTED.

■ If ACCESS='SEQUENTIAL', then these variables are not returned: RECLand

NEXTREC.

■ If FORM='UNFORMATTED’, then BLANKis not returned.

INQUIRE Specifier Keywords

The following provides a detailed list of the INQUIRE specifier keywords:

ACCESS=acc
■ acc is a character variable that is assigned the value 'SEQUENTIAL' if the

connection is for sequential I/O and 'DIRECT' if the connection is for direct I/O.

The value is undefined if there is no connection.

BLANK=blnk
■ blnk is a character variable that is assigned the value 'NULL' if null blank control

is in effect for the file connected for formatted I/O, and 'ZERO' if blanks are

being converted to zeros and the file is connected for formatted I/O.

DIRECT=dir
■ dir is a character variable that is assigned the value 'YES' if the file could be

connected for direct I/O, 'NO' if the file could not be connected for direct I/O,

and 'UNKNOWN'if the system can’t tell.

ERR=s
■ s is a statement label of a statement to branch to if an error occurs during the

execution of the INQUIRE statement.
178 FORTRAN 77 Language Reference • July 2001

EXIST= ex
■ ex is a logical variable that is set to .TRUE. if the file or unit exists, and .FALSE.

otherwise. If the file is a link, INQUIRE always returns .TRUE. , even if the linked

file does not exist.

FILE= fn
■ n is a character expression or * with the name of the file. Trailing blanks in the file

name are ignored. If the file name is all blanks, that means the current directory.

The file need not be connected to a unit in the current program.

FORM=fm
■ fm is a character variable which is assigned the value 'FORMATTED' if the file is

connected for formatted I/O, 'UNFORMATTED'if the file is connected for

unformatted I/O, ’BINARY’ if the file was opened for unstructured binary I/O ✠.

FORMATTED=fmt
■ fmt is a character variable that is assigned the value 'YES' if the file could be

connected for formatted I/O, 'NO' if the file could not be connected for

formatted I/O, and 'UNKNOWN'if the system cannot tell.

IOSTAT=ios
■ ios is as in the OPENstatement.

NAME=fn
■ fn is a character variable that is assigned the name of the file connected to the

unit. If you do an inquire-by-unit, the name parameter is undefined, unless both

the values of the OPENEDand NAMEDvariables are both true. If you do an inquire

by file, the name parameter is returned, even though the FORTRAN 77 Standard

leaves it undefined.

NAMED=nmd
■ nmd is a logical variable that is assigned .TRUE. if the file has a name, .FALSE.

otherwise.
Chapter 4 Statements 179

NEXTREC=nr
■ nr is an integer variable that is assigned one plus the number of the last record

read from a file connected for direct access. If the file is not connect, -1 is returned

in nr.

NUMBER=num
■ num is an integer variable that is set to the number of the unit connected to the

file, if any. If no file is connected, num is set to -1.

OPENED=od
■ od is a logical variable that is set to .TRUE. if the file is connected to a unit or the

unit is connected to a file, and .FALSE. otherwise.

RECL=rcl
■ rcl is an integer variable that is assigned the record length of the records in the file

if the file is connected for direct access. f77 does not adjust the rcl returned by

INQUIRE. The OPENstatement does such an adjustment if the -xl[d] option is

set. See “Details of Features That Require -xl[d]” on page 370 for an explanation

of -xl[d] . If no file is connected, rcl is set to -1.

SEQUENTIAL=seq
■ seq is a character variable that is assigned the value 'YES' if the file could be

connected for sequential I/O, 'NO' if the file could not be connected for

sequential I/O, and 'UNKNOWN'if the system can’t tell.

UNFORMATTED=unf
■ unf is a character variable that is assigned the value 'YES' if the file could be

connected for unformatted I/O, 'NO' if the file could not be connected for

unformatted I/O, and 'UNKNOWN'if the system cannot tell.

UNIT=u
■ u is an integer expression or * with the value of the unit. Exactly one of FILE or

UNIT must be used.
180 FORTRAN 77 Language Reference • July 2001

Examples

Example 1: Inquire by unit:

Example 2: Inquire by file:

Example 3: More than one answer, omitting the UNIT= :

LOGICAL OK
INQUIRE(UNIT=3, OPENED=OK)
IF (OK) CALL GETSTD (3, STDS)

LOGICAL THERE
INQUIRE(FILE='.profile', EXIST=THERE)
IF (THERE) CALL GETPROFILE(FC, PROFILE)

CHARACTER FN*32
LOGICAL HASNAME, OK
INQUIRE (3, OPENED=OK, NAMED=HASNAME, NAME=FN)
IF (OK .AND. HASNAME) PRINT *, 'Filename="', FN, '"'
Chapter 4 Statements 181

INTEGER
The INTEGERstatement specifies the type to be integer for a symbolic constant,

variable, array, function, or dummy function.

Optionally, it specifies array dimensions and size and initializes with values.

INTEGER [* len[,]] v[* len[/ c/]] [, v[* len[/ c/]] …

Description

The declarations can be: INTEGER, INTEGER*2, INTEGER*4, INTEGER*8.

INTEGER

For a declaration such as INTEGER H, the variable H is usually one INTEGER*4
element in memory, interpreted as a single integer number. Specifying the size is

nonstandard. ✠

If you do not specify the size, a default size is used. The default size, for a

declaration such as INTEGER H, can be altered by compiling with any of the options

-dbl , -i2 , -r8 , or -xtypemap . See the discussion in Chapter 2 for details.

INTEGER*2 ✠

For a declaration such as INTEGER*2 H, the variable H is always an INTEGER*2
element in memory, interpreted as a single integer number.

Parameter Description

v Name of a symbolic constant, variable, array, array

declarator, function, or dummy function

len Either 2, 4, or 8, the length in bytes of the symbolic

constant, variable, array element, or function.

c List of constants for the immediately preceding name
182 FORTRAN 77 Language Reference • July 2001

INTEGER*4 ✠

For a declaration such as INTEGER*4 H, the variable H is always an INTEGER*4
element in memory, interpreted as a single integer number.

INTEGER*8 ✠

For a declaration such as INTEGER*8 H, the variable H is always an INTEGER*8
element in memory, interpreted as a single integer number.

Restrictions

Do not use INTEGER*8 variables or 8-byte constants or expressions when indexing

arrays, otherwise, only 4 low-order bytes are taken into account. This action can

cause unpredictable results in your program if the index value exceeds the range for

4-byte integers.

Examples

Example 1: Each of these integer declarations are equivalent:

Example 2: Initialize:

INTEGER U, V(9)
INTEGER*4 U, V(9)
INTEGER U*4, V(9)*4

INTEGER U / 1 /, V / 4 /, W*2 / 1 /, X*2 / 4 /
Chapter 4 Statements 183

INTRINSIC
The INTRINSIC statement lists intrinsic functions that can be passed as actual

arguments.

INTRINSIC fun [, fun] …

Description

If the name of an intrinsic function is used as an actual argument, it must appear in

an INTRINSIC statement in the same program unit.

Example: Intrinsic functions passed as actual arguments:

Restrictions

A symbolic name must not appear in both an EXTERNALand an INTRINSIC
statement in the same program unit.

The actual argument must be a specific name. Most generic names are also specific,

but a few are not: IMAG, LOG, and LOG10.

A symbolic name can appear more than once in an INTRINSIC statement.In the

FORTRAN 77 Standard, a symbolic name can appear only once in an INTRINSIC
statement. ✠

Parameter Description

fun Function name

INTRINSIC SIN, COS
X = CALC (SIN, COS)
184 FORTRAN 77 Language Reference • July 2001

Because they are inline or generic, the following intrinsics cannot be passed as actual
arguments:

TABLE 4-2 Intrinsics That Cannot Be Passed As Actual Arguments

LOC
AND
IAND
IIAND
JIAND
OR
IOR
IIOR
IEOR
IIEOR
JIOR
JIEOR
NOT
INOT
JNOT
XOR
LSHIFT
RSHIFT
LRSHFT

INT
IINT
JINT
IQINT
IIQINT
JIQINT
IFIX
IIFIX
JIFIX
IDINT
IIDINT
JIDINT
FLOAT
FLOATI
FLOATJ
DFLOAT
DFLOTI
DFLOTJ
IZEXT

SNGL
SNGLQ
REAL
DREAL
DBLE
DBLEQ
QEXT
QEXTD
QFLOAT
CMPLX
DCMPLX
ICHAR
IACHAR
ACHAR
CHAR
MAX
MAX0
AMAX0
JZEXT

AIMAX0
AJMAX0
IMAX0
JMAX0
MAX1
AMAX1
DMAX1
IMAX1
JMAX1
QMAX1
MIN
MIN0
AMIN0
AIMIN0
AJMIN0
IMIN0
JMIN0
MIN1
ZEXT

AMIN1
DMIN1
IMIN1
JMIN1
QMIN1
IMAG
LOG
LOG10
QREAL
QCMPLX
SIZEOF
EPBASE
EPEMAX
EPEMIN
EPHUGE
EPMRSP
EPPREC
EPTINY
Chapter 4 Statements 185

LOGICAL
The LOGICAL statement specifies the type to be logical for a symbolic constant,

variable, array, function, or dummy function.

Optionally, it specifies array dimensions and initializes with values.

LOGICAL [* len[,]] v[* len[/ c/]] [, v[* len[/ c/]] …

Description

The declarations can be: LOGICAL, LOGICAL*1, LOGICAL*2 , LOGICAL*4,
LOGICAL*8 .

Parameter Description

v Name of a symbolic constant, variable, array, array

declarator, function, or dummy function

len Either 1, 2, 4, or 8, the length in bytes of the symbolic

constant, variable, array element, or function. 8 is allowed

only if -dbl is on. ✠

c List of constants for the immediately preceding name
186 FORTRAN 77 Language Reference • July 2001

LOGICAL
For a declaration such as LOGICAL H, the variable H is usually one INTEGER*4
element in memory, interpreted as a single logical value. Specifying the size is

nonstandard. ✠

If you do not specify the size, a default size is used. The default size, for a

declaration such as LOGICAL Z, can be altered by compiling with any of the options

-dbl , -i2 ,-r8 , or -xtypemap . See the discussion in Chapter 2 for details.

LOGICAL*1 ✠

For a declaration such as LOGICAL*1 H, the variable H is always an BYTE element

in memory, interpreted as a single logical value.

LOGICAL*2 ✠

For a declaration such as LOGICAL*2 H, the variable H is always an INTEGER*2
element in memory, interpreted as a single logical value.

LOGICAL*4 ✠

For a declaration such as LOGICAL*4 H, the variable H is always an INTEGER*4
element in memory, interpreted as a single logical value.

LOGICAL*8 ✠

For a declaration such as LOGICAL*8 H, the variable H is always an INTEGER*8
element in memory, interpreted as a single logical value.
Chapter 4 Statements 187

Examples

Example 1: Each of these declarations are equivalent:

Example 2: Initialize:

LOGICAL U, V(9)
LOGICAL*4 U, V(9)
LOGICAL U*4, V(9)*4

LOGICAL U /.false./, V /0/, W*4 /.true./, X*4 /'z'/
188 FORTRAN 77 Language Reference • July 2001

✠MAP
The MAP✠ declaration defines alternate groups of fields in a union.

Description

Each field declaration can be one of the following:

■ Type declaration, which can include initial values

■ Substructure—either another structure declaration, or a record that has been

previously defined

■ Union declaration—see “@UNION and MAP” on page 247 for more information.

Example

Example: MAP:

MAP
field-declaration
…
[field-declaration]

END MAP

STRUCTURE /STUDENT/
CHARACTER*32 NAME

INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE
Chapter 4 Statements 189

✠NAMELIST
The NAMELIST✠ statement defines a list of variables or array names, and associates

it with a unique group name.

NAMELIST / grname / namelist [[,] / grname / namelist] …

Description

The NAMELISTstatement contains a group name and other items.

Group Name

The group name is used in the namelist-directed I/O statement to identify the list of

variables or arrays that are to be read or written. This name is used by namelist-

directed I/O statements instead of an input/output list. The group name must be

unique, and identifies a list whose items can be read or written.

A group of variables can be defined through several NAMELISTstatements with the

same group name. Together, these definitions are taken as defining one NAMELIST
group.

Namelist Items

The namelist items can be of any data type. The items in the namelist can be

variables or arrays, and can appear in more than one namelist. Only the items

specified in the namelist can be read or written in namelist-directed I/O, but it is not

necessary to specify data in the input record for every item of the namelist.

The order of the items in the namelist controls the order in which the values are

written in namelist-directed output. The items in the input record can be in any

order.

Parameter Description

grname Symbolic name of the group

namelist List of variables and arrays
190 FORTRAN 77 Language Reference • July 2001

Restrictions

Input data can assign values to the elements of arrays or to substrings of strings that

appear in a namelist.

The following constructs cannot appear in a NAMELISTstatement:

■ Constants (parameters)

■ Array elements

■ Records and record fields

■ Character substrings

■ Dummy assumed-size arrays

Example

Example: The NAMELISTstatement:

In this example, the group CASEhas three variables: SAMPLE, NEW, and DELTA.

CHARACTER*16 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
Chapter 4 Statements 191

OPEN
The OPENstatement can connect an existing external file to a unit, create a file and

connect it to a unit, or change some specifiers of the connection.

OPEN ([UNIT=] u, slist)

Description

The OPENstatement determines the type of file named, whether the connection

specified is legal for the file type (for instance, DIRECT access is illegal for tape and

tty devices), and allocates buffers for the connection if the file is on tape or if the

subparameter FILEOPT= 'BUFFER= n' is specified. Existing files are never truncated

on opening.

Note – For tape I/O, use the TOPEN() routines.

Parameter Description

UNIT Unit number

slist The specifiers list slist can include one or more of the

following

• FILE = fin or alternatively NAME =fin
• ACCESS = acc
• BLANK = blnk
• ERR = s
• FORM = fm
• IOSTAT = ios
• RECL = rl or alternatively RECORDSIZE = rl
• STATUS = sta or alternatively TYPE = sta
• FILEOPT = fopt ✠

• READONLY✠
• ACTION = act ✠
192 FORTRAN 77 Language Reference • July 2001

The following table summarizes the OPEN specifiers:

The keywords can be specified in any order.

OPENSpecifier Keywords

The following provides a detailed list of the OPENspecifier keywords:

[UNIT=] u
■ u is an integer expression or an asterisk (*) that specifies the unit number. u is

required. If u is first in the parameter list, then UNIT= can be omitted.

TABLE 4-3 OPEN Statement Specifiers

Form: SPECIFIER = Variable

SPECIFIER Value of Variable Data Type of Variable

ACCESS 'APPEND'
'DIRECT'
'SEQUENTIAL'

CHARACTER

ACTION 'READ'
'WRITE'
'READWRITE'

CHARACTER

BLANK 'NULL'
'ZERO'

CHARACTER

ERR Statement number INTEGER

FORM 'FORMATTED'
'UNFORMATTED'
'PRINT'
’BINARY’ ✠

CHARACTER

FILE Filename CHARACTER

FILEOPT 'NOPAD'
'BUFFER=n'
'EOF'

CHARACTER

IOSTAT Error number INTEGER

READONLY - -

RECL Record length INTEGER

STATUS 'OLD'
'NEW'
'UNKNOWN'
'SCRATCH'

CHARACTER
Chapter 4 Statements 193

FILE= fin
■ fin is a character expression naming the file to open. An OPENstatement need not

specify a file name. If the file name is not specified, a default name is created.

■ Reopening files: If you open a unit that is already open without specifying a file

name (or with the previous file name), FORTRAN thinks you are reopening the

file to change parameters. The file position is not changed. The only parameters

you are allowed to change are BLANK(NULL or ZERO) and FORM(FORMATTEDor

PRINT). To change any other parameters, you must close, then reopen the file.

■ Switching Files: If you open a unit that is already open, but you specify a different

file name, it is as if you closed with the old file name before the open.

■ Switching Units: If you open a file that is already open, but you specify a different

unit, that is an error. This error is not detected by the ERR=option, however, and

the program does not terminate abnormally.

■ Scratch Files: If a file is opened with STATUS='SCRATCH', a temporary file is

created and opened. See STATUS=sta.

ACCESS=acc
■ The ACCESS=acc clause is optional. acc is a character expression. Possible values

are: APPEND, DIRECT, or SEQUENTIAL. The default is SEQUENTIAL.

■ If ACCESS='APPEND', SEQUENTIALand FILEOPT='EOF' are assumed. This is

for opening a file to append records to an existing sequential-access file. Only

WRITEoperations are allowed, although no error message is issued. This is an

extension and can be applied only to disk files. ✠

■ If ACCESS='DIRECT' , RECLmust also be given, since all I/O transfers are done

in multiples of fixed-size records.

■ Only directly accessible files are allowed; thus, tty, pipes, and magnetic tape are

not allowed. If you build a file as sequential, then you cannot access it as direct.

■ If FORMis not specified, unformatted transfer is assumed.

■ If FORM='UNFORMATTED', the size of each transfer depends upon the data

transferred.

■ If ACCESS='SEQUENTIAL', RECLis ignored. ✠ The FORTRAN 77 Standard

prohibits RECLfor sequential access.

■ No padding of records is done.

■ If you build a file as direct, then you cannot access it as sequential.

■ Files do not have to be randomly accessible, in the sense that tty, pipes, and tapes

can be used. For tapes, we recommend the TOPEN() routines because they are

more reliable.

■ If FORMis not , formatted transfer is assumed.
194 FORTRAN 77 Language Reference • July 2001

■ If FORM='FORMATTED', each record is terminated with a newline (\n) character;

that is, each record actually has one extra character.

■ If FORM='PRINT' , the file acts like a FORM='FORMATTED'file, except for

interpretation of the column-1 characters on the output (blank = single space, 0 =

double space, 1 = form feed, and + = no advance).

■ If FORM='UNFORMATTED', each record is preceded and terminated with an

INTEGER*4 count, making each record 8 characters longer than normal. This

convention is not shared with other languages, so it is useful only for

communicating between FORTRAN programs.

FORM=fm
■ The FORM=fm clause is optional. fm is a character expression. Possible values are

'FORMATTED', 'UNFORMATTED', ’BINARY’ or 'PRINT' . ✠ The default is

'FORMATTED'.

■ This option interacts with ACCESS.

■ 'PRINT' makes it a print file.

■ ’BINARY’ treats the file as a sequential unformatted file with no record marks.✠

Specifying ACCESS=’DIRECT’ or RECL=n with FORM=’BINARY’ generates an

error. Each WRITEstatement writes as many bytes in binary as there are in the

data on the output list. A READ statement reads as many bytes from the input file

as are required by the input list. Since no record marks are recognized, it is not

possible to read “outside the record.” Other than abnormal system errors, the

only input error that can occur is reading the end-of-file. BACKSPACEon a

FORM=’BINARY’ file is not allowed and generates a runtime error.

RECL=rl
■ The RECL=rl clause is required if ACCESS='DIRECT' and ignored otherwise.

■ rl is an integer expression for the length in characters of each record of a file. rl
must be positive.

■ If the record length is unknown, you can use RECL=1; see “Direct Access I/O” on

page 266 for more information.

■ If -xl[d] is not set, rl is number of characters, and record length is rl.

■ If -xl[d] is set, rl is number of words, and record length is rl*4. ✠

■ There are more details in the ACCESS='SEQUENTIAL' section, above.

■ Each WRITEdefines one record and each READreads one record (unread

characters are flushed).

■ The default buffer size for tape is 64K characters. For tapes, we recommend the

TOPEN() routines because they are more reliable.
Chapter 4 Statements 195

ERR=s
■ The ERR=s clause is optional. s is a statement label of a statement to branch to if

an error occurs during execution of the OPENstatement.

IOSTAT=ios
■ The IOSTAT=ios clause is optional. ios is an integer variable that receives the error

status from an OPEN. After the execution of the OPEN, if no error condition exists,

then ios is zero; otherwise, it is some positive number.

■ If you want to avoid aborting the program when an error occurs on an OPEN,
include ERR=s or IOSTAT=ios.

BLANK=blnk
■ The BLANK=blnk clause is optional, and is for formatted input only. The blnk is a

character expression that indicates how blanks are treated. Possible values are

'ZERO' and 'NULL' .

■ 'ZERO' —Blanks are treated as zeroes.

■ 'NULL' —Blanks are ignored during numeric conversion. This is the default.

STATUS=sta
■ The STATUS=sta clause is optional. sta is a character expression. Possible values

are: 'OLD' , 'NEW' , 'UNKNOWN', or 'SCRATCH' .

■ 'OLD' — The file already exists (nonexistence is an error). For example:

STATUS='OLD' .

■ 'NEW' — The file doesn't exist (existence is an error). If 'FILE= name' is not

specified, then a file named 'fort. n' is opened, where n is the specified logical

unit.

■ 'UNKNOWN'— Existence is unknown. This is the default.

■ 'SCRATCH' — For a file opened with STATUS='SCRATCH', a temporary file with

a name of the form tmp. FAAAxnnnnn is opened. Any other STATUSspecifier

without an associated file name results in opening a file named 'fort. n' , where

n is the specified logical unit number. By default, a scratch file is deleted when

closed or during normal termination. If the program aborts, then the file may not

be deleted. To prevent deletion, CLOSEwith STATUS='KEEP' .

■ The FORTRAN 77 Standard prohibits opening a named file as scratch: if OPENhas

a FILE =name option, then it cannot have a STATUS='SCRATCH' option. This

FORTRAN extends the standard by allowing opening named files as scratch. ✠

Such files are normally deleted when closed or at normal termination.
196 FORTRAN 77 Language Reference • July 2001

■ TMPDIR: FORTRAN programs normally put scratch files in the current working

directory. If the TMPDIRenvironment variable is set to a writable directory, then

the program puts scratch files there. ✠

FILEOPT=fopt ✠

■ The FILEOPT=fopt clause is optional. fopt is a character expression. Possible

values are 'NOPAD', 'BUFFER=n' , and 'EOF' .

■ 'NOPAD' —Do not extend records with blanks if you read past the end-of-record

(formatted input only). That is, a short record causes an abort with an error

message, rather than just filling with trailing blanks and continuing.

■ 'BUFFER=n' — Sets the buffer size to be used by the I/O unit to n bytes. This

suboption is intended for use with regular files, such as disk files. For good

performance, the buffer size should e a multiple of the page size. Using large

buffers generally improves the performance of sequential I/O. Performance of

direct I/O is usually best if the buffer size equals the record length. One exception

is that if the record length is one, the buffer size should be at least one page.

Normally the BUFFERsuboption should not be used with tape files, where the

proper buffer size is determined by the tape hardware, the controllers, and the file

system. Some kinds of tape drives offer limited functionality. These limitations

can cause normal Fortran I/O to be unreliable. The tape I/O routines in the

Fortran library (see topen (3F)) are recommended alternatives for such drives.

■ 'EOF' —Opens a file at end-of-file rather than at the beginning (useful for

appending data to file), for example, FILEOPT='EOF' . Unlike

ACCESS='APPEND', in this case, both READand BACKSPACEare allowed.

READONLY✠

■ The file is opened read-only.

ACTION=act
■ This specifier denotes file permissions. Possible values are: READ, WRITE, and

READWRITE.

■ If act is READ, it specifies that the file is opened read-only.

■ If act is WRITE, it specifies that the file is opened write-only. You cannot execute a

BACKSPACEstatement on a write-only file.

■ If act is READWRITE, it specifies that the file is opened with both read and write

permissions.
Chapter 4 Statements 197

Examples

Here are six examples.

Example 1: Open a file and connect it to unit 8—either of the following forms of the

OPENstatement opens the file, projectA/data.test , and connects it to FORTRAN

unit 8:

In the above example, these properties are established by default: sequential access,

formatted file, and (unwisely) no allowance for error during file open.

Example 2: Explicitly specify properties:

Example 3: Either of these opens file, fort.8 , and connects it to unit 8:

In the above example, you get sequential access, formatted file, and no allowance for

error during file open. If the file, fort.8 does not exist before execution, it is

created. The file remains after termination.

Example 4: Allowing for open errors:

The above statement branches to 99 if an error occurs during OPEN.

Example 5: Allowing for variable-length records;

See “Direct Access I/O” on page 266 for more information about variable-length

records.

OPEN(UNIT=8, FILE='projectA/data.test')
OPEN(8, FILE=’projectA/data.test’)

OPEN(UNIT=8, FILE='projectA/data.test', &
ACCESS='SEQUENTIAL', FORM='FORMATTED')

OPEN(UNIT=8)
OPEN(8)

OPEN(UNIT=8, FILE='projectA/data.test', ERR=99)

OPEN(1, ACCESS='DIRECT', recl=1)
198 FORTRAN 77 Language Reference • July 2001

Example 6: Scratch file:

This statement opens a temporary file with a name, such as tmp.FAAAa003zU. The

file is usually in the current working directory, or in TMPDIRif that environment

variable is set.

OPEN(1, STATUS='SCRATCH')
Chapter 4 Statements 199

✠OPTIONS
The OPTIONS✠ statement overrides compiler command-line options.

OPTIONS /qualifier [/ qualifier …]

Description

The following table shows the OPTIONSstatement qualifiers:

Restrictions

The OPTIONSstatement must be the first statement in a program unit; it must be

before the BLOCK DATA, FUNCTION, PROGRAM, and SUBROUTINEstatements.

Options set by the OPTIONSstatement override those of the command line.

Options set by the OPTIONSstatement endure for that program unit only.

A qualifier can be abbreviated to four or more characters.

Uppercase or lowercase is not significant.

TABLE 4-4 OPTIONS Statement Qualifiers

Qualifier Action Taken

/[NO]G_FLOATING None (not implemented)

/[NO]I4 Enables/Disables the -i2 option

/[NO]F77 None (not implemented)

/CHECK=ALL Enables the -C option

/CHECK=[NO]OVERFLOW None (not implemented)

/CHECK=[NO]BOUNDS Disables/Enables the -C option

/CHECK=[NO]UNDERFLOW None (not implemented)

/CHECK=NONE Disables the -C option

/NOCHECK Disables the -C option

/[NO]EXTEND_SOURCE Disables/enables the -e option
200 FORTRAN 77 Language Reference • July 2001

Example

For the following source, integer variables declared with no explicit size occupy 4

bytes rather than 2, with or without the –i2 option on the command line. This rule

does not change the size of integer constants, only variables.

By way of contrast, if you use /NOI4 , then all integer variables declared with no

explicit size occupy 2 bytes rather than 4, with or without the –i2 option on the

command line. However, integer constants occupy 2 bytes with –i2 , and 4 bytes

otherwise.

OPTIONS /I4
PROGRAM FFT
…
END
Chapter 4 Statements 201

PARAMETER
The PARAMETERstatement assigns a symbolic name to a constant.

PARAMETER (p=e [, p=e] …)

An alternate syntax is allowed, if the –xl flag is set: ✠

PARAMETERp=e [, p=e] …

In this alternate form, the type of the constant expression determines the type of the

name; no conversion is done.

Description

e can be of any type and the type of symbolic name and the corresponding

expression must match.

A symbolic name can be used to represent the real part, imaginary part, or both

parts of a complex constant.

A constant expression is made up of explicit constants and parameters and the

FORTRAN operators. See “Constant Expressions” on page 80 for more information.

No structured records or record fields are allowed in a constant expression.

Exponentiation to a floating-point power is not allowed, and a warning is issued.

If the type of the data expression does not match the type of the symbolic name, then

the type of the name must be specified by a type statement or IMPLICIT statement

prior to its first appearance in a PARAMETERstatement, otherwise conversion will be

performed.

If a CHARACTERstatement explicitly specifies the length for a symbolic name, then

the constant in the PARAMETERstatement can be no longer than that length. Longer

constants are truncated, and a warning is issued. The CHARACTERstatement must

appear before the PARAMETERstatement.

Parameter Description

p Symbolic name

e Constant expression
202 FORTRAN 77 Language Reference • July 2001

If a CHARACTERstatement uses *(*) to specify the length for a symbolic name, then

the data in the PARAMETERstatement are used to determine the length of the

symbolic constant. The CHARACTERstatement must appear before the PARAMETER
statement.

Any symbolic name of a constant that appears in an expression e must have been

defined previously in the same or a different PARAMETERstatement in the same

program unit.

✠ The f77 compiler extends the PARAMETERstatement to accept any expression,

including non-constant expressions. The statement will get a warning message to

indicate that it is non-standard, and the value will be determined at runtime

wherever the symbol is referenced. However, if the symbol defined in a PARAMETER
statement with a non-constant expression appears in a statement where a constant is

expected (such as a DATAstatement) it will get an error.

Restrictions

A symbolic constant must not be defined more than once in a program unit.

If a symbolic name appears in a PARAMETERstatement, then it cannot represent

anything else in that program unit.

A symbolic name cannot be used in a constant format specification, but it can be

used in a variable format specification.

If you pass a parameter as an argument, and the subprogram tries to change it, you

may get a runtime error.

Examples

Example 1: Some real, character, and logical parameters:

CHARACTER HEADING*10
LOGICAL T
PARAMETER (EPSILON=1.0E-6, PI=3.141593,

& HEADING=’ IO Error #’,
& T=.TRUE.)

…

Chapter 4 Statements 203

Example 2: Let the compiler count the characters:

Example 3: The alternate syntax, if the –xl compilation flag is specified:

The above statement is treated as:

An ambiguous statement that could be interpreted as either a PARAMETERstatement

or an assignment statement is always taken to be the former, as long as either the

-xl or –xld option is specified.

Example: An ambiguous statement:

With -xl , the above statement is a PARAMETERstatement about the variable S.

It is not an assignment statement about the variable PARAMETERS.

CHARACTER HEADING*(*)
PARAMETER (HEADING='I/O Error Number')
…

PARAMETER FLAG1 = .TRUE.

LOGICAL FLAG1
PARAMETER (FLAG1 = .TRUE.)

PARAMETER S = .TRUE.

PARAMETER S = .TRUE.

PARAMETERS = .TRUE.
204 FORTRAN 77 Language Reference • July 2001

PAUSE
The PAUSEstatement suspends execution, and waits for you to type: go .

PAUSE [str]

Description

The PAUSEstatement suspends program execution temporarily, and waits for

acknowledgment. On acknowledgment, execution continues.

If the argument string is present, it is displayed on the screen (written to stdout),

followed by the following message:

After you type: go , execution continues as if a CONTINUEstatement is executed. See

this example:

Parameter Description

str String of not more than 5 digits or a character constant

PAUSE. To resume execution, type: go
Any other input will terminate the program.

demo% cat p.f
PRINT *, "Start"
PAUSE 1
PRINT *, "Ok"
END

demo% f77 p.f -silent
demo% a.out
Start
PAUSE: 1
To resume execution, type: go
Any other input will terminate the program.
go
Execution resumed after PAUSE.
Ok
demo%
Chapter 4 Statements 205

If stdin is not a tty I/O device, PAUSEdisplays a message like this:

where pid is the process ID.

Example: stdin not a tty I/O device:

For the above example, type the following command line at a shell prompt in some

other window. The window displaying the message cannot accept command input.

PAUSE: To resume execution, type: kill -15 pid

demo% a.out < mydatafile
PAUSE: To resume execution, type: kill -15 20537
demo%

demo% kill -15 20537
206 FORTRAN 77 Language Reference • July 2001

✠POINTER
The POINTER✠ statement establishes pairs of variables and pointers.

POINTER (p1, v1) [, (p2, v2) …]

Description

Each pointer contains the address of its paired variable.

A pointer-based variable, or pointee, is a variable paired with a pointer in a POINTER
statement. A pointer-based variable is usually called just a based variable. The pointer
is the integer variable that contains the address. (Variable names appearing on

POINTERstatements are considered VOLATILE by the compiler.)

The use of pointers is described in “@Pointers” on page 61.

Examples

Example 1: A simple POINTERstatement:

Here, V is a pointer-based variable, and P is its associated pointer.

Example 2: Using the LOC() function to get an address:

Parameter Description

v1, v2 Pointer-based variables, also called pointees

p1, p2 Corresponding pointers

POINTER (P, V)

* ptr1.f: Assign an address via LOC()
POINTER (P, V)
CHARACTER A*12, V*12
DATA A / 'ABCDEFGHIJKL' /
P = LOC(A)
PRINT *, V(5:5)
END
Chapter 4 Statements 207

In the above example, the CHARACTERstatement allocates 12 bytes of storage for A,

but no storage for V; it merely specifies the type of V because V is a pointer-based

variable. You then assign the address of A to P, so now any use of V refers to A by the

pointer P. The program prints an E.

Example 3: Memory allocation for pointers, by MALLOC:

In the above example, you get 36 bytes of memory from MALLOC() and then, after

some other instructions, probably using that chunk of memory, tell FREE() to return

those same 36 bytes to the memory manager.

Example 4: Get the area of memory and its address:

In the above example, you obtain 12 bytes of memory from the function MALLOC()
and assign the address of that block of memory to the pointer P.

POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (36)
…
CALL FREE (P1)
…

POINTER (P, V)
CHARACTER V*12, Z*1
P = MALLOC(12)
…
END
208 FORTRAN 77 Language Reference • July 2001

Example 5: Dynamic allocation of arrays:

This is a slightly more realistic example. The size might well be some large number,

say, 10,000. Once that’s allocated, the subroutines perform their tasks, not knowing

that the array was dynamically allocated.

PROGRAM UsePointers
REAL X
POINTER (P, X)
…
READ (*,*) Nsize ! Get the size.
P = MALLOC(Nsize)! Allocate the memory.
…
CALL CALC (X, Nsize)
…
END
SUBROUTINE CALC (A, N)
REAL A(N)
… ! Use the array of whatever size.

RETURN
END
Chapter 4 Statements 209

Example 6: One way to use pointers to make a linked list in f77 :

demo% cat Linked.f
STRUCTURE /NodeType/

INTEGER recnum
CHARACTER*3 label
INTEGER next

END STRUCTURE
RECORD /NodeType/ r, b
POINTER (pr,r), (pb,b)
pb = malloc(12) Create the base record, b.
pr = pb Make pr point to b.
NodeNum = 1
DO WHILE (NodeNum .LE. 4) Initialize/create records

IF (NodeNum .NE. 1) pr = r.next
CALL struct_creat(pr,NodeNum)
NodeNum = NodeNum + 1

END DO
r.next = 0
pr = pb Show all records.
DO WHILE (pr .NE. 0)

PRINT *, r.recnum, " ", r.label
pr = r.next

END DO
END
SUBROUTINE struct_creat(pr,Num)
STRUCTURE /NodeType/

INTEGER recnum
CHARACTER*3 label
INTEGER next

END STRUCTURE

RECORD /NodeType/ r
POINTER (pr,r), (pb,b)
CHARACTER v*3(4)/'aaa', 'bbb', 'ccc', 'ddd'/

r.recnum = Num Initialize current record.
r.label = v(Num)
pb = malloc(12) Create next record.
r.next = pb
RETURN
END
210 FORTRAN 77 Language Reference • July 2001

Remember:

■ Do not optimize programs using pointers like this with -O3 , -O4, or -O5 .

■ The warnings can be ignored.

■ This is not the normal usage of pointers described at the start of this section.

demo% f77 -silent Linked.f
"Linked.f", line 6: Warning: local variable "b" never used
"Linked.f", line 31: Warning: local variable "b" never used
demo% a.out

1 aaa
2 bbb
3 ccc
4 ddd

demo%
Chapter 4 Statements 211

PRINT
The PRINT statement writes from a list to stdout .

PRINT f [, iolist]

PRINT grname

Description

The PRINT statement accepts the following arguments.

Format Identifier

f is a format identifier and can be:

■ An asterisk (*), which indicates list-directed I/O. See “List-Directed I/O” on

page 306 on for more information.

■ The label of a FORMATstatement that appears in the same program unit.

■ An integer variable name that has been assigned the label of a FORMATstatement

that appears in the same program unit.

■ A character expression or integer array that specifies the format string. The

integer array is nonstandard. ✠

Output List

iolist can be empty or can contain output items or implied DOlists. The output items

must be one of the following:

■ Variables

■ Substrings

■ Arrays

■ Array elements

■ Record fields

■ Any other expression

Parameter Description

f Format identifier

iolist List of variables, substrings, arrays, and records

grname Name of the namelist group
212 FORTRAN 77 Language Reference • July 2001

A simple unsubscripted array name specifies all of the elements of the array in

memory storage order, with the leftmost subscript increasing more rapidly.

Implied DO lists are described on “Implied DO Lists” on page 115.

Namelist-Directed PRINT

The second form of the PRINT statement is used to print the items of the specified

namelist group. Here, grname is the name of a group previously defined by a

NAMELISTstatement.

Execution proceeds as follows:

1. The format, if specified, is established.

2. If the output list is not empty, data is transferred from the list to standard output.

If a format is specified, data is edited accordingly.

3. In the second form of the PRINT statement, data is transferred from the items of
the specified namelist group to standard output.

Restrictions

Output from an exception handler is unpredictable. If you make your own exception

handler, do not do any FORTRAN output from it. If you must do some, then call

abort right after the output. Doing so reduces the relative risk of a program freeze.

FORTRAN I/O from an exception handler amounts to recursive I/O. See the next

point.

Recursive I/O does not work reliably. If you list a function in an I/O list, and if that

function does I/O, then during runtime, the execution may freeze, or some other

unpredictable problem may occur. This risk exists independent of parallelization.

Example: Recursive I/O fails intermittently:

PRINT *, x, f(x) Not allowed because f() does I/O.
END
FUNCTION F(X)
PRINT *, X
RETURN
END
Chapter 4 Statements 213

Examples

Example 1: Formatted scalars:

Example 2: List-directed array:

Example 3: Formatted array:

Example 4: Namelist:

CHARACTER TEXT*16
PRINT 1, NODE, TEXT

1 FORMAT (I2, A16)

PRINT *, I, J, (VECTOR(I), I = 1, 5)

INTEGER VECTOR(10)
PRINT '(12 I2)', I, J, VECTOR

CHARACTER LABEL*16
REAL QUANTITY
INTEGER NODE
NAMELIST /SUMMARY/ LABEL, QUANTITY, NODE
PRINT SUMMARY
214 FORTRAN 77 Language Reference • July 2001

PROGRAM
The PROGRAMstatement identifies the program unit as a main program.

PROGRAMname

Description

The loader ignores the PROGRAM statement and always names the main program

MAIN. The PROGRAMstatement serves only as an informative comment, and is

optional.

Restrictions

The PROGRAMstatement can appear only as the first statement of the main program.

The name of the program cannot be:

■ The same as that of an external procedure or common block

■ MAIN (all uppercase), or a runtime error results

The name of the program can be the same as a local name in the main program.✠ The

FORTRAN 77 Standard does not allow this practice.

Example

Example: A PROGRAMstatement:

Parameter Description

name Symbolic name of the main program

PROGRAM US_ECONOMY
NVARS = 2
NEQS = 2
…

Chapter 4 Statements 215

READ
The READstatement reads data from a file or the keyboard to items in the list.

Note – Use the TOPEN() routines to read from tape devices. See the Fortran Library
Reference Manual.

READ([UNIT=] u [, [FMT=] f] [, IOSTAT =ios] [, REC= rn] [, END= s]
[, ERR= s]) iolist

READf [, iolist]

READ([UNIT=] u, [NML=] grname [, IOSTAT= ios] [, END= s] [, ERR= s])

READgrname

An alternate to the UNIT=u, REC=rn form is as follows: ✠

READ(u 'rn …) iolist

The options can be specified in any order.

Description

The READstatement accepts the following arguments.

Unit Identifier

u is either an external unit identifier or an internal file identifier.

Parameter Description

u Unit identifier of the unit connected to the file

f Format identifier

ios I/O status specifier

rn Record number to be read

s Statement label for end of file processing

iolist List of variables

grname Name of a namelist group
216 FORTRAN 77 Language Reference • July 2001

An external unit identifier must be one of these:

■ A nonnegative integer expression

■ An asterisk (*), identifying stdin, normally connected to the keyboard

If the optional characters UNIT= are omitted from the unit specifier, then u must be

the first item in the list of specifiers.

Format Identifier

f is a format identifier and can be:

■ An asterisk (*), indicating list-directed I/O. See “List-Directed I/O” on page 306

for more information.

■ A label of a FORMATstatement that appears in the same program unit

■ An integer variable name that has been assigned the label of a FORMATstatement

that appears in the same program unit

■ A character expression or integer array specifying the format string. This is called

a runtime format or a variable format. The integer array is nonstandard. ✠

See “Runtime Formats” on page 299 for details on formats evaluated at runtime.

If the optional characters, FMT=, are omitted from the format specifier, then f must

appear as the second argument for a formatted read; otherwise, it must not appear at

all.

Unformatted data transfer from internal files and terminal files is not allowed,

hence, f must be present for such files.

List-directed data transfer from direct-access and internal files is allowed; hence, f
can be an asterisk for such files. ✠

If a file is connected for formatted I/O, unformatted data transfer is not allowed,

and vice versa.

I/O Status Specifier

ios must be an integer variable or an integer array element.

Record Number

rn must be a positive integer expression, and can be used for direct-access files only.

rn can be specified for internal files. ✠
Chapter 4 Statements 217

End-of-File Specifier

s must be the label of an executable statement in the same program unit in which the

READstatement occurs.

The END=s and REC=rn specifiers can be present in the same READstatement. ✠

Error Specifier

s must be the label of an executable statement in the same program unit in which the

READstatement occurs.

Input List

iolist can be empty or can contain input items or implied DOlists. The input items

can be any of the following:

■ Variables

■ Substrings

■ Arrays

■ Array elements

■ Record fields

A simple unsubscripted array name specifies all of the elements of the array in

memory storage order, with the leftmost subscript increasing more rapidly.

Implied DO lists are described on “Implied DO Lists” on page 115.

Namelist-Directed READ

The third and fourth forms of the READstatement are used to read the items of the

specified namelist group, and grname is the name of the group of variables

previously defined in a NAMELISTstatement.
218 FORTRAN 77 Language Reference • July 2001

Execution

Execution proceeds as follows:

1. The file associated with the specified unit is determined.

The format, if specified, is established. The file is positioned appropriately prior to

the data transfer.

2. If the input list is not empty, data is transferred from the file to the corresponding
items in the list.

The items are processed in order as long as the input list is not exhausted. The next

specified item is determined and the value read is transmitted to it. Data editing in

formatted READis done according to the specified format.

3. In the third and fourth forms of namelist-directed READ, the items of the specified
namelist group are processed according to the rules of namelist -directed input.

4. The file is repositioned appropriately after data transfer.

5. If ios is specified and no error occurred, it is set to zero.

ios is set to a positive value, if an error or end of file was encountered.

6. If s is specified and end of file was encountered, control is transferred to s.

7. If s is specified and an error occurs, control is transferred to s.

There are two forms of READ:

READf [, iolist]

READ([NML=] grname)

The above two forms operate the same way as the others, except that reading from

the keyboard is implied.

Execution has the following differences:

■ When the input list is exhausted, the cursor is moved to the start of the line

following the input. For an empty input list, the cursor is moved to the start of

the line following the input.

■ If an end-of-line, CR, or NL is reached before the input list is satisfied, input

continues from the next line.

■ If an end-of-file (Control-D) is received before the input list is satisfied, input

stops, and unsatisfied items of the input list remain unchanged.
Chapter 4 Statements 219

If u specifies an external unit that is not connected to a file, an implicit OPEN
operation is performed equivalent to opening the file with the options in the

following example:

Note also:

■ The value of fmt is 'FORMATTED' or 'UNFORMATTED'accordingly, as the read is

formatted or unformatted.

■ A simple unsubscripted array name specifies all of the elements of the array in

memory storage order, with the leftmost subscript increasing more rapidly.

■ An attempt to read the record of a direct-access file that has not been written,

causes all items in the input list to become undefined.

■ The record number count starts from one.

■ Namelist-directed input is permitted on sequential access files only.

Examples

Example 1: Formatted read, trap I/O errors, EOF, and I/O status:

Example 2: Direct, unformatted read, trap I/O errors, and I/O status:

OPEN(u, FILE='FORT.u', STATUS='OLD', ACCESS='SEQUENTIAL',
& FORM= fmt)

READ(1, 2, ERR=8, END=9, IOSTAT=N) X, Y
…

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
STOP

9 WRITE(*, *) 'EoF on 1'
RETURN
END

READ(1, REC=3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
END
220 FORTRAN 77 Language Reference • July 2001

Example 3: List-directed read from keyboard:

Example 4: Formatted read from an internal file:

Example 5: Read an entire array:

Example 6: Namelist-directed read:

READ(*,*) A, V
or

READ*, A, V

CHARACTER CA*16 / 'abcdefghijklmnop' /, L*8, R*8
READ(CA, 1) L, R

1 FORMAT(2 A8)

DIMENSION V(5)
READ(3, '(5F4.1)') V

CHARACTER SAMPLE*16
LOGICAL NEW*4
REAL DELTA*4
NAMELIST /G/SAMPLE,NEW,DELTA
…
READ(1, G)

or
READ(UNIT=1, NML=G)

or
READ(1, NML=G)
Chapter 4 Statements 221

REAL
The REALstatement specifies the type of a symbolic constant, variable, array,

function, or dummy function to be real, and optionally specifies array dimensions

and size, and initializes with values.

REAL [* len[,]] v[* len[/ c/]] [, v[* len[/ c/]] …

Description

Following are descriptions for REAL, REAL*4, REAL*8, and REAL*16 .

REAL

For a declaration such as REAL W, the variable Wis usually a REAL*4 element in

memory, interpreted as a real number. Specifying the size is nonstandard. ✠

The default size, for a declaration such as REAL H, can be altered by compiling with

any of the options -dbl , -r8 , or -xtypemap . See the discussion in Chapter 2 for

details.

REAL*4 ✠

For a declaration such as REAL*4 W, the variable Wis always a REAL*4 element in

memory, interpreted as a single-width real number.

REAL*8 ✠

For a declaration such as REAL*8 W, the variable Wis always a REAL*8 element in

memory, interpreted as a double-width real number.

Parameter Description

v Name of a variable, symbolic constant, array, array

declarator, function, or dummy function

len Either 4, 8, or 16, the length in bytes of the symbolic

constant, variable, array element, or function

c List of constants for the immediately preceding name
222 FORTRAN 77 Language Reference • July 2001

REAL*16 ✠

For a declaration such as REAL*16 W, the variable Wis always an element of type

REAL*16 in memory, interpreted as a quadruple-width real.

Examples

Example 1: Simple real variables—these declarations are all equivalent:

Example 2: Initialize variables:

Example 3: Specify dimensions for some real arrays:

Example 4: Initialize some arrays:

Example 5: Double and quadruple precision:

In the above example, D and R are both double precision; Q is quadruple precision.

REAL U, V(9)
REAL*4 U, V(9)
REAL U*4, V(9)*4

REAL U/ 1.0 /, V/ 4.3 /, D*8/ 1.0 /, Q*16/ 4.5 /

REAL A(10,100), V(10)
REAL X*4(10), Y(10)*4

REAL A(10,100) / 1000 * 0.0 /, B(2,2) /1.0, 2.0, 3.0, 4.0/

REAL*8 R
REAL*16 Q
DOUBLE PRECISION D
Chapter 4 Statements 223

✠RECORD
The RECORD✠ statement defines variables to have a specified structure, or arrays to

be arrays of variables with such structures.

RECORD /struct-name/ record-list [,/ struct-name/ record-list]…

Description

A structure is a template for a record. The name of the structure is included in the

STRUCTUREstatement, and once a structure is thus defined and named, it can be

used in a RECORDstatement.

The record is a generalization of the variable or array: where a variable or array has

a type, the record has a structure. Where all the elements of an array must be of the

same type, the fields of a record can be of different types.

The RECORDline is part of an inherently multiline group of statements, and neither

the RECORDline nor the END RECORDline has any indication of continuation. Do not

put a nonblank in column six, nor an & in column one.

Structures, fields, and records are discussed in “@Structures” on page 54.

Restrictions
■ Each record is allocated separately in memory.

■ Initially, records have undefined values.

■ Records, record fields, record arrays, and record-array elements are allowed as

arguments and dummy arguments. When you pass records as arguments, their

fields must match in type, order, and dimension. The record declarations in the

calling and called procedures must match.

■ Within a union declaration, the order of the map fields is not relevant.

■ Record fields are not allowed in COMMONstatements.

Parameter Description

struct_name Name of a previously declared structure

record_list List of variables, arrays, or array declarators
224 FORTRAN 77 Language Reference • July 2001

■ Records and record fields are not allowed in DATA, EQUIVALENCE, NAMELIST,

PARAMETER, AUTOMATIC, STATIC, or SAVEstatements. To initialize records and

record fields, use the STRUCTUREstatement. See “@STRUCTURE” on page 238 for

more information.

Example

Example 1: Declare some items to be records of a specified structure:

Each of the three variables CURRENT, PRIOR, and NEXTis a record which has the

PRODUCTstructure, and LINE is an array of 10 such records.

Example 2: Define some fields of records, then use them:

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
CURRENT.ID = 82
PRIOR.NAME = "CacheBoard"
NEXT.PRICE = 1000.00
LINE(2).MODEL = "96K"
PRINT 1, CURRENT.ID, PRIOR.NAME, NEXT.PRICE,LINE(2).MODEL

1 FORMAT(1X I5/1X A16/1X F8.2/1X A8)
END
Chapter 4 Statements 225

The above program produces the following output:

82
CacheBoard
1000.00
96K
226 FORTRAN 77 Language Reference • July 2001

RETURN
A RETURNstatement returns control to the calling program unit.

RETURN[e]

Description

Execution of a RETURNstatement terminates the reference of a function or

subroutine.

Execution of an ENDstatement in a function or a subroutine is equivalent to the

execution of a RETURNstatement. ✠

The expression e is evaluated and converted to integer, if required. e defines the

ordinal number of the alternate return label to be used. Alternate return labels are

specified as asterisks (or ampersands) ✠ in the SUBROUTINEstatement.

If e is not specified, or the value of e is less than one or greater than the number of

asterisks or ampersands in the SUBROUTINEstatement that contains the RETURN
statement, control is returned normally to the statement following the CALL
statement that invoked the subroutine.

If the value of e is between one and the number of asterisks (or ampersands) in the

SUBROUTINEstatement, control is returned to the statement identified by the eth

alternate. A RETURNstatement can appear only in a function subprogram or

subroutine.

Parameter Description

e Expression of type INTEGERor REAL
Chapter 4 Statements 227

Examples

Example 1: Standard return:

Example 2: Alternate return:

CHARACTER*25 TEXT
TEXT = "Some kind of minor catastrophe"
…
CALL OOPS (TEXT)
STOP
END
SUBROUTINE OOPS (S)
CHARACTER S* 32
WRITE (*,*) S
RETURN
END

CALL RANK (N, *8, *9)
WRITE (*,*) 'OK - Normal Return'
STOP

8 WRITE (*,*) 'Minor - 1st alternate return'
STOP

9 WRITE (*,*) 'Major - 2nd alternate return'
END
SUBROUTINE RANK (N, *,*)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END
228 FORTRAN 77 Language Reference • July 2001

REWIND
The REWINDstatement positions the file associated with the specified unit to its

initial point.

Note – Use the TOPEN() routines to rewind tape devices. See the Fortran Library
Reference for details.

REWINDu

REWIND ([UNIT=] u [, IOSTAT= ios] [, ERR= s])

Description

The options can be specified in any order.

Rewinding a unit not associated with any file has no effect. Likewise, REWINDin a

terminal file has no effect either.

Using a REWINDstatement on a direct-access file is not defined in the FORTRAN 77

Standard, and is unpredictable.

Parameter Description

u Unit identifier of an external unit connected to the file

u must be connected for sequential access, or append access.

ios I/O specifier, an integer variable or an integer array

element

s Error specifier: s must be the label of an executable

statement in the same program in which this REWIND
statement occurs. The program control is transferred to

this label in case of an error during the execution of the

REWINDstatement.
Chapter 4 Statements 229

Examples

Example 1: Simple form of unit specifier:

Example 2: REWINDwith the UNIT=u form of unit specifier and error trap:

ENDFILE 3
REWIND 3
READ (3,'(I2)') I
REWIND 3
READ (3,'(I2)')I

INTEGER CODE
…
REWIND (UNIT = 3)
REWIND (UNIT = 3, IOSTAT = CODE, ERR = 100)
…

100 WRITE (*,*) 'error in rewinding'
STOP
230 FORTRAN 77 Language Reference • July 2001

SAVE
The SAVEstatement preserves items in a subprogram after the RETURNor END
statements are executed, preventing them from becoming undefined.

SAVE [v [, v] …]

Description

SAVEvariables are placed in an internal static area. All common blocks are already

preserved because they have been allocated to a static area. Therefore, common

block names specified in SAVEstatements are allowed but ignored.

A SAVEstatement is optional in the main program and has no effect.

A SAVEwith no list preserves all local variables and arrays in the routine.

Local variables and arrays are already static by default, predisposing the need for

SAVE. However, using SAVEcan ensure portability, especially with routines that

leave a subprogram by some way other than a RETURN.

Restrictions

The following constructs must not appear in a SAVEstatement:

■ Variables or arrays in a common block

■ Dummy argument names

■ Record names

■ Procedure names

■ Automatic variables or arrays

Parameter Description

v Name of an array, variable, or common block (enclosed in

slashes), occurring in a subprogram
Chapter 4 Statements 231

Example

Example: A SAVEstatement:

SUBROUTINE FFA(N)
DIMENSION A(1000,1000), V(1000)
SAVE A
…
RETURN
END
232 FORTRAN 77 Language Reference • July 2001

Statement Function, f(...) = e
A statement function statement is a function-like declaration, made in a single

statement.

fun ([d[, d]…]) = e

Description

If a statement function is referenced, the defined calculations are inserted.

Example: The following statement is a statement function:

The statement function argument list indicates the order, number, and type of

arguments for the statement function.

A statement function is referenced by using its name, along with its arguments, as

an operand in an expression.

Execution proceeds as follows:

1. If they are expressions, actual arguments are evaluated.

2. Actual arguments are associated with corresponding dummy arguments.

3. The expression e, the body of a statement function, is evaluated.

4. If the type of the above result is different from the type of the function name,
then the result is converted.

5. Return the value.

The resulting value is thus available to the expression that referenced the function.

Parameter Description

fun Name of statement function being defined

d Statement function dummy argument

e Expression. e can be any of the types arithmetic, logical,

or character.

ROOT(A, B, C) = (-B + SQRT(B**2-4.0*A*C))/(2.0*A)
Chapter 4 Statements 233

Restrictions

Note these restrictions:

■ A statement function must appear only after the specification statements and

before the first executable statement of the program unit in which it is referenced.

■ A statement function is not executed at the point where it is specified. It is

executed, as any other, by the execution of a function reference in an expression.

■ The type conformance between fun and e are the same as those for the assignment

statement. The type of fun and e can be different, in which case e is converted to

the type of fun.

■ The actual arguments must agree in order, number, and type with corresponding

dummy arguments.

■ If a dummy argument is defined as a structure, the corresponding actual

argument must be similarly defined as the same structure.

■ A dummy argument cannot be an array or function name, or have the same name

as the function.

■ The same argument cannot be specified more than once in the argument list.

■ The statement function may be referenced only in the program unit that contains

it.

■ The name of a statement function cannot be an actual argument. Nor can it

appear in an EXTERNALstatement.

■ The type of the argument is determined as if the statement function were a whole

program unit in itself.

■ Even if the name of a statement function argument is the same as that of another

local variable, the reference is considered a dummy argument of the statement

function, not the local variable of the same name.

■ The length specification of a character statement function or its dummy argument

of type CHARACTERmust be an integer constant expression.

■ A statement function cannot be invoked recursively.
234 FORTRAN 77 Language Reference • July 2001

Examples

Example 1: Arithmetic statement function:

Example 2: Logical statement function:

Example 3: Character statement function:

PARAMETER (PI=3.14159)
REAL RADIUS, VOLUME
SPHERE (R) = 4.0 * PI * (R**3) / 3.0
READ *, RADIUS
VOLUME = SPHERE(RADIUS)
…

LOGICAL OKFILE
INTEGER STATUS
OKFILE (I) = I .LT. 1
READ(*, *, IOSTAT=STATUS) X, Y
IF (OK FILE(STATUS)) CALL CALC (X, Y, A)
…

CHARACTER FIRST*1, STR*16, S*1
FIRST(S) = S(1:1)
READ(*, *) STR
IF (FIRST(STR) .LT. " ") CALL CONTROL (S, A)
…

Chapter 4 Statements 235

✠STATIC
The STATIC ✠ statement ensures that the specified items are stored in static memory.

STATIC list

Description

All local variables and arrays are classified static by default: there is exactly one

copy of each datum, and its value is retained between calls. You can also explicitly

define variables as static or automatic in a STATIC or AUTOMATICstatement, or in

any type statement or IMPLICIT statement.

However, you can still use STATIC to ensure portability, especially with routines

that leave a subprogram by some way other than a RETURN.

Also note that:

■ Arguments and function values are automatic.

■ A STATIC statement and a type statement cannot be combined to make a STATIC
type statement. For example, the statement STATIC REAL X does not declare the

variable X to be both STATIC and REAL; it declares the variable REALXto be

STATIC.

Example

Parameter Description

list List of variables and arrays

STATIC A, B, C
REAL P, D, Q
STATIC P, D, Q
IMPLICIT STATIC (X-Z)
236 FORTRAN 77 Language Reference • July 2001

STOP
The STOPstatement terminates execution of the program.

STOP [str]

Description

The argument str is displayed when the program stops.

If str is not specified, no message is displayed.

Examples

Example 1: Integer:

The above statement displays:

Example 2: Character:

The above statement displays:

Parameter Description

str String of no more that 5 digits or a character constant

stop 9

STOP: 9

stop 'error'

STOP: error
Chapter 4 Statements 237

✠STRUCTURE
The STRUCTURE✠ statement organizes data into structures.

STRUCTURE [/structure-name/] [field-list]

field-declaration

field-declaration

. . .

END STRUCTURE

Each field declaration can be one of the following:

■ A substructure—either another structure declaration, or a record that has been

previously defined

■ A union declaration

■ A type declaration, which can include initial values

Description

A STRUCTUREstatement defines a form for a record by specifying the name, type,

size, and order of the fields that constitute the record. Optionally, it can specify the

initial values.

A structure is a template for a record. The name of the structure is included in the

STRUCTUREstatement, and once a structure is thus defined and named, it can be

used in a RECORDstatement.

The record is a generalization of the variable or array—where a variable or array has

a type, the record has a structure. Where all the elements of an array must be of the

same type, the fields of a record can be of different types.

Structures, fields, and records are described in “@Structures” on page 54.

Restrictions

The name is enclosed in slashes and is optional in nested structures only.

If slashes are present, a name must be present.
238 FORTRAN 77 Language Reference • July 2001

You can specify the field-list within nested structures only.

There must be at least one field-declaration.

Each structure-name must be unique among structures, although you can use

structure names for fields in other structures or as variable names.

The only statements allowed between the STRUCTUREstatement and the END
STRUCTUREstatement are field-declaration statements and PARAMETERstatements. A

PARAMETERstatement inside a structure declaration block is equivalent to one

outside.

Restrictions for Fields

Fields that are type declarations use the identical syntax of normal

FORTRAN type statements, and all f77 types are allowed, subject to the following

rules and restrictions:

■ Any dimensioning needed must be in the type statement. The DIMENSION
statement has no effect on field names.

■ You can specify the pseudo-name %FILL for a field name. The %FILL is provided

for compatibility with other versions of FORTRAN. It is not needed in f77
because the alignment problems are taken care of for you. It is a useful feature if

you want to make one or more fields not referenceable in some particular

subroutine. The only thing that %FILL does is provide a field of the specified size

and type, and preclude referencing it.

■ You must explicitly type all field names. The IMPLICIT statement does not apply

to statements in a STRUCTUREdeclaration, nor do the implicit I ,J ,K,L,M,N rules

apply.

■ You cannot use arrays with adjustable or assumed size in field declarations, nor

can you include passed-length CHARACTERdeclarations.

In a structure declaration, the offset of field n is the offset of the preceding field, plus

the length of the preceding field, possibly corrected for any adjustments made to

maintain alignment.

You can initialize a field that is a variable, array, substring, substructure, or union.
Chapter 4 Statements 239

Examples

Example 1: A structure of five fields:

In the above example, a structure named PRODUCTis defined to consist of the fields

ID , NAME, MODEL, COST, and PRICE. Each of the three variables, CURRENT, PRIOR,

and NEXT, is a record which has the PRODUCTstructure, and LINE is an array of 10

such records. Every such record has its ID initially set to 99, and its MODELinitially

set to Z.

Example 2: A structure of two fields:

STRUCTURE /PRODUCT/
INTEGER*4 ID / 99 /
CHARACTER*16 NAME
CHARACTER*8 MODEL / 'Z' /
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

STRUCTURE /VARLENSTR/
INTEGER*4 NBYTES
CHARACTER A*25

END STRUCTURE
RECORD /VARLENSTR/ VLS
VLS.NBYTES = 0
240 FORTRAN 77 Language Reference • July 2001

SUBROUTINE
The SUBROUTINEstatement identifies a named program unit as a subroutine, and

specifies arguments for it.

SUBROUTINE sub [([d[, d]…])]

Description

A subroutine subprogram must have a SUBROUTINEstatement as the first statement.

A subroutine can have any other statements, except a BLOCK DATA, FUNCTION,
PROGRAM, or another SUBROUTINEstatement.

sub is the name of a subroutine and is a global name, and must not be the same as

any other global name such as a common block name or a function name. Nor can it

be the same as any local name in the same subroutine.

d is the dummy argument, and multiple dummy arguments are separated by

commas. d can be one of the following:

■ Variable name

■ Array name

■ Dummy procedure name

■ Record name

■ Asterisk (*) or an ampersand (&) ✠

The dummy arguments are local to the subroutine and must not appear in any of the

following statements, except as a common block name:

■ EQUIVALENCE
■ PARAMETER
■ SAVE
■ STATIC
■ AUTOMATIC
■ INTRINSIC
■ DATA
■ COMMON

Parameter Description

sub Name of subroutine subprogram

d Variable name, array name, record name, or dummy

procedure name, an asterisk, or an ampersand
Chapter 4 Statements 241

The actual arguments in the CALL statement that references a subroutine must agree

with the corresponding formal arguments in the SUBROUTINEstatement, in order,

number, and type. An asterisk (or an ampersand) in the formal argument list

denotes an alternate return label. A RETURNstatement in this procedure can specify

the ordinal number of the alternate return to be taken.

Examples

Example 1: A variable and array as parameters:

Example 2: Standard alternate returns:

In this example, the RETURN 1statement refers to the first alternate return label

(first *). The RETURN 2statement refers to the second alternate return label

(second *) specified in the SUBROUTINEstatement.

SUBROUTINE SHR (A, B)
CHARACTER A*8
REAL B(10,10)
…
RETURN
END

PROGRAM TESTALT
CALL RANK (N, *8, *9)
WRITE (*,*) 'OK - Normal Return [n=0]'
STOP

8 WRITE (*,*) 'Minor - 1st alternate return [n=1]'
STOP

9 WRITE (*,*) 'Major - 2nd alternate return [n=2]'
END
SUBROUTINE RANK (N, *, *)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END
242 FORTRAN 77 Language Reference • July 2001

✠TYPE
The TYPE✠ statement writes to stdout .

TYPE f [, iolist]

TYPE grname

Description

The TYPEstatement is provided for compatibility and is equivalent to:

■ PRINT f [, iolist]

■ PRINT grname
■ WRITE(*, f) [iolist]

■ WRITE(*, grname)

Example

Example: Formatted and namelist output:

Parameter Description

f Format identifier

iolist List of variables, substrings, arrays, and records

grname Name of the namelist group

INTEGER V(5)
REAL X(9), Y
NAMELIST /GNAM/ X, Y
…
TYPE 1, V

1 FORMAT(5 I3)
…
TYPE GNAM
…

Chapter 4 Statements 243

The Type Statement

The type statement specifies the data type of items in the list, optionally specifies

array dimensions, and initializes with values.

type v [/ clist /] [, v [/ clist /] …

type can be preceded by either AUTOMATICor STATIC.

Parameter Description

type One of the following:
BYTE ✠

CHARACTER
CHARACTER*n (where n is greater than 0)

CHARACTER*(*)
COMPLEX
COMPLEX*8✠

COMPLEX*16✠

COMPLEX*32✠

DOUBLE COMPLEX✠
INTEGER
INTEGER*2 ✠

INTEGER*4 ✠

INTEGER*8 ✠

LOGICAL
LOGICAL*1 ✠

LOGICAL*2 ✠

LOGICAL*4 ✠

LOGICAL*8 ✠

REAL
REAL*4 ✠

REAL*8 ✠

REAL*16 ✠

DOUBLE PRECISION

v Variable name, array name, array declarator, symbolic

name of a constant, statement function or function

subprogram name

clist List of constants. There are more details about clist in the

section on the DATAstatement.
244 FORTRAN 77 Language Reference • July 2001

Description

A type statement can be used to:

■ Confirm or to override the type established by default or by the IMPLICIT
statement

■ Specify dimension information for an array, or confirm the type of an intrinsic

function

■ Override the length by one of the acceptable lengths for that data type

A type statement can assign initial values to variables, arrays, or record fields by

specifying a list of constants (clist) as in a DATAstatement. ✠

The general form of a type statement is:

type VariableName / constant / …

or

type ArrayName / constant, … /

or

type ArrayName / r*constant /

Example: Various type statements:

When you initialize a data type, remember the following restrictions:

■ For a simple variable, there must be exactly one constant.

■ If any element of an array is initialized, all must be initialized.

■ You can use an integer as a repeat factor, followed by an asterisk (*), followed by a

constant. In the example above, six values of 1.0 are stored into array elements 2,

3, 4, 5, 6, and 7 of LIST .

■ If a variable or array is declared AUTOMATIC, then it cannot be initialized.

■ A pointer-based variable or array cannot be initialized. For example:

CHARACTER LABEL*12 / 'Standard' /
COMPLEX STRESSPT / (0.0, 1.0) /
INTEGER COUNT / 99 /, Z / 1 /
REAL PRICE / 0.0 /, COST / 0.0 /
REAL LIST(8) / 0.0, 6*1.0, 0.0 /

INTEGER Z / 4 /
POINTER (x, Z) Warning issued, not initialized
Chapter 4 Statements 245

In this case, the compiler issues a warning message, and Z is not initialized.

If a variable or array is not initialized, its values are undefined.

If such initialization statements involve variables in COMMON, and the –ansi
compiler flag is set, then a warning is issued.

Note – Compiling with any of the options -dbl, -r8, -i2 , or -xtypemap can

alter the default size of names typed without an explicit size. See the discussion in

Chapter 2.

Restrictions

A symbolic name can appear only once in type statements in a program unit.

A type statement must precede all executable statements.

Example

Example: The type statement:

In the above example:

■ J is initialized to 0
■ PI is initialized to 3.141592654
■ The first five elements of ARRAYare initialized to 0.0

■ The second five elements of ARRAYare initialized to 1.0

■ TITLE is initialized to 'Heading'

INTEGER*2 I, J/0/
REAL*4 PI/3.141592654/,ARRAY(10)/5*0.0,5*1.0/
CHARACTER*10 NAME
CHARACTER*10 TITLE/'Heading'/
246 FORTRAN 77 Language Reference • July 2001

✠UNIONand MAP
The UNION✠ statement defines groups of fields that share memory at runtime.

The syntax of a UNIONdeclaration is as follows:

Description

A MAPstatement defines alternate groups of fields in a union. During execution, one

map at a time is associated with a shared storage location. When you reference a

field in a map, the fields in any previous map become undefined, and are succeeded

by the fields in the map of the newly referenced field. Also:

■ A UNIONdeclaration can appear only within a STRUCTUREdeclaration.

■ The amount of memory used by a union is that of its biggest map.

■ Within a UNIONdeclaration, the order of the MAPstatements is not relevant.

The UNION line is part of an inherently multiline group of statements, and neither

the UNION line nor the END UNIONline has any special indication of continuation.

You do not put a nonblank in column six, nor an & in column one.

Each field-declaration in a map declaration can be one of the following:

■ Structure declaration

■ Record

■ Union declaration

■ Declaration of a typed data field

UNION
MAP

 field-declaration
 field-declaration

...
 END MAP

MAP
field-declaration
field-declaration

...
END MAP
... more MAP definitions

END UNION
Chapter 4 Statements 247

Example

Declare the structure /STUDENT/ to contain either NAME, CLASS, and MAJOR, or

NAME, CLASS, CREDITS, and GRAD_DATE:

In the above example, the variable PERSONhas the structure /STUDENT/ , so:

■ PERSON.MAJORreferences a field from the first map; PERSON.CREDITS
references a field from the second map.

■ If the variables of the first map field are initialized, and then the program

references the variable PERSON.MAJOR, the first map becomes active, and the

variables of the second map become undefined.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION
END STRUCTURE
RECORD /STUDENT/ PERSON
248 FORTRAN 77 Language Reference • July 2001

✠VIRTUAL
The VIRTUAL ✠ statement is treated the same as the DIMENSIONstatement.

VIRTUAL a(d) [, a(d)] …

Description

The VIRTUAL statement has the same form and effect as the DIMENSIONstatement.

It is included for compatibility with older versions of FORTRAN.

Example

Parameter Description

a Name of an array

a(d) Specifies the dimension of the array. It is a list of 1 to 7

declarators separated by commas

VIRTUAL M(4,4), V(1000)
…
END
Chapter 4 Statements 249

✠VOLATILE
The VOLATILE ✠ statement prevents optimization on the specified items.

VOLATILE nlist

Description

The VOLATILE statement prevents optimization on the items in the list. Programs

relying on it are usually nonportable.

Example

Example: VOLATILE: ✠

In the above example, the array V, the variable Z, and the common block /INI/ are

explicitly specified as VOLATILE. The variable X is VOLATILE through an

equivalence.

Parameter Description

nlist List of variables, arrays, or common blocks

PROGRAM FFT
INTEGER NODE*2, NSTEPS*2
REAL DELTA, MAT(10,10), V(1000), X, Z
COMMON /INI/ NODE, DELTA, V
…
VOLATILE V, Z, MAT, /INI/
…
EQUIVALENCE (X, V)
…

250 FORTRAN 77 Language Reference • July 2001

WRITE
The WRITEstatement writes data from the list to a file.

Note – For tape I/O, use the TOPEN() routines.

WRITE([UNIT=] u [, [FMT=] f] [, IOSTAT= ios] [, REC= rn] [, ERR= s]) iolist

WRITE([UNIT=] u, [NML=] grname [, IOSTAT= ios] [, ERR= s])

The options can be specified in any order.

An alternate for the REC=rn form is allowed, as follows: ✠

See Example 3, later on in this section.

Description

Unit Identifier

u is either an external unit identifier or an internal file identifier.

An external unit identifier must be one of the following:

■ A nonnegative integer expression

■ An asterisk, identifying stdout , which is normally connected to the console

Parameter Description

u Unit identifier of the unit connected to the file

f Format identifier

ios I/O status specifier

rn Record number

s Error specifier (statement label)

iolist List of variables

grname Name of the namelist group

WRITE(u ' rn …) iolist ✠
Chapter 4 Statements 251

If the optional characters UNIT= are omitted from the unit specifier, then u must be

the first item in the list of specifiers.

Format Identifier

f is a format identifier and can be:

■ An asterisk (*), indicating list-directed I/O. See “List-Directed I/O” on page 306

for more information.

■ The label of a FORMATstatement that appears in the same program unit

■ An integer variable name that has been assigned the label of a FORMATstatement

that appears in the same program unit

■ A character expression or integer array that specifies the format string. This is

called a runtime format or a variable format. The integer array is nonstandard. ✠

See “Runtime Formats” on page 299 for details on formats evaluated at runtime.

If the optional characters, FMT=, are omitted from the format specifier, then f must

appear as the second argument for a formatted write; otherwise, it must not appear

at all.

f must not be an asterisk for direct access.

f can be an asterisk for internal files. ✠

If a file is connected for formatted I/O, unformatted data transfer is prohibited, and

vice versa.

I/O Status Specifier

ios must be an integer variable, integer array element, or integer record field.

Record Number

rn must be a positive integer expression. This argument can appear only for direct-

access files. rn can be specified for internal files. ✠

Error Specifier

s must be the label of an executable statement in the same program unit in which

this WRITEstatement occurs.
252 FORTRAN 77 Language Reference • July 2001

Output List

iolist can be empty, or it can contain output items or implied DOlists. The output

items must be one of the following:

■ Variables

■ Substrings

■ Arrays

■ Array elements

■ Record fields

■ Any other expression

A simple unsubscripted array name specifies all of the elements of the array in

memory storage order, with the leftmost subscript increasing more rapidly.

Implied DO lists are described in “Implied DO Lists” on page 115.

If the output item is a character expression that employs the concatenation operator,

the length specifiers of its operands can be an asterisk (*). This rule is nonstandard.✠

If a function appears in the output list, that function must not cause an input/output

statement to be executed.

Namelist-Directed WRITE

The second form of WRITE is used to output the items of the specified namelist

group. Here, grname is the name of the list previously defined in a NAMELIST
statement.

Execution

Execution proceeds as follows:

1. The file associated with the specified unit is determined.

The format, if specified, is established. The file is positioned appropriately prior to

data transfer.

2. If the output list is not empty, data is transferred from the list to the file.

Data is edited according to the format, if specified.

3. In the second form of namelist-directed WRITE, the data is transferred from the
items of the specified namelist group according to the rules of namelist-directed
output.

4. The file is repositioned appropriately after the data transfer.
Chapter 4 Statements 253

5. If ios is specified, and no error occurs, it is set to zero; otherwise, it is set to a
positive value.

6. If s is specified and an error occurs, control is transferred to s.

Restrictions

Note these restrictions:

■ Output from an exception handler is unpredictable.

If you make your own exception handler, do not do any FORTRAN output from it. If

you must do some, then call abort right after the output. Doing so reduces the

relative risk of a system freeze. FORTRAN I/O from an exception handler amounts

to recursive I/O. See the next paragraph.

■ Recursive I/O does not work reliably.

If you list a function in an I/O list, and if that function does I/O, then during

runtime, the execution may freeze, or some other unpredictable problem results.

This risk exists independent of using parallelization.

Example: Recursive I/O fails intermittently:

Comments

If u specifies an external unit that is not connected to a file, an implicit OPEN
operation is performed that is equivalent to opening the file with the following

options:

The value of fmt is 'FORMATTED' if the write is formatted, and 'UNFORMATTED'
otherwise.

WRITE(*,*) x, f(x) Not allowed because f() does I/O.
END
FUNCTION F(X)
WRITE(*,*) X
RETURN
END

OPEN(u, FILE='FORT. u', STATUS='UNKNOWN',
& ACCESS='SEQUENTIAL', FORM= fmt)
254 FORTRAN 77 Language Reference • July 2001

A simple unsubscripted array name specifies all of the elements of the array in

memory storage order, with the leftmost subscript increasing more rapidly.

The record number for direct-access files starts from one onwards.

Namelist-directed output is permitted on sequential access files only.

Examples

Example 1: Formatted write with trap I/O errors and I/O status:

Example 2: Direct, unformatted write, trap I/O errors, and I/O status:

Example 3: Direct, alternate syntax (equivalent to above example):✠

WRITE(1, 2, ERR=8, IOSTAT=N) X, Y
RETURN
…

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
STOP
END

…
WRITE(1, REC=3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
END

…
WRITE(1 ' 3, IOSTAT=N, ERR=8) V ✠

…
4 CONTINUE

RETURN
8 WRITE(*, *) 'I/O error # ', N, ', on 1'

END
Chapter 4 Statements 255

Example 4: List-directed write to screen:

Example 5: Formatted write to an internal file:

Example 6: Write an entire array:

Example 7: Namelist-directed write:.

WRITE(*, *) A, V
or

PRINT *, A, V

CHARACTER CA*16, L*8 /'abcdefgh'/, R*8 /'ijklmnop'/
WRITE(CA, 1) L, R

1 FORMAT(2 A8)

DIMENSION V(5)
WRITE(3, '(5F4.1)') V

CHARACTER SAMPLE*16
LOGICAL NEW*4
REAL DELTA*4
NAMELIST /G/ SAMPLE, NEW, DELTA
…
WRITE(1, G)

or
WRITE(UNIT=1, NML=G)

or
WRITE(1, NML=G)
256 FORTRAN 77 Language Reference • July 2001

CHAPTER 5

Input and Output

This chapter describes the general concepts of FORTRAN input and output, and

provides details on the different kinds of I/O. See also the Input/Output chapter in

the Fortran Programming Guide.

Essential FORTRAN I/O Concepts

Any operating system based on the UNIX operating system is not as record-oriented

as FORTRAN. This operating system treats files as sequences of characters instead of

collections of records. The FORTRAN runtime system keeps track of file formats and

access mode during runtimes. It also provides the file facilities, including the

FORTRAN libraries and the standard I/O library.

Logical Units

The FORTRAN default value for the maximum number of logical units that a

program can have open at one time is 64. For current Solaris environments, this limit

is 256. A FORTRAN program can increase this limit beyond 64 by calling the

setrlim() function. See the setrlim (2) man page. If you are running csh , you

can also do this with the limit or unlimit command; see csh (1).

The standard logical units 0, 5, and 6 are preconnected as stderr , stdin , and

stdout , respectively. These are not actual file names, and cannot be used for

opening these units. INQUIRE does not return these names, and indicates that the

above units are not named unless they have been opened to real files. However,

these units can be redefined with an OPENstatement.
257

The names, stderr , stdin , and stdout , are meant to make error reporting more

meaningful. To preserve error reporting, the system makes it an error to close logical

unit 0, although it can be reopened to another file.

If you want to open a file with the default file name for any preconnected logical

unit, remember to close the unit first. Redefining the standard units can impair

normal console I/O. An alternative is to use shell redirection to externally redefine

the above units.

To redefine default blank control or the format of the standard input or output files,

use the OPENstatement, specifying the unit number and no file name, and use the

options for the kind of blank control you want.

I/O Errors

Any error detected during I/O processing causes the program to abort, unless

alternative action has been provided specifically in the program. Any I/O statement

can include an ERR=clause (and IOSTAT= clause) to specify an alternative branch to

be taken on errors and return the specific error code. Read statements can include

END=n to branch on end-of-file. File position and the value of I/O list items are

undefined following an error. END=catches both EOF and error conditions; ERR=
catches only error conditions.

If your program does not trap I/O errors, then before aborting, an error message is

written to stderr with an error number in square brackets, [] , and the logical

unit and I/O state. The signal that causes the abort is IOT.

Error numbers less than 1000 refer to operating system errors; see intro (2). Error

numbers greater than or equal to 1000 come from the I/O library.

For external I/O, part of the current record is displayed if the error was caused

during reading from a file that can backspace. For internal I/O, part of the string is

printed with a vertical bar (|) at the current position in the string.

General Restriction

Do not reference a function in an I/O list if executing that function causes an I/O

statement to be executed. Example:

WRITE(1, 10) Y, A + 2.0 * F(X) ! Wrong if F() does I/O
258 FORTRAN 77 Language Reference • July 2001

Kinds of I/O

The kinds of I/O supported by f77 are: formatted, unformatted, binary✠, list-

directed, and NAMELIST.

The two modes of access to files are sequential and direct. When you open a file, the

access mode is set to either sequential or direct. If you do not set it explicitly, you get

sequential by default.

The two types of files are: external files and internal files. An external file resides on

a physical peripheral device, such as disk or tape. An internal file is a location in

main memory, is of character type, and is either a variable, substring, array, array

element, or a field of a structured record.

Combinations of I/O

I/O combinations on external files are:

The following table shows combinations of I/O form, access mode, and physical file

types.

Allowed Not Allowed

Sequential unformatted

Sequential formatted

Sequential list-directed

Sequential NAMELIST
Direct unformatted

Direct formatted

Binary sequential unformatted✠

Direct-access, list-directed I/O

Direct-access, NAMELIST I/O

NAMELIST I/O on internal files

Unformatted, internal I/O

Binary, direct-access✠

Binary, formatted✠

TABLE 5-1 Summary of f77 Input and Output

Kind of I/O Access Mode:

Form File Type Sequential Direct

Formatted Internal The file is a character variable,

substring, array, or array

element. ✠

The file is a character

array; each record is one

array element.

External Only formatted records of same

or variable length.

Only formatted records,

all the same length.
Chapter 5 Input and Output 259

Avoid list-directed internal writes. The number of lines and items per line varies

with the values of items.

Printing Files

You get a print file by using the nonstandard FORM='PRINT' in OPEN. ✠

Unformatted Internal Not allowed. Not allowed.

External Contains only unformatted

records.

READ: Gets one logical

record at a time. WRITE:

Unfilled part of record is

undefined.

Binary✠ Internal Not allowed. Not allowed.

External Contains only unformatted raw

binary data, no record marks.

Not allowed.

List-directed Internal READ: Reads characters until

EOF or I/O list is satisfied.

WRITE: Writes records until list

is satisfied. ✠

Not allowed.

External Uses standard formats based on

type of variable and size of

element. Blanks or commas are

separators. Any columns.

Not allowed.

NAMELIST Internal Not allowed. Not allowed.

External READ: Reads records until it

finds $groupname in columns

2-80. Then reads records

searching for names in that

group, and stores data in those

variables. Stops reading on $ or

eof .

WRITE: Writes records showing

the group name and each

variable name with value.

Not allowed.

OPEN (..., FORM='PRINT', ...)

TABLE 5-1 Summary of f77 Input and Output (Continued)

Kind of I/O Access Mode:

Form File Type Sequential Direct
260 FORTRAN 77 Language Reference • July 2001

This specifier works for sequential access files only.

Definition

A print file has the following features:

■ With formatted output, you get vertical format control for that logical unit:

■ Column one is not printed.

■ If column one is blank, 0, or 1, then vertical spacing is one line, two lines, or

top of page, respectively.

■ If column 1 is +, it is replaced by a control sequence that causes a return to the

beginning of the previous line.

■ With list-directed output, you get for that logical unit, column one is not printed.

In general, if you open a file with FORM='PRINT' , then for that file list-directed

output does not provide the FORTRAN Standard blank in column one; otherwise, it

does provide that blank. FORM='PRINT' is for one file per call.

If you open a file with FORM='PRINT' , then that file has the same content as if it

was opened with FORM='FORMATTED', and filtered with the output filter, asa .

If you compile with the -oldldo option (old list-directed output), then all the files

written by the program do list-directed output without that blank in column one;

otherwise, they all get that blank. The -oldldo option is global.

The INQUIRE Statement

The INQUIRE statement returns 'PRINT' in the FORMvariable for logical units

opened as print files. It returns -1 for the unit number of an unopened file.

Special Uses of OPEN

If a logical unit is already open, an OPENstatement using the BLANKoption does

nothing but redefine that option.

As a nonstandard extension, if a logical unit is already open, an OPENstatement

using the FORMoption to switch between FORM=’PRINT’ and FORM=’FORMATTED’
does nothing but redefine that option. ✠

These forms of the OPENstatement need not include the file name, and must not

include a file name if UNIT refers to standard input, output, or standard error.
Chapter 5 Input and Output 261

If you connect a unit with OPENand do not use the file name parameter, then you

get the default file name, fort. nn, where nn is the unit number. Therefore, to

redefine the standard output as a print file, use:

Scratch Files

Scratch files are temporary files that normally disappears after execution is

completed.

Example: Create a scratch file:

To prevent a temporary file from disappearing after execution is completed, you

must execute a CLOSEstatement with STATUS='KEEP' . KEEPis the default status

for all other files.

Example: Close a scratch file that you want to access later:

Remember to get the real name of the scratch file. Use INQUIRE if you want to

reopen it later.

Changing I/O Initialization with IOINIT

Traditional FORTRAN environments usually assume carriage control on all logical

units. They usually interpret blank spaces on input as zeroes, and often provide

attachment of global file names to logical units at runtime. The routine IOINIT (3F)

can be called to specify these I/O control parameters. This routine:

■ Recognizes carriage control for all formatted files.

■ Ignores trailing and embedded blanks in input files.

■ Positions files at the beginning or end upon opening.

■ Preattaches file names of a specified pattern with logical units.

OPEN(UNIT=6, FORM='PRINT')

OPEN(UNIT=7, STATUS='SCRATCH')

CLOSE(UNIT=7, STATUS='KEEP')
262 FORTRAN 77 Language Reference • July 2001

Example: IOINIT and logical unit preattachment:

For the above call, the FORTRAN runtime system looks in the environment for

names of the form FORTnn, and then opens the corresponding logical unit for

sequential formatted I/O.

With the above example, suppose your program opened unit 7, as follows:

The FORTRAN runtime system looks in the environment for the FORT07file, and

connects it to unit 7.

In general, names must be of the form PREFIXnn, where the particular PREFIX is

specified in the call to IOINIT , and nn is the logical unit to be opened. Unit numbers

less than 10 must include the leading 0. For details, see IOINIT (3F) and the Sun

Fortran Library Reference.

Example: Attach external files ini1.inp and ini1.out to units 1 and 2:

In sh :

In csh :

CALL IOINIT (.TRUE., .FALSE., .FALSE., 'FORT', .FALSE.)

OPEN(UNIT=07, FORM='FORMATTED')

demo$ TST01=ini1.inp
demo$ TST02=ini1.out
demo$ export TST01 TST02

demo% setenv TST01 ini1.inp
demo% setenv TST02 ini1.out
Chapter 5 Input and Output 263

Example: Attach the files, ini1.inp and ini1.out , to units 1 and 2:

IOINIT should prove adequate for most programs as written. However, it is written

in FORTRAN so that it can serve as an example for similar user-supplied routines. A

copy can be retrieved from:

/opt/SUNWspro/ <release>/src/ioinit.f

The <release> directory path changes with each release of the compiler.

Direct Access

A direct-access file contains a number of records that are written to or read from by

referring to the record number. Direct access is also called random access.

In direct access:

■ Records must be all the same length.

■ Records are usually all the same type.

■ A logical record in a direct access, external file is a string of bytes of a length

specified when the file is opened.

demo% cat ini1.f
CHARACTER PRFX*8
LOGICAL CCTL, BZRO, APND, VRBOSE
DATA CCTL, BZRO, APND, PRFX, VRBOSE

& /.TRUE., .FALSE., .FALSE., 'TST', .FALSE. /
C

CALL IOINIT(CCTL, BZRO, APND, PRFX, VRBOSE)
READ(1, *) I, B, N
WRITE(*, *) 'I = ', I, ' B = ', B, ' N = ', N
WRITE(2, *) I, B, N
END

demo% cat $TST01
 12 3.14159012 6
demo% f77 ini1.f
ini1.f:
 MAIN:
demo% a.out
 I = 12 B = 3.14159 N = 6
demo% cat $TST02
 12 3.14159 6
264 FORTRAN 77 Language Reference • July 2001

■ Read and write statements must not specify logical records longer than the

original record size definition.

■ Shorter logical records are allowed.

■ Unformatted direct writes leave the unfilled part of the record undefined.

■ Formatted direct writes pass the unfilled record with blanks.

■ In using direct unformatted I/O, be careful with the number of values your

program expects to read.

■ Direct access READand WRITEstatements have an argument, REC=n, which gives

the record number to be read or written. An alternate, nonstandard✠ form is ' n.

Unformatted I/O

Example: Direct access, unformatted:

This code opens a file for direct-access, unformatted I/O, with a record length of 20

characters, then reads the thirteenth record as is. (The record specifier in the second

READ statement is non-standard.✠)

Formatted I/O

Example: Direct access, formatted:

This code opens a file for direct-access, formatted I/O, with a record length of 20

characters, then reads the thirteenth record and converts it according to the

(I10,F10.3) format.

OPEN(2, FILE='data.db', ACCESS='DIRECT', RECL=20,
& FORM='UNFORMATTED', ERR=90)

READ(2, REC=13, ERR=30) X, Y
READ(2 ' 13, ERR=30) X, Y ! Alternate form ✠

OPEN(2, FILE='inven.db', ACCESS='DIRECT', RECL=20,
& FORM='FORMATTED', ERR=90)

READ(2, FMT='(I10,F10.3)', REC=13, ERR=30) A, B
Chapter 5 Input and Output 265

Internal Files

An internal file is a character-string object, such as a constant, variable, substring,

array, element of an array, or field of a structured record—all of type character. For a

variable or substring, there is only a single record in the file but for an array; each

array element is a record.

Sequential Formatted I/O

On internal files, the FORTRAN Standard includes only sequential formatted I/O.

(I/O is not a precise term to use here, but internal files are dealt with using READ
and WRITEstatements.) Internal files are used by giving the name of the character

object in place of the unit number. The first read from a sequential-access internal file

always starts at the beginning of the internal file; similarly for a write.

Example: Sequential, formatted reads:

The above code reads a print-line image into X, and then reads two integers from X.

Direct Access I/O

f77 extends direct I/O to internal files.✠

This is like direct I/O on external files, except that the number of records in the file

cannot be changed. In this case, a record is a single element of an array of character

strings.

CHARACTER X*80
READ(5, '(A)') X
READ(X, '(I3,I4)') N1, N2
266 FORTRAN 77 Language Reference • July 2001

Example: Direct access read of the third record of the internal file, LINE :

Formatted I/O

In formatted I/O:

■ The list items are processed in the order they appear in the list.

■ Any list item is completely processed before the next item is started.

■ Each sequential access reads or writes one or more logical records.

Input Actions

In general, a formatted read statement does the following:

■ Reads character data from the external record or from an internal file.

■ Converts the items of the list from character to binary form according to the

instructions in the associated format.

■ Puts converted data into internal storage for each list item of the list.

Example: Formatted read:

demo% cat intern.f
CHARACTER LINE(3)*14
DATA LINE(1) / ' 81 81 ' /
DATA LINE(2) / ' 82 82 ' /
DATA LINE(3) / ' 83 83 ' /
READ (LINE, FMT='(2I4)', REC=3) M, N
PRINT *, M, N
END

demo% f77 -silent intern.f
demo% a.out
 83 83
demo%

READ(6, 10) A, B
10 FORMAT(F8.3, F6.2)
Chapter 5 Input and Output 267

Output Actions

In general, a formatted write statement does the following:

■ Gets data from internal storage for each list item specified by the list.

■ Converts the items from binary to character form according to the instructions in

the associated format.

■ Transfers the items to the external record or to an internal file.

■ Terminates formatted output records with newline characters.

Example: Formatted write:

For formatted write statements, the logical record length is determined by the format

statement that interacts with the list of input or output variables (I/O list) at

execution time.

For formatted write statements, if the external representation of a datum is too large

for the field width specified, the specified field is filled with asterisks (*).

For formatted read statements, if there are fewer items in the list than there are data

fields, the extra fields are ignored.

REAL A / 1.0 /, B / 9.0 /
WRITE(6, 10) A, B

10 FORMAT(F8.3, F6.2)
268 FORTRAN 77 Language Reference • July 2001

Format Specifiers

Specifiers can be uppercase as well as lowercase characters in format statements and

in all the alphabetic arguments to the I/O library routines.

w, m, d, e Parameters (As In Gw. dEe)

The definitions for the parameters, w, m, d, and e are:

■ w and e are non-zero, unsigned integer constants.

■ d and m are unsigned integer constants.

■ w specifies that the field occupies w positions.

■ m specifies the insertion of leading zeros to a width of m.

■ d specifies the number of digits to the right of the decimal point.

■ e specifies the width of the exponent field.

TABLE 5-2 Format Specifiers

Purpose FORTRAN 77 f77 Extensions

Blank control BN, BZ B

Carriage control /, space, 0, 1 $

Character edit nH, A w, 'aaa' "aaa", A

Floating-point edit Dw. dEe,
Ew. dEe,
Fw. dEe,
Gw. dEe

Ew. d. e,
Dw. d. e,
Gw. d. e

Hexadecimal edit Zw. m

Integer edit Iw.m

Logical edit Lw

Octal edit Ow. m

Position control nX, T n, TL n, TR n nT, T, X

Radix control nR, R

Remaining characters Q

Scale control nP P

Sign control S, SP, SS SU

Terminate a format :

Variable format expression < e >
Chapter 5 Input and Output 269

Defaults for w, d, and e

You can write field descriptors A, D, E, F, G, I , L, O, or Z without the w, d, or e field

indicators. ✠ If these are left unspecified, the appropriate defaults are used based on

the data type of the I/O list element. See TABLE 5-3.

Typical format field descriptor forms that use w, d, or e include:

Aw, I w, L w, O w, Zw, D w. d, E w.d, G w.d, E w.dEe, G w.dEe

Example: With the default w=7 for INTEGER*2, and since 161 decimal = A1 hex:

This example produces the following output:

∆ represents a blank character position. The defaults for w, d, and e are summarized

in the following table.

INTEGER*2 M
M = 161
WRITE (*, 8) M

8 FORMAT (Z)
END

demo% f77 def1.f
def1.f:
 MAIN:
demo% a.out
∆∆∆∆∆a1
demo%

TABLE 5-3 Default w, d, e Values in Format Field Descriptors

Field Descriptor List Element w d e

I,O,Z BYTE 7 - -

I,O,Z INTEGER*2 , LOGICAL*2 7 - -

I,O,Z INTEGER*4 , LOGICAL*4 12 - -

O,Z REAL*4 12 - -

O,Z REAL*8 23 - -

O,Z REAL*16 , COMPLEX*32 44 - -

L LOGICAL 2 - -

F,E,D,G REAL , COMPLEX*8 15 7 2
270 FORTRAN 77 Language Reference • July 2001

For complex items, the value for w is for each real component. The default for the A
descriptor with character data is the declared length of the corresponding I/O list

element. .

Apostrophe Editing ('aaa')

The apostrophe edit specifier is in the form of a character constant. It causes

characters to be written from the enclosed characters of the edit specifier itself,

including blanks. An apostrophe edit specifier must not be used on input. The width

of the field is the number of characters contained in, but not including, the

delimiting apostrophes. Within the field, two consecutive apostrophes with no

intervening blanks are counted as a single apostrophe. You can use quotes in a

similar way.

Example: apos.f , apostrophe edit (two equivalent ways):

The above program writes this message twice: This is an apostrophe '.

F,E,D,G REAL*8 , COMPLEX*16 25 16 2

F,E,D,G REAL*16 , COMPLEX*32 42 33 3

A LOGICAL*1 1 - -

A LOGICAL*2, INTEGER*2 2 - -

A LOGICAL*4, INTEGER*4 4 - -

A REAL*4, COMPLEX*8 4 - -

A REAL*8, COMPLEX*16 8 - -

A REAL*16, COMPLEX*32 16 - -

A CHARACTER*n n - -

WRITE(*, 1)
1 FORMAT('This is an apostrophe ''.')

WRITE(*, 2)
2 FORMAT("This is an apostrophe '.")

END

TABLE 5-3 Default w, d, e Values in Format Field Descriptors (Continued)

Field Descriptor List Element w d e
Chapter 5 Input and Output 271

Blank Editing (B,BN,BZ)

The B, BN, and BZ edit specifiers control interpretation of imbedded and trailing

blanks for numeric input.

The following blank specifiers are available:

■ BN—If BNprecedes a specification, a nonleading blank in the input data is

considered null, and is ignored.

■ BZ—If BZ precedes a specification, a nonleading blank in the input data is

considered zero.

■ B—If B precedes a specification, it returns interpretation to the default mode of

blank interpretation. This is consistent with S, which returns to the default sign

control. ✠

Without any specific blank specifiers in the format, nonleading blanks in numeric

input fields are normally interpreted as zeros or ignored, depending on the value of

the BLANK=suboption of OPENcurrently in effect for the unit. The default value for

that suboption is ignore , so if you use defaults for both BN/BZ/B and BLANK=, you

get ignore .

Example: Read and print the same data once with BZ and once with BN:

Note these rules for blank control:

■ Blank control specifiers apply to input only.

■ A blank control specifier remains in effect until another blank control specifier is

encountered, or format interpretation is complete.

■ The B, BN, and BZ specifiers affect only I , F, E, D, and G editing.

demo% cat bz1.f
* 12341234

CHARACTER LINE*18 / ' 82 82 ' /
READ (LINE, '(I4, BZ, I4) ') M, N
PRINT *, M, N
READ (LINE, '(I4, BN, I4) ') M, N
PRINT *, M, N
END

demo% f77 -silent bz1.f
demo% a.out
 82 8200
 82 82
demo%
272 FORTRAN 77 Language Reference • July 2001

Carriage Control ($, space, 0,1)

Use edit descriptor $, and space, 0, or 1 for carriage control.

Dollar $

The special edit descriptor $ suppresses the carriage return. ✠

The action does not depend on the first character of the format. It is used typically

for console prompts. For instance, you can use this descriptor to make a typed

response follow the output prompt on the same line. This edit descriptor is

constrained by the same rules as the colon (:).

Example: The $ carriage control:

The above code produces a displayed prompt and user input response, such as:

The first character of the format is printed out, in this case, a blank. For an input

statement, the $ descriptor is ignored.

Space, 0, 1, and +

The following first-character slew controls and actions are provided:

If the first character of the format is not space, 0, 1, or +, then it is treated as a space,

and it is not printed.

* dol1.f The $ edit descriptor with space
WRITE (*, 2)

2 FORMAT (' Enter the node number: ', $)
READ (*, *) NODENUM
END

Enter the node number: 82

TABLE 5-4 Carriage Control with Blank, 0, 1, and +

Character Vertical spacing before printing

∆ (space)
0
1
+

One line

Two lines

To first line of next page

No advance (stdout only, not files)
Chapter 5 Input and Output 273

The behavior of the slew control character + is: if the character in the first column is

+, it is replaced by a control sequence that causes printing to return to the first

column of the previous line, where the rest of the input line is printed.

Space, 0, 1, and + work for stdout if piped through asa .

Example: First-character formatting, standard output piped through asa :

The program, slew1.f produces file, slew1.out , as printed by lpr :

The results are different on a screen; the tabbing puts in spaces:

See asa (1).

The space, 0, and 1, and + work for a file opened with:

■ Sequential access

■ FORM='PRINT'

demo% cat slew1.f
WRITE(*, '("abcd")')
WRITE(*, '(" efg")') The blank single spaces
WRITE(*, '("0hij")') The "0" double spaces
WRITE(*, '("1klm")') The "1" starts this on a new page
WRITE(*, '("+", T5, "nop")') The "+" starts this at col 1 of latest line
END

demo% f77 -silent slew1.f
demo% a.out | asa | lpr
demo%

 bcd
 efg

hij

 klmnop This starts on a new page. The + of +nop is obeyed.

demo% cat slew1.out
 bcd
 efg

hij

 nop This starts on a new page. The + of +nop is obeyed.
demo%
274 FORTRAN 77 Language Reference • July 2001

Example: First-character formatting, file output:

The program, slew2.f , produces the file, slew2.out , that is equal to the file,

slew1.out , in the example above.

Slew control codes '0' , '1' , and '+' in column one are in the output file as '\n' ,

'\f' , and '\r' , respectively.

Character Editing (A)

The A specifier is used for character type data items. The general form is:

On input, character data is stored in the corresponding list item.

On output, the corresponding list item is displayed as character data.

If w is omitted, then:

■ For character data type variables, it assumes the size of the variable.

■ For noncharacter data type variables, it assumes the maximum number of

characters that fit in a variable of that data type. This is nonstandard behavior. ✠

Each of the following examples read into a size n variable (CHARACTER*n), for

various values of n, for instance, for n = 9.

demo% cat slew2.f
OPEN(1,FILE='slew.out',FORM='PRINT')
WRITE(1, '("abcd")')
WRITE(1, '("efg")')
WRITE(1, '("0hij")')
WRITE(1, '("1klm")')
WRITE(1, '("+", T5, "nop")')
CLOSE(1, STATUS='KEEP')
END

demo% f77 -silent slew2.f
demo% a.out

A[w]

CHARACTER C*9
READ '(A7)', C
Chapter 5 Input and Output 275

The various values of n, in CHARACTER C*n are:

∆ indicates a blank space.

Example: Output strings of 3, 5, and 7 characters, each in a 5 character field:

The above program displays:

Size n 9 7 4 1

Data Node∆Id Node ∆Id Node ∆Id Node ∆Id

Format A7 A7 A7 A7

Memory Node∆Id ∆∆ Node∆Id e ∆Id d

PRINT 1, 'The', 'whole', 'shebang'
1 FORMAT(A5 / A5 / A5)

END

∆∆The
whole
sheba
276 FORTRAN 77 Language Reference • July 2001

The maximum characters in noncharacter types are summarized in the following

table.

In f77 , you can use Hollerith constants wherever a character constant can be used in

FORMATstatements, assignment statements, and DATAstatements.✠ These constants

are not recommended. FORTRAN does not have these old Hollerith (nH) notations,

although the FORTRAN Standard recommends implementing the Hollerith feature

to improve compatibility with old programs. But such constants cannot be used as

input data elements in list-directed or NAMELIST input.

For example, these two formats are equivalent:

In f77 , commas between edit descriptors are generally optional:

TABLE 5-5 Maximum Characters in Noncharacter Type Hollerith (nHaaa)

Type of List Item Maximum Number of Characters

BYTE
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8
INTEGER*2
INTEGER*4
INTEGER*8
REAL
REAL*4
REAL*8
REAL*16
DOUBLE PRECISION
COMPLEX
COMPLEX*8
COMPLEX*16
COMPLEX*32
DOUBLE COMPLEX

1
1
2
4
8
2
4
8
4
4
8

16
8
8
8

16
32
16

10 FORMAT(8H Code = , A6)
20 FORMAT(' Code = ', A6)

10 FORMAT(5H flex 4Hible)
Chapter 5 Input and Output 277

Reading Into Hollerith Edit Descriptors

For compatibility with older programs, f77 also allows READs into Hollerith edit

descriptors. ✠

Example: Read into hollerith edit descriptor—no list in the READstatement:

In the above code, if the format is a runtime format (variable format), then the

reading into the actual format does not work, and the format remains unchanged.

Hence, the following program fails:

Obviously, there are better ways to read into the actual format.

Integer Editing (I)

The I specifier is used for decimal integer data items. The general form is:

The I w and I w.m edit specifiers indicate that the field to be edited occupies w
positions. The specified input/output list item must be of type integer. On input, the

specified list item becomes defined with an integer datum. On output, the specified

list item must be defined as an integer datum.

demo% cat hol1.f
WRITE(*, 1)

1 FORMAT(6Holder)
READ(*, 1)
WRITE(*, 1)
END

demo% f77 hol1.f
hol1.f:
 MAIN
demo% a.out
older
newer
newer
demo%

CHARACTER F*18 / '(A8)' /
READ(*,F)! ← Does not work.
…

I[w[. m]]
278 FORTRAN 77 Language Reference • July 2001

On input, an I w.m edit specifier is treated identically to an I w edit specifier.

The output field for the I w edit specifier consists of:

■ Zero or more leading blanks followed by

■ Either a minus if the value is negative, or an optional plus, followed by

■ The magnitude of the value in the form on an unsigned integer constant without

leading zeros

An integer constant always has at least one digit.

The output field for the I w.m edit specifier is the same as for the I w edit specifier,

except that the unsigned integer constant consists of at least m digits, and, if

necessary, has leading zeros. The value of m must not exceed the value of w. If m is

zero, and the value of the item is zero, the output field consists of only blank

characters, regardless of the sign control in effect.

Example: int1.f , integer input:

The program above displays:

Example: int2.f , integer output:

The above program displays:

CHARACTER LINE*8 / '12345678' /
READ(LINE, '(I2, I3, I2)') I, J, K
PRINT *, I, J, K
END

 12 345 67

N = 1234
PRINT 1, N, N, N, N

1 FORMAT(I6 / I4 / I2 / I6.5)
END

 1234
1234
**
01234
Chapter 5 Input and Output 279

Logical Editing (L)

The L specifier is used for logical data items. The general form is:

The Lw edit specifier indicates that the field occupies w positions. The specified

input/output list item must be of type LOGICAL. On input, the list item becomes

defined with a logical datum. On output, the specified list item must be defined as a

logical datum.

The input field consists of optional blanks, optionally followed by a decimal point,

followed by a T for true, or F for false. The T or F can be followed by additional

characters in the field. The logical constants, .TRUE. and .FALSE., are acceptable

as input. The output field consists of w-1 blanks followed by a T for true, or F for

false.

Example: log1.f , logical output:

The program above displays:

Example: log2.f , logical input:

The program above accepts any of the following as valid input data:

 L w

LOGICAL A*1 /.TRUE./, B*2 /.TRUE./, C*4 /.FALSE./
PRINT '(L1 / L2 / L4)', A, B, C
END

T
∆T
∆∆∆F

LOGICAL*4 A
1 READ '(L8)', A

PRINT *, A
GO TO 1
END

t true T TRUE .t .t. .T .T. .TRUE. TooTrue
f false F FALSE .f .F .F. .FALSE. Flakey
280 FORTRAN 77 Language Reference • July 2001

Octal and Hexadecimal Editing (O, Z)

The O and Z field descriptors for a FORMATstatement are for octal and hexadecimal

integers, respectively, but they can be used with any data type.✠

The general form is:

where w is the number of characters in the external field. For output, m, if specified,

determines the total number of digits in the external field; that is, if there are fewer

than m nonzero digits, the field is zero-filled on the left to a total of m digits. m has

no effect on input.

Octal and Hex Input

A READ, with the O or Z field descriptors in the FORMAT, reads in w characters as

octal or hexadecimal, respectively, and assigns the value to the corresponding

member of the I/O list.

Example: Octal input, the external data field is:

The first digit in the example appears in input column 1.

The program that does the input is:

 O w[. m]

 Z w[. m]

654321

READ (*, 2) M
2 FORMAT (O6)
Chapter 5 Input and Output 281

The above data and program result in the octal value 654321 being loaded into the

variable M. Further examples are included in the following table.

The general rules for octal and hex input are:

■ For octal values, the external field can contain only numerals 0 through 7.

■ For hexadecimal values, the external field can contain only numerals 0 through 9

and the letters A through F or a through f .

■ Signs, decimal points, and exponent fields are not allowed.

■ All-blank fields are treated as having a value of zero.

■ If a data item is too big for the corresponding variable, an error message is

displayed.

Octal and Hex Output

A WRITE, with the O or Z field descriptors in the FORMAT, writes out values as octal

or hexadecimal integers, respectively. It writes to a field that is w characters wide,

right-justified.

Example: Hex output:

The program above displays A1 (161 decimal = A1 hex):

The letter A appears in output column 2.

TABLE 5-6 Sample Octal/Hex Input Values

Format External Field Internal (Octal or Hex) Value

O4
O4
O3

1234 ∆
16234
97∆∆∆

1234
1623
Error: “9” not allowed

Z5
Z5
Z4

A23DE∆
A23DEF
95.AF2

A23DE
A23DE
Error: “.” not allowed

M = 161
WRITE (*, 8) M

8 FORMAT (Z3)
END

∆A1
282 FORTRAN 77 Language Reference • July 2001

Further examples are included in the following table.

The general rules for octal and hex output are:

■ Negative values are written as if unsigned; no negative sign is printed.

■ The external field is filled with leading spaces, as needed, up to the width w.

■ If the field is too narrow, it is filled with asterisks.

■ If m is specified, the field is left-filled with leading zeros, to a width of m.

Positional Editing

For horizontal positioning along the print line, f77 supports the forms:

Tn, TL n, TR n, nT, nX

where n is a strictly positive integer. The format specifier T can appear by itself, or

be preceded or followed by a positive nonzero number.

Tn—Absolute Columns

This tab reads from the nth column or writes to the nth column. If n is missing it is

treated as T1.

TLn—Relative Columns

This tab reads from the nth column to the left or writes to the nth column to the left.
If n is missing it is treated as TL0 ✠.

TABLE 5-7 Sample Octal/Hex Output Value

Format Internal (Decimal) Value External (Octal/Hex) Representation

O6
O2
O4.3
O4.4
O6

32767
14251
 27
 27
-32767

∆77777
 **

∆033
 0033

Z4
Z3.3
Z6.4
Z5

32767
 2708
 2708
-32767

 7FFF
 A94

∆∆0A94

Chapter 5 Input and Output 283

TRn—Relative Columns

This tab reads from the nth column to the right or writes to the nth column to the

right. If n is missing it is treated as TR0 ✠.

nT—Relative Tab Stop ✠

This tab tabs to the next tab stop for both read and write. If n is omitted, this tab uses

n = 1 and tabs to the next tab stop. (This edit specifier is not standard FORTRAN 77)

The rules and Restrictions for tabbing are:

■ Tabbing right beyond the end of an input logical record is an error.

■ Tabbing left beyond the beginning of an input logical record leaves the input

pointer at the beginning of the record.

■ Nondestructive tabbing is implemented for both internal and external formatted

I/O. Nondestructive tabbing means that tabbing left or right on output does not

destroy previously written portions of a record.

■ Tabbing right on output causes unwritten portions of a record to be filled with

blanks.

■ Tabbing left requires that the logical unit allows a seek . Therefore, it is not

allowed in I/O to or from a terminal or pipe.

■ Likewise, nondestructive tabbing in either direction is possible only on a unit that

can seek. Otherwise, tabbing right or spacing with the X edit specifier writes

blanks on the output.

■ Tab stops are hard-coded every eight columns.

nX—Positions

The nX edit specifier indicates that the transmission of the next character to or from

a record is to occur at the position n characters forward from the current position.

On input, the nX edit specifier advances the record pointer by n positions, skipping

n characters.

A position beyond the last character of the record can be specified if no characters

are transmitted from such positions.

On output, the nX specifier writes n blanks.

The n defaults to 1.
284 FORTRAN 77 Language Reference • July 2001

Example: Input, Tn (absolute tabs):

The two-line data file is:

The run and the output are:

The above example first reads columns 5 and 6, then columns 1 and 2.

Example: Output Tn (absolute tabs); this program writes an output file:

demo% cat rtab.f
CHARACTER C*2, S*2
OPEN(1, FILE='mytab.data')
DO I = 1, 2
READ(1, 2) C, S

2 FORMAT(T5, A2, T1, A2)
PRINT *, C, S
END DO
END

demo%

demo% cat mytab.data
defguvwx
12345678
demo%

demo% a.out
uvde
5612
demo%

demo% cat otab.f
CHARACTER C*20 / "12345678901234567890" /
OPEN(1, FILE=’mytab.rep’)
WRITE(1, 2) C, ":", ":"

2 FORMAT(A20, T10, A1, T20, A1)
END

demo%
Chapter 5 Input and Output 285

The output file is:

The above example writes 20 characters, then changes columns 10 and 20.

Example: Input, TRn and TL n (relative tabs)—the program reads:

The two-line data file is:

The run and the output are:

The above example reads column 1, then tabs right 5 to column 7, then tabs left 4 to

column 4.

demo% cat mytab.rep
123456789:123456789:
demo%

demo% cat rtabi.f
CHARACTER C, S, T
OPEN(1, FILE='mytab.data')
DO I = 1, 2
READ(1, 2) C, S, T

2 FORMAT(A1, TR5, A1, TL4, A1)
PRINT *, C, S, T
END DO
END

demo%

demo% cat mytab.data
defguvwx
12345678
demo%

demo% a.out
dwg
174
demo%
286 FORTRAN 77 Language Reference • July 2001

Example: Output TR n and TL n (relative tabs)—this program writes an output file:

The run shows nothing, but you can list the mytab.rep output file:

The above program writes 20 characters, tabs left 11 to column 10, then tabs right 9

to column 20.

Quotes Editing ("aaa")

The quotes edit specifier is in the form of a character constant.✠It causes characters

to be written from the enclosed characters of the edit specifier itself, including

blanks. A quotes edit specifier must not be used on input.

The width of the field is the number of characters contained in, but not including,

the delimiting quotes. Within the field, two consecutive quotes with no intervening

blanks are counted as a single quote. You can use apostrophes in a similar way.

Example: quote.f (two equivalent ways):

This program writes this message twice: This is a quote ".

demo% cat rtabo.f
CHARACTER C*20 / "12345678901234567890" /
OPEN(1, FILE='rtabo.rep')
WRITE(1, 2) C, ":", ":"

2 FORMAT(A20, TL11, A1, TR9, A1)
END

demo%

demo% cat rtabo.rep
123456789:123456789:
demo%

WRITE(*, 1)
1 FORMAT('This is a quote ".')

WRITE(*, 2)
2 FORMAT("This is a quote "".")

END
Chapter 5 Input and Output 287

Radix Control (R)

The format specifier is R or nR, where 2 ≤ n ≤36. If n is omitted, the default decimal

radix is restored.

You can specify radixes other than 10 for formatted integer I/O conversion. The

specifier is patterned after P, the scale factor for floating-point conversion. It remains

in effect until another radix is specified or format interpretation is complete. The I/O

item is treated as a 32-bit integer.

Example: Radix 16—the format for an unsigned, hex, integer, 10 places wide, zero-

filled to 8 digits, is (su, 16r, I10.8) , as in:

SU is described in “Sign Editing (SU, SP, SS, S)” on page 297.

Editing REALData (D, E, F, G)

The D, E, F, and G specifiers are for decimal real data items.

D Editing

The D specifier is for the exponential form of decimal double-precision items. The

general form is:

The Dw and Dw.d edit specifiers indicate that the field to be edited occupies w
positions. d indicates that the fractional part of the number (the part to the right of

the decimal point) has d digits. However, if the input datum contains a decimal

point, that decimal point overrides the d value.

On input, the specified list item becomes defined with a real datum. On output, the

specified list item must be defined as a real datum.

demo% cat radix.f
integer i / 110 /
write(*, 1) i

1 format(SU, 16r, I10.8)
end

demo% f77 -silent radix.f
demo% a.out
 ∆∆0000006E
demo%

D[w[. d]]
288 FORTRAN 77 Language Reference • July 2001

In an output statement, the D edit descriptor does the same thing as the E edit

descriptor, except that a D is used in place of an E. The output field for the Dw.d edit

specifier has the width w. The value is right-justified in that field. The field consists

of zero or more leading blanks followed by either a minus if the value is negative, or

an optional plus, followed by the magnitude of the value of the list item rounded to

d decimal digits.

w must allow for a minus sign, at least one digit to the left of the decimal point, the

decimal point, and d digits to the right of the decimal point. Therefore, it must be the

case that w ≥ d+3.

Example: Real input with D editing in the program, Dinp.f :

The above program displays:

In the above example, the first input data item has no decimal point, so D8.3
determines the decimal point. The other input data items have decimal points, so

those decimal points override the D edit descriptor as far as decimal points are

concerned.

Example: Real output with D editing in the program Dout.f :

The above program displays:

In the above example, the second printed line is asterisks because the D8.4 does not

allow for the sign; in the third printed line the D13.4 results in three leading blanks.

CHARACTER LINE*24 / '12345678 23.5678 .345678' /
READ(LINE, '(D8.3, D8.3, D8.3)') R, S, T
PRINT '(D10.3, D11.4, D13.6)', R, S, T
END

0.123D+05 0.2357D+02 0.345678D+00

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(D9.3 / D8.4 / D13.4)
END

0.123D+04

∆∆∆0.1235D+04
Chapter 5 Input and Output 289

E Editing

The E specifier is for the exponential form of decimal real data items. The general

form is:

w indicates that the field to be edited occupies w positions.

d indicates that the fractional part of the number (the part to the right of the decimal

point) has d digits. However, if the input datum contains a decimal point, that

decimal point overrides the d value.

e indicates the number of digits in the exponent field. The default is 2.

The specified input/output list item must be of type real. On input, the specified list

item becomes defined with a real datum. On output, the specified list item must be

defined as a real datum.

The output field for the Ew.d edit specifier has the width w. The value is right-

justified in that field. The field consists of zero or more leading blanks followed by

either a minus if the value is negative, or an optional plus, followed by a zero, a

decimal point, the magnitude of the value of the list item rounded to d decimal

digits, and an exponent.

For the form Ew.d:

■ If | exponent | ≤ 99, it has the form Enn or 0nn.

■ If 99 ≤ | exponent | ≤ 999, it has the form nnn.

For the form Ew.dEe, if | exponent | ≤ (10e) - 1, then the exponent has the form

nnn.

For the form Dw.d:

■ If | exponent | ≤ 99, it has the form Dnn or Enn or 0nn.

■ If 99 ≤ | exponent | ≤ 999, it has the form nnn.

n is any digit.

The sign in the exponent is required.

w need not allow for a minus sign, but must allow for a zero, the decimal point, and

d digits to the right of the decimal point, and an exponent. Therefore, for

nonnegative numbers, w ≥ d+6; if e is present, then w ≥ d+e+4. For negative numbers,

w ≥ d+7; if e is present, then w ≥ d+e+5.

 E[w[. d][E e]]
290 FORTRAN 77 Language Reference • July 2001

Example: Real input with E editing in the program, Einp.f :

The above program displays:

In the above example, the first input data item has no decimal point, so E9.3
determines the decimal point. The other input data items have decimal points, so

those decimal points override the D edit descriptor as far as decimal points are

concerned.

Example: Real output with E editing in the program Eout.f :

The above program displays:

In the above example, E8.4 does not allow for the sign, so we get asterisks. Also, the

extra wide field of the E13.4 results in three leading blanks.

Example: Real output with Ew.dEe editing in the program EwdEe.f :

CHARACTER L*40/'1234567E2 1234.67E-3 12.4567 '/
READ(L, '(E9.3, E12.3, E12.6)') R, S, T
PRINT '(E15.6, E15.6, E15.7)', R, S, T
END

∆∆∆0.123457E+06 ∆∆∆0.123467E+01 ∆∆0.1245670E+02

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(E9.3 / E8.4 / E13.4)
END

0.123E+04

∆∆∆0.1235E+04

REAL X / 0.000789 /
WRITE(*,'(E13.3)') X
WRITE(*,'(E13.3E4)') X
WRITE(*,'(E13.3E5)') X
END
Chapter 5 Input and Output 291

The above program displays:

F Editing

The F specifier is for decimal real data items. The general form is:

The Fw and Fw.d edit specifiers indicate that the field to be edited occupies w
positions.

d indicates that the fractional part of the number (the part to the right of the decimal

point) has d digits. However, if the input datum contains a decimal point, that

decimal point overrides the d value.

The specified input/output list item must be of type real. On input, the specified list

item becomes defined with a real datum. On output, the specified list item must be

defined as a real datum.

The output field for the Fw.d edit specifier has the width w. The value is right-

justified in that field. The field consists of zero or more leading blanks followed by

either a minus if the value is negative, or an optional plus, followed by the

magnitude of the value of the list item rounded to d decimal digits.

w must allow for a minus sign, at least one digit to the left of the decimal point, the

decimal point, and d digits to the right of the decimal point. Therefore, it must be the

case that w ≥ d+3.

Example: Real input with F editing in the program Finp.f :

The program displays:

∆∆∆∆0.789E-03
∆∆0.789E-0003
∆0.789E-00003

 F[w[. d]]

CHARACTER LINE*24 / '12345678 23.5678 .345678' /
READ(LINE, '(F8.3, F8.3, F8.3)') R, S, T
PRINT '(F9.3, F9.4, F9.6)', R, S, T
END

12345.678DD23.5678D0.345678
292 FORTRAN 77 Language Reference • July 2001

In the above example, the first input data item has no decimal point, so F8.3
determines the decimal point. The other input data items have decimal points, so

those decimal points override the F edit descriptor as far as decimal points are

concerned.

Example: Real output with F editing in the program Fout.f :

The above program displays:

In the above example, F8.4 does not allow for the sign; F13.4 results in four

leading blanks and one trailing zero.

G Editing

The G specifier is for decimal real data items. The general forms are:

The D, E, F, and G edit specifiers interpret data in the same way.

The representation for output by the Gedit descriptor depends on the magnitude of

the internal datum. In the following table, N is the magnitude of the internal datum.

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(F9.3 / F8.4 / F13.4)
END

∆1234.678

∆∆∆∆1234.6780

G[w[. d]] or
Gw.dEe

Range Form

0.1 ≤ N < 1.0

1.0 ≤ N < 10.0

…

10 (d-2) ≤ N < 10(d-1)

10 (d-1) ≤ N < 10d

F(w-4).d
F(w-4).(d-1)

…

F(w-4).1

F(w-4).0
Chapter 5 Input and Output 293

Commas in Formatted Input

If you are entering numeric data that is controlled by a fixed-column format, then

you can use commas to override any exacting column restrictions.

Example: Format:

Using the above format reads the following record correctly:

The I/O system is just being more lenient than described in the FORTRAN Standard.

In general, when doing a formatted read of noncharacter variables, commas override

field lengths. More precisely, for the I w, Fw.d, Ew.d[Ee], and Gw.d input fields, the

field ends when w characters have been scanned, or a comma has been scanned,

whichever occurs first. If it is a comma, the field consists of the characters up to, but

not including, the comma; the next field begins with the character following the

comma.

Remaining Characters (Q)

The Q edit descriptor gets the length of an input record or the remaining portion of

it that is unread. ✠ It gets the number of characters remaining to be read from the

current record.

(I10, F20.10, I4)

–345,.05e–3,12
294 FORTRAN 77 Language Reference • July 2001

Example: From a real and a string, get: real, string length, and string:

The above program reads a field into the variable R, then reads the number of

characters remaining after that field into L, then reads L characters into CVECT. Qas

the nth edit descriptor matches with L as the nth element in the READlist.

Example: Get length of input record; put the Q descriptor first:

The above example gets the length of the input record. With the whole input string

and its length, you can then parse it yourself.

demo% cat qed1.f
* qed1.f Q edit descriptor (real & string)

CHARACTER CVECT(80)*1
OPEN (UNIT=4, FILE='qed1.data')
READ (4, 1) R, L, (CVECT(I), I=1,L)

1 FORMAT (F4.2, Q, 80 A1)
WRITE (*, 2) R, L, '"', (CVECT(I),I=1,L), '"'

2 FORMAT (1X, F7.2, 1X, I2, 1X, 80A1)
END

demo% cat qed1.data
8.10qwerty
demo% f77 qed1.f -o qed1
qed1.f:
 MAIN:
demo% qed1
 8.10 6 "qwerty"
demo%

demo% cat qed2.f
CHARACTER CVECT(80)*1
OPEN (UNIT=4, FILE='qed2.data')
READ (4, 1) L, (CVECT(I), I=1,L)

1 FORMAT (Q, 80A1)
WRITE (*, 2) L, '"', (CVECT(I),I=1,L), '"'

2 FORMAT (1X, I2, 1X, 80A1)
END

demo% cat qed2.data
qwerty
demo% f77 qed2.f -o qed2
qed2.f:
 MAIN:
demo% qed2
 6 "qwerty"
demo%
Chapter 5 Input and Output 295

Several restrictions on the Q edit descriptor apply:

■ The list element Q corresponds to must be of INTEGERor LOGICAL data type.

■ Qdoes strictly a character count. It gets the number of characters remaining in the

input record, and does not get the number of integers or reals or anything else.

■ The Q edit descriptor cannot be applied for pipe files, as Q edit requires that the

file be rereadable.

■ This descriptor operates on files and stdin (terminal) input.

■ This descriptor is prohibited for output and will generate a runtime error.

Scale Factor (P)

The P edit descriptor scales real input values by a power of 10. It also gives you

more control over the significant digit displayed for output values.

The general form is:

[k]P

k is called the scale factor, and the default value is zero.

Example: I/O statements with scale factors:

P by itself is equivalent to 0P. It resets the scale factor to the default value 0P. Just P
by itself is nonstandard.✠

Scope

The scale factor is reset to zero at the start of execution of each I/O statement. The

scale factor can have an effect on D, E, F, and G edit descriptors.

Parameter Description

k Integer constant, with an optional sign

READ (1, '(3P E8.2)') X
WRITE (1, '(1P E8.2)') X
296 FORTRAN 77 Language Reference • July 2001

Input

On input, any external datum that does not have an exponent field is divided by 10k
before it is stored internally.

Input examples: Showing data, scale factors, and resulting value stored:

Output

On output, with D, and E descriptors, and with G descriptors if the E editing is

required, the internal item gets its basic real constant part multiplied by 10k, and the

exponent is reduced by k before it is written out.

On output with the F descriptor and with Gdescriptors, if the F editing is sufficient,

the internal item gets its basic real constant part multiplied by 10k before it is written

out.

Output Examples: Showing value stored, scale factors, and resulting output:

Sign Editing (SU, SP, SS, S)

The SU, SP, and S edit descriptors control leading signs for output. For normal

output, without any specific sign specifiers, if a value is negative, a minus sign is

printed in the first position to the left of the leftmost digit; if the value is positive,

printing a plus sign depends on the implementation, but f77 omits the plus sign.

The following sign specifiers are available:

■ SP—If SP precedes a specification, a sign is printed.

■ SS—If SS precedes a specification, plus-sign printing is suppressed.

■ S—If S precedes a specification, the system default is restored. The default is SS.

■ SU—If SUprecedes a specification, integer values are interpreted as unsigned.

This is nonstandard. ✠

Data 18.63 18.63 18.63E2 18.63

Format E8.2 3P E8.2 3P E8.2 -3P E8.2

Memory 18.63 .01863 18.63E2 18630.

Memory 290.0 290.0 290.0 290.0

Format 2P E9.3 1P E9.3 -1P E9.3 F9.3

Display 29.00E+01 2.900E+02 0.029E+04 0.290E+03
Chapter 5 Input and Output 297

For example, the unsigned specifier can be used with the radix specifier to format a

hexadecimal dump, as follows:

The rules and restrictions for sign control are:

■ Sign-control specifiers apply to output only.

■ A sign-control specifier remains in effect until another sign-control specifier is

encountered, or format interpretation is complete.

■ The S, SP, and SS specifiers affect only I , F, E, D, and G editing.

■ The SUspecifier affects only I editing.

Slash Editing (/)

The slash (/) edit specifier indicates the end of data transfer on the current record.

Sequential Access

On input, any remaining portion of the current record is skipped, and the file is

positioned at the beginning of the next record. Two successive slashes (//) skip a

whole record.

On output, an end-of-record is written, and a new record is started. Two successive

slashes (//) produce a record of no characters. If the file is an internal file, that

record is filled with blanks.

Direct Access

Each slash increases the record number by one, and the file is positioned at the start

of the record with that record number.

On output, two successive slashes (//) produce a record of no characters, and that

record is filled with blanks.

Termination Control (:)

The colon (:) edit descriptor allows for conditional termination of the format. If the

I/O list is exhausted before the format, then the format terminates at the colon.

2000 FORMAT(SU, 16R, 8I10.8)
298 FORTRAN 77 Language Reference • July 2001

Example: Termination control:

The above program produces output like the following

Without the colon, the output is more like this:

Runtime Formats

You can put the format specifier into an object that you can change during execution.

Doing so improves flexibility. There is some increase in execution time because this

kind of format specifier is parsed every time the I/O statement is executed. These

are also called variable formats.

The object must be one of the following kinds:

■ Character expression—The character expression can be a scalar, an array, an

element of an array, a substring, a field of a structured record ✠, the concatenation

of any of the above, and so forth.

■ Integer array ✠—The integer array can get its character values by a DATA
statement, an assignment statement, a READstatement, and so forth.

You must provide the delimiting left and right parentheses, but not the word

FORMAT, and not a statement number.

You must declare the object so that it is big enough to hold the entire format. For

instance, '(8X,12I)' does not fit in an INTEGER*4 or a CHARACTER*4object.

* col1.f The colon (:) edit descriptor
DATA INIT / 3 /, LAST / 8 /
WRITE (*, 2) INIT
WRITE (*, 2) INIT, LAST

2 FORMAT (1X 'INIT = ', I2, :, 3X, 'LAST = ', I2)
END

INIT = 3
INIT = 3 LAST = 8

INIT = 3 LAST =
INIT = 3 LAST = 8
Chapter 5 Input and Output 299

Examples: Runtime formats in character expressions and integer arrays:

Variable Format Expressions (<e>)

In general, inside a FORMATstatement, any integer constant can be replaced by an

arbitrary expression. ✠

The expression itself must be enclosed in angle brackets.

demo% cat runtim.f
CHARACTER CS*8
CHARACTER CA(1:7)*1 /'(','1','X',',','I','2',')'/
CHARACTER S(1:7)*6
INTEGER*4 IA(2)
STRUCTURE / STR /
CHARACTER*4 A
INTEGER*4 K
END STRUCTURE
CHARACTER*8 LEFT, RIGHT
RECORD /STR/ R
N = 9
CS = '(I8)'
WRITE(*, CS) N ! Character Scalar
CA(2) = '6'
WRITE(*, CA) N ! Character Array
S(2) = '(I8)'
WRITE(*, S(2)) N ! Element of Character Array
IA(1) = '(I8)'
WRITE(*, IA) N ! Integer Array
R.A = '(I8)'
WRITE(*, R.A) N ! Field Of Record
LEFT = '(I'
RIGHT = '8)'
WRITE(*, LEFT // RIGHT) N ! Concatenate
END

demo% f77 -silent runtim.f
demo% a.out
 9
 9
 9
 9
 9
 9
demo%
300 FORTRAN 77 Language Reference • July 2001

For example, the 6 in:

can be replaced by the variable N, as in:

or by the slightly more complicated expression 2*N+M, as in:

Similarly, the 3 or 1 can be replaced by any expression.

The single exception is the n in an nH… edit descriptor.

The rules and restrictions for variable format expressions are:

■ The expression is reevaluated each time it is encountered in a format scan.

■ If necessary, the expression is converted to integer type.

■ Any valid FORTRAN expression is allowed, including function calls.

■ Variable expressions are not allowed in formats generated at runtime.

■ The n in an nH… edit descriptor cannot be a variable expression.

Unformatted I/O

Unformatted I/O is used to transfer binary information to or from memory locations

without changing its internal representation. Each execution of an unformatted I/O

statement causes a single logical record to be read or written. Since internal

representation varies with different architectures, unformatted I/O is limited in its

portability.

You can use unformatted I/O to write data out temporarily, or to write data out

quickly for subsequent input to another FORTRAN program running on a machine

with the same architecture.

1 FORMAT(3F6.1)

1 FORMAT(3F<N>.1)

1 FORMAT(3F<2*N+M>.1)
Chapter 5 Input and Output 301

Sequential Access I/O

Logical record length for unformatted, sequential files is determined by the number

of bytes required by the items in the I/O list. The requirements of this form of I/O

cause the external physical record size to be somewhat larger than the logical record

size.

Example:

The FORTRAN runtime system embeds the record boundaries in the data by

inserting an INTEGER*4 byte count at the beginning and end of each unformatted

sequential record during an unformatted sequential WRITE. The trailing byte count

enables BACKSPACEto operate on records. The result is that FORTRAN programs

can use an unformatted sequential READonly on data that was written by an

unformatted sequential WRITEoperation. Any attempt to read such a record as

formatted would have unpredictable results.

Here are some guidelines:

■ Avoid using the unformatted sequential READunless your file was written that

way.

■ Because of the extra data at the beginning and end of each unformatted sequential

record, you might want to try using the unformatted direct I/O whenever that

extra data is significant. It is more significant with short records than with very

long ones.

Direct Access I/O

If your I/O lists are different lengths, you can OPENthe file with the RECL=1option.

This signals FORTRAN to use the I/O list to determine how many items to read or

write.

For each read, you still must tell it the initial record to start at, in this case which

byte, so you must know the size of each item. ✠

A simple example follows.

WRITE(8) A, B
302 FORTRAN 77 Language Reference • July 2001

Example: Direct access—create 3 records with 2 integers each:

Example: Direct access—read the 3 records:

Here we knew beforehand the size of the records on the file. In this case we can read

the file just as it was written.

However, if we only know the size of each item but not the size of the records on a

file we can use recl=1 on the OPENstatement to have the I/O list itself determine

how many items to read:

demo% cat Direct1.f
integer u/4/, v /5/, w /6/, x /7/, y /8/, z /9/
open(1, access='DIRECT', recl=8)
write(1, rec=1) u, v
write(1, rec=2) w, x
write(1, rec=3) y, z
end

demo% f77 -silent Direct1.f
demo% a.out
demo%

demo% cat Direct2.f
integer u, v, w, x, y, z
open(1, access='DIRECT', recl=8)
read(1, rec=1) u, v
read(1, rec=2) w, x
read(1, rec=3) y, z
write(*,*) u, v, w, x, y, z
end

demo% f77 -silent Direct2.f
demo% a.out
 4 5 6 7 8 9
demo%
Chapter 5 Input and Output 303

Example: Direct-access read, variable-length records, recl=1 :

In the above example, after reading 3 integers (12 bytes), you start the next read at

record 13.

✠ Binary I/O

Opening a file for binary I/O allows the program to read and write data as a stream

of binary data without record boundaries. (This feature is not standard Fortran 77). ✠

The FORM=’BINARY’ option on an OPENstatement declares that unit to be a

sequential unformatted file without record marks:

A binary file cannot also be declared direct-access or formatted.

On a WRITEstatement, binary data is written to the file as a stream of bytes, as many

as there are in the output list. On a READstatement, as many data bytes are read as

demanded by the variables on the input list. Since there are no record marks (end-of-

record) in the file, there will be no possibility of reading past a record mark. Other

demo% cat Direct3.f
integer u, v, w, x, y, z
open(1, access='DIRECT', recl=1)
read(1, rec=1) u, v, w
read(1, rec=13) x, y, z
write(*,*) u, v, w, x, y, z
end

demo% f77 -silent Direct3.f
demo% a.out
 4 5 6 7 8 9
demo%

OPEN(1, FORM=’BINARY’)
304 FORTRAN 77 Language Reference • July 2001

than abnormal system errors, the only situation that the program can detect is

reading in the end-of-file. Each READstatement just reads the next sequence of bytes

in the file, as shown in the following example:

An INQUIRE on a binary file returns ‘BINARY’ for the FORM=parameter,

‘SEQUENTIAL’ for ACCESS=, ‘YES’ for UNFORMATTED=, ‘YES’ for SEQUENTIAL.

BACKSPACEon a binary file is not allowed and causes a runtime error message.

demo>cat bin.f
 program bin
 character *25 string
 character *5 word

 open(1,FORM=’BINARY’)

 string = ’alphabetagammaepsilon’

 write(1) string
 rewind 1

 do 1 i=1,6
 word = ’ ’
 read(1) word
 1 print*, word

 end
demo>f77 -o binf bin.f
bin.f:
 MAIN bin:
demo>binf
 alpha
 betag
 ammae
 psilo
 n
uio: [-1] end of file
logical unit 1, named ’fort.1’
lately: reading sequential unformatted external IO
Abort
Chapter 5 Input and Output 305

List-Directed I/O

List-directed I/O is a free-form I/O for sequential access devices. To get it, use an

asterisk as the format identifier, as in:

Note these rules for list-directed input:

■ On input, values are separated by strings of blanks and, possibly, a comma.

■ Values, except for character strings, cannot contain blanks.

■ Character strings can be quoted strings, using pairs of quotes ("), pairs of

apostrophes ('), or unquoted strings (see “Unquoted Strings” on page 308), but not
hollerith (nHxyz) strings.

■ End-of-record counts as a blank, except in character strings, where it is ignored.

■ Complex constants are given as two real constants separated by a comma and

enclosed in parentheses.

■ A null input field, such as between two consecutive commas, means that the

corresponding variable in the I/O list is not changed.

■ Input data items can be preceded by repetition counts, as in:

The above input stands for 4 complex constants, 2 null input fields, and 4 string

constants.

■ A slash (/) in the input list terminates assignment of values to the input list

during list-directed input, and the remainder of the current input line is skipped.

Any text that follows the slash is ignored and can be used to comment the data

line.

Output Format

List-directed output provides a quick and easy way to print output without fussing

with format details. If you need exact formats, use formatted I/O. A suitable format

is chosen for each item, and where a conflict exists between complete accuracy and

simple output form, the simple form is chosen.

Note these rules for list-directed output:

READ(6, *) A, B, C

4*(3.,2.) 2*, 4*'hello'
306 FORTRAN 77 Language Reference • July 2001

■ In general, each record starts with a blank space. For a print file, that blank is not

printed. See “Printing Files” on page 260 for details. ✠

■ Character strings are printed as is. They are not enclosed in quotes, so only

certain forms of strings can be read back using list-directed input. These forms are

described in the next section.

■ A number with no exact binary representation is rounded off.

Example: No exact binary representation:

In the above example, if you need accuracy, specify the format.

Also note:

■ Output lines longer than 80 characters are avoided where possible.

■ Complex and double complex values include an appropriate comma.

■ Real, double, and quadruple precision values are formatted differently.

■ A backslash-n (\n) in a character string is output as a carriage return, unless the

-xl option is on, and then it is output as a backslash-n (\n).

Example: List-directed I/O and backslash-n, with and without -xl :

demo% cat lis5.f
READ (5, *) X
WRITE(6, *) X, ' beauty'
WRITE(6, 1) X

1 FORMAT(1X, F13.8, ' truth')
END

demo% f77 lis5.f
lis5.f:
 MAIN:
demo% a.out
1.4
 1.40000000 beauty
 1.39999998 truth
demo%

demo% cat f77 bslash.f
CHARACTER S*8 / '12\n3' /
PRINT *, S
END

demo%
Chapter 5 Input and Output 307

Without –xl , \n prints as a carriage return:

With –xl , \n prints as a character string:

Unquoted Strings

f77 list-directed I/O allows reading of a string not enclosed in quotes. ✠

The string must not start with a digit, and cannot contain separators (commas or

slashes (/)) or whitespace (spaces or tabs). A newline terminates the string unless

escaped with a backslash (\). Any string not meeting the above restrictions must be

enclosed in single or double quotes.

demo% f77 -silent bslash.f
demo% a.out
12
3
demo%

demo% f77 -xl -silent bslash.f
demo% a.out
12\n3
demo%

TABLE 5-8 Default Formats for List-Directed Output

Type Format

BYTE
CHARACTER*n
COMPLEX
COMPLEX*16
COMPLEX*32
INTEGER*2
INTEGER*4
INTEGER*8
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8
REAL
REAL*8
REAL*16

Two blanks followed by the number
An { n = length of character expression}
' ∆∆(', 1PE14.5E2, ',', 1PE14.5E2, ')'
' ∆∆(', 1PE22.13.E2, ',', 1PE22.13.E2, ')'
' ∆∆(', 1PE44.34E3, ',', 1PE44.34E3, ')'
Two blanks followed by the number
Two blanks followed by the number
Two blanks followed by the number
Two blanks followed by the number
L3
L3
L3
1PE14.5E2
1PE22.13.E2
1PE44.34E4
308 FORTRAN 77 Language Reference • July 2001

Example: List-directed input of unquoted strings:

The above program, unquoted.f , reads and displays as follows:

Internal I/O

f77 extends list-directed I/O to allow internal I/O. ✠

During internal, list-directed reads, characters are consumed until the input list is

satisfied or the end-of-file is reached. During internal, list-directed writes, records

are filled until the output list is satisfied. The length of an internal array element

should be at least 20 characters to avoid logical record overflow when writing

double-precision values. Internal, list-directed read was implemented to make

command line decoding easier. Internal, list-directed output should be avoided.

NAMELISTI/O

NAMELIST I/O produces format-free input or output of whole groups of variables,

or input of selected items in a group of variables.✠

The NAMELISTstatement defines a group of variables or arrays. It specifies a group

name, and lists the variables and arrays of that group.

Syntax Rules

The syntax of the NAMELISTstatement is:

CHARACTER C*6, S*8
READ *, I, C, N, S
PRINT *, I, C, N, S
END

demo% a.out
23 label 82 locked
 23label 82locked
demo%
Chapter 5 Input and Output 309

NAMELIST /group-name/ namelist[[,]/ group-name/namelist] …

See “@NAMELIST” on page 190 for details.

Example: NAMELISTstatement:

A variable or array can be listed in more than one NAMELISTgroup.

The input data can include array elements and strings. It can include substrings in

the sense that the input constant data string can be shorter than the declared size of

the variable.

Restrictions

group name can appear in only the NAMELIST, READ, or WRITEstatements, and must

be unique for the program.

list cannot include constants, array elements, dummy assumed-size arrays,

structures, substrings, records, record fields, pointers, or pointer-based variables.

Example: A variable in two NAMELISTgroups:

In the above example, DELTA is in the group CASEand in the group GRID.

Parameter Description

group-name Name of group

namelist List of variables or arrays, separated by commas

CHARACTER*18 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA

REAL ARRAY(4,4)
CHARACTER*18 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
NAMELIST /GRID/ ARRAY, DELTA
310 FORTRAN 77 Language Reference • July 2001

Output Actions

NAMELISToutput uses a special form of WRITEstatement, which makes a report that

shows the group name. For each variable of the group, it shows the name and

current value in memory. It formats each value according to the type of each

variable, and writes the report so that NAMELIST input can read it.

The syntax of NAMELIST WRITEis:

where namelist-specifier has the form:

and group-name has been previously defined in a NAMELISTstatement.

The NAMELIST WRITEstatement writes values of all variables in the group, in the

same order as in the NAMELISTstatement.

Example: NAMELISToutput:

Note that if you do omit the keyword NMLthen the unit parameter must be first,

namelist-specifier must be second, and there must not be a format specifier.

WRITE (extu, namelist-specifier [, iostat] [, err])

[NML=] group-name

demo% cat nam1.f
* nam1.f Namelist output

CHARACTER*8 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
DATA SAMPLE /'Demo'/, NEW /.TRUE./, DELTA /0.1/
WRITE (*, CASE)
END

demo% f77 nam1.f
f77 nam1.f
nam1.f:
 MAIN:
demo% a.out
∆&case sample= Demo , new= T, delta= 0.100000
∆&end
demo%
Chapter 5 Input and Output 311

The WRITEcan have the form of the following example:

Input Actions

The NAMELISTinput statement reads the next external record, skipping over column

one, and looking for the symbol $ in column two or beyond, followed by the group

name specified in the READstatement.

If the $group-name is not found, the input records are read until end of file.

The records are input and values assigned by matching names in the data with

names in the group, using the data types of the variables in the group.

Variables in the group that are not found in the input data are unaltered.

The syntax of NAMELIST READis:

where namelist-specifier has the form:

and group-name has been previously defined in a NAMELISTstatement.

Example: NAMELIST input:

In this example, the group CASEconsists of the variables, SAMPLE, NEW, DELTA, and

MAT. If you do omit the keyword NML, then you must also omit the keyword UNIT.

The unit parameter must be first, namelist-specifier must be second, and there must

not be a format specifier.

WRITE (UNIT=6, NML=CASE)

READ (extu, namelist-specifier [, iostat] [, err] [, end])

[NML=] group-name

CHARACTER*14 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA, MAT(2,2)
NAMELIST /CASE/ SAMPLE, NEW, DELTA, MAT
READ (1, CASE)
312 FORTRAN 77 Language Reference • July 2001

The READcan have the form of the following example:

Data Syntax

The first record of NAMELIST input data has the special symbol $ (dollar sign) in

column two or beyond, followed by the NAMELISTgroup name. This is followed by

a series of assignment statements, starting in or after column two, on the same or

subsequent records, each assigning a value to a variable (or one or more values to

array elements) of the specified group. The input data is terminated with another $
in or after column two, as in the pattern:

You can alternatively use an ampersand (&) in place of each dollar sign, but the

beginning and ending delimiters must match. ENDis an optional part of the last

delimiter.

The input data assignment statements must be in one of the following forms:

If an array is subscripted, it must be subscripted with the appropriate number of

subscripts: 1, 2, 3,…

Use quotes (either " or ') to delimit character constants. For more on character

constants, see the next section.

The following is sample data to be read by the program segment above:

READ (UNIT=1, NML=CASE)

∆$group-name variable=value [, variable=value,…] $[END]

variable=value

array=value1[, value2,]…

array(subscript)= value1[, value2,]…

array(subscript, subscript)= value1[, value2,]…

variable=character constant

variable(index: index)= character constant

∆$case delta=0.05, mat(2, 2) = 2.2, sample='Demo' $
Chapter 5 Input and Output 313

The data could be on several records. Here NEWwas not input, and the order is not

the same as in the example NAMELISTstatement:

Syntax Rules

The following syntax rules apply for input data to be read by NAMELIST:

■ The variables of the named group can be in any order, and any can be omitted.

■ The data starts in or after column two. It may start in column 1, but this is non-

standard✠.

■ There must be at least one comma, space, or tab between variables, and one or

more spaces or tabs are the same as a single space. Consecutive commas are not

permitted before a variable name. Spaces before or after a comma have no effect.

■ No spaces or tabs are allowed inside a group name or a variable name, except

around the commas of a subscript, around the colon of a substring, and after the

(and before the) marks. No name can be split over two records.

■ The end of a record acts like a space character.

Note an exception—in a character constant, it is ignored, and the character constant

is continued with the next record. The last character of the current record is

immediately followed by the second character of the next record. The first character

of each record is ignored.

■ The equal sign of the assignment statement can have zero or more blanks or tabs

on each side of it.

■ Only constant values can be used for subscripts, range indicators of substrings,

and the values assigned to variables or arrays. You cannot use a symbolic

constant (parameter) in the actual input data.

Hollerith, octal, and hexadecimal constants are not permitted.

Each constant assigned has the same form as the corresponding FORTRAN constant.

There must be at least one comma, space, or tab between constants. Zero or more

spaces or tabs are the same as a single space. You can enter:

1,2,3 , or 1 2 3 , or 1, 2, 3 , and so forth.

Inside a character constant, consecutive spaces or tabs are preserved, not

compressed.

∆$case
∆delta=0.05
∆mat(2, 2) = 2.2
∆sample='Demo'
∆$
314 FORTRAN 77 Language Reference • July 2001

A character constant is delimited by apostrophes (') or quotes ("), but if you start

with one of those, you must finish that character constant with the same one. If you

use the apostrophe as the delimiter, then to get an apostrophe in a string, use two

consecutive apostrophes.

Example: Character constants:

A complex constant is a pair of real or integer constants separated by a comma and

enclosed in parentheses. Spaces can occur only around the punctuation.

A logical constant is any form of true or false value, such as .TRUE. or .FALSE. , or

any value beginning with .T , .F , and so on.

A null data item is denoted by two consecutive commas, and it means the

corresponding array element or complex variable value is not to be changed. Null

data item can be used with array elements or complex variables only. One null data

item represents an entire complex constant; you cannot use it for either part of a

complex constant.

Example: NAMELIST input with some null data:

The data for nam2.f is:

This code loads 9s into row 1, skips 4 elements, and loads 8s into row 3 of ARRAY.

Arrays Only

The forms r* c and r* can be used only with an array.

∆sample='use "$" in 2' (Read as: use $ in 2)
∆sample='don''t' (Read as: don't)
∆sample="don''t" (Read as: don''t)
∆sample="don't" (Read as: don't)

* nam2.f Namelist input with consecutive commas
REAL ARRAY(4,4)
NAMELIST /GRID/ ARRAY
WRITE (*, *) 'Input?'
READ (*, GRID)
WRITE (*, GRID)
END

∆$GRID ARRAY = 9,9,9,9,,,,,8,8,8,8 $
Chapter 5 Input and Output 315

The form r*c stores r copies of the constant c into an array, where r is a nonzero,

unsigned integer constant, and c is any constant.

Example: NAMELISTwith repeat-factor in data:

The input for nam3.f is:

The program, nam3.f , reads the above input and loads 980.0 into the first 5

elements of the array PSI .

■ The form r* skips r elements of an array (that is, does not change them), where r
is an unsigned integer constant.

Example: NAMELIST input with some skipped data.

The other input is:

The program, nam3.f , with the above input, skips the first 3 elements and loads

980.0 into elements 4,5,6,7,8 of PSI .

Name Requests

If your program is doing NAMELIST input from the terminal, you can request the

group name and NAMELISTnames that it accepts.

To do so, enter a question mark (?) in column two and press Return. The group

name and variable names are then displayed. The program then waits again for

input.

* nam3.f Namelist "r*c" and "r* "
REAL PSI(10)
NAMELIST /GRID/ PSI
WRITE (*, *) 'Input?'
READ (*, GRID)
WRITE (*, GRID)
END

∆$GRID PSI = 5*980 $

∆$GRID PSI = 3* 5*980 $
316 FORTRAN 77 Language Reference • July 2001

Example: Requesting names:

demo% cat nam4.f
* nam4.f Namelist: requesting names

CHARACTER*14 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
WRITE (*, *) 'Input?'
READ (*, CASE)
END

demo% f77 -silent nam4.f
demo% a.out
 Input?
∆? <-- Keyboard Input
∆$case
∆sample
∆new
∆delta
∆$end

∆$case sample="Test 2", delta=0.03 $ <-- Keyboard Input
demo%
Chapter 5 Input and Output 317

318 FORTRAN 77 Language Reference • July 2001

CHAPTER 6

Intrinsic Functions

This chapter tabulates and explains the set of intrinsic functions that are part of f77 .

(For information about Fortran library routines, see the Fortran Library Reference.)

Intrinsic functions that are Sun extensions of the ANSI FORTRAN 77 standard are

marked with ✠.

Intrinsic functions have generic and specific names when they accept arguments of

more than one data type. In general, the generic name returns a value with the same

data type as its argument. However, there are exceptions such as the type conversion

functions (TABLE 6-2) and the inquiry functions (TABLE 6-7). The function may also be

called by one of its specific names to handle a specific argument data type.

With functions that work on more than one data item (e.g. sign(a1,a2)), all the

data arguments must be the same type.

In the following tables, the FORTRAN 77 intrinsic functions are listed by:

■ Intrinsic Function –description of what the function does

■ Definition – a mathematical definition

■ No. of Args. – number of arguments the function accepts

■ Generic Name – the function’s generic name

■ Specific Names – the function’s specific names

■ Argument Type – data type associated with each specific name

■ Function Type – data type returned for specific argument data type

Note – Compiler options -dbl , -i2 , -r8 , and -xtypemap change the default sizes

of variables and have an effect on intrinsic references. See “Remarks” on page 332,

and the discussion of default sizes and alignment in “Size and Alignment of Data

Types” on page 29.
319

Arithmetic and Mathematical Functions

This section details arithmetic, type conversion, trigonometric, and other functions.

“a” stands for a function’s single argument, “a1” and “a2” for the first and second

arguments of a two argument function, and “ar” and “ai” for the real and imaginary

parts of a function’s complex argument.
320 FORTRAN 77 Language Reference • July 2001

Arithmetic

TABLE 6-1 Arithmetic Functions

Intrinsic Function Definition

No.
of
Args
.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Absolute value

See Note (6).
|a| =

(ar2+ai2)1/2

1 ABS IABS
ABS
DABS
CABS
QABS ✠

ZABS ✠

CDABS ✠

CQABS✠

INTEGER
REAL
DOUBLE
COMPLEX
REAL*16
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

INTEGER
REAL
DOUBLE
REAL
REAL*16
DOUBLE
DOUBLE
REAL*16

Truncation

See Note (1).
int(a) 1 AINT AINT

DINT
QINT ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Nearest whole

number

int(a+.5) if a ≥ 0

int(a-.5) if a < 0

1 ANINT ANINT
DNINT
QNINT ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Nearest integer int(a+.5) if a ≥ 0

int(a-.5) if a < 0

1 NINT NINT
IDNINT
IQNINT ✠

REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER

Remainder

See Note (1).
a1-int(a1/a2)*a2 2 MOD MOD

AMOD
DMOD
QMOD✠

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Transfer of sign |a1| if a2 ≥ 0

-|a1| if a2 < 0

2 SIGN ISIGN
SIGN
DSIGN
QSIGN ✠

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Positive

difference

a1-a2 if a1 > a2

0 if a1 ≤ a2

2 DIM IDIM
DIM
DDIM
QDIM ✠

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Double and

quad products

a1 * a2 2 - DPROD
QPROD✠

REAL
DOUBLE

DOUBLE
REAL*16
Chapter 6 Intrinsic Functions 321

Choosing

largest value

max(a1, a2, …) ≥2 MAX MAX0
AMAX1
DMAX1
QMAX1✠

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

AMAX0 AMAX0 INTEGER REAL

MAX1 MAX1 REAL INTEGER

Choosing

smallest value

min(a1, a2, …) ≥2 MIN MIN0
AMIN1
DMIN1
QMIN1 ✠

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

AMIN0 AMIN0 INTEGER REAL

MIN1 MIN1 REAL INTEGER

TABLE 6-1 Arithmetic Functions (Continued)

Intrinsic Function Definition

No.
of
Args
.

Generic
Name

Specific
Names

Argument
Type

Function
Type
322 FORTRAN 77 Language Reference • July 2001

Type Conversion

TABLE 6-2 Type Conversion Functions

Conversion to
No. of
Args

Generic
Name

Specific
Names Argument Type Function Type

INTEGER
See Note (1).

1 INT -
INT
IFIX
IDINT
-
-
-
IQINT ✠

INTEGER
REAL
REAL
DOUBLE
COMPLEX
COMPLEX*16
COMPLEX*32
REAL*16

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

REAL
 See Note (2).

1 REAL REAL
FLOAT
-
SNGL
SNGLQ✠

-
-
-

INTEGER
INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

DOUBLE
 See Note (3).

1 DBLE DBLE
DFLOAT
DREAL ✠

-
-
-
-
-
DBLEQ ✠

-

INTEGER
INTEGER
REAL
DOUBLE
COMPLEX
COMPLEX*16
REAL*16
COMPLEX*32
REAL*16
COMPLEX*32

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

REAL*16
See Note (3’).

1 QREAL✠
QEXT ✠

QREAL ✠

QFLOAT ✠

-
QEXT ✠

QEXTD ✠

-
-
-
-

INTEGER
INTEGER
REAL
INTEGER
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
Chapter 6 Intrinsic Functions 323

On an ASCII platform, including Sun systems:

■ ACHARis a nonstandard synonym for CHAR
■ IACHAR is a nonstandard synonym for ICHAR

On a non-ASCII platform, ACHARand IACHAR were intended to provide a way to

deal directly with ASCII.

COMPLEX
 See Notes (4)

 and (8).

1 or 2 CMPLX -
-
-
-
-
-
-

INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX

DOUBLE
COMPLEX

 See Note (8).

1 or 2 DCMPLX✠ -
-
-
-
-
-
-

INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX

COMPLEX*32
 See Note (8).

1 or 2 QCMPLX✠ -
-
-
-
-
-
-

INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32

INTEGER
 See Note (5).

1 -
-

ICHAR
IACHAR ✠

CHARACTER INTEGER

CHARACTER
 See Note (5).

1 -
-

CHAR
ACHAR✠

INTEGER CHARACTER

TABLE 6-2 Type Conversion Functions (Continued)

Conversion to
No. of
Args

Generic
Name

Specific
Names Argument Type Function Type
324 FORTRAN 77 Language Reference • July 2001

Trigonometric Functions

TABLE 6-3 Trigonometric Functions

Intrinsic
Function Definition Args

Generic
Name

Specific
Names Argument Type Function Type

Sine

See Note (7).
sin(a) 1 SIN SIN

DSIN
QSIN ✠

CSIN
ZSIN ✠

CDSIN ✠

CQSIN ✠

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Sine

(degrees)

See Note (7).

sin(a) 1 SIND ✠ SIND ✠

DSIND ✠

QSIND ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Cosine

See Note (7).
cos(a) 1 COS COS

DCOS
QCOS✠

CCOS
ZCOS ✠

CDCOS✠

CQCOS✠

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Cosine

(degrees)

See Note (7).

cos(a) 1 COSD✠ COSD✠

DCOSD✠

QCOSD✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Tangent

See Note (7).
tan(a) 1 TAN TAN

DTAN
QTAN ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Tangent

(degrees)

See Note (7).

tan(a) 1 TAND ✠ TAND ✠

DTAND ✠

QTAND✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arcsine

See Note (7).
arcsin(a) 1 ASIN ASIN

DASIN
QASIN ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arcsine

(degrees)

See Note (7).

arcsin(a) 1 ASIND ✠ ASIND ✠

DASIND ✠

QASIND ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arccosine

See Note (7).
arccos(a) 1 ACOS ACOS

DACOS
QACOS✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16
Chapter 6 Intrinsic Functions 325

Arccosine

(degrees)

See Note (7).

arccos(a) 1 ACOSD✠ ACOSD✠

DACOSD✠

QACOSD✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arctangent

See Note (7).
arctan(a) 1 ATAN ATAN

DATAN
QATAN ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

arctan

(a1/a2)

2 ATAN2 ATAN2
DATAN2
QATAN2 ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arctangent

(degrees)

See Note (7).

arctan(a) 1 ATAND ✠ ATAND ✠

DATAND✠

QATAND✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

arctan

(a1/a2)

2 ATAN2D✠ ATAN2D ✠

DATAN2D ✠

QATAN2D✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Hyperbolic

Sine

See Note (7).

sinh(a) 1 SINH SINH
DSINH
QSINH ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Hyperbolic

Cosine

See Note (7).

cosh(a) 1 COSH COSH
DCOSH
QCOSH✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Hyperbolic

Tangent

See Note (7).

tanh(a) 1 TANH TANH
DTANH
QTANH✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

TABLE 6-3 Trigonometric Functions (Continued)

Intrinsic
Function Definition Args

Generic
Name

Specific
Names Argument Type Function Type
326 FORTRAN 77 Language Reference • July 2001

Other Mathematical Functions

TABLE 6-4 Other Mathematical Functions

Intrinsic
Function Definition

No. of
Args.

Generic
Name

Specific
Names Argument Type Function Type

Imaginary part

of a complex

number

See Note (6).

ai 1 IMAG AIMAG
DIMAG ✠

QIMAG ✠

COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16

Conjugate of a

complex

number

See Note (6).

(ar, -ai) 1 CONJG CONJG
DCONJG✠

QCONJG✠

COMPLEX
DOUBLE COMPLEX
COMPLEX*32

COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Square root a**(1/2) 1 SQRT SQRT
DSQRT
QSQRT✠

CSQRT
ZSQRT ✠

CDSQRT✠

CQSQRT✠

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Cube root

See Note(8’).
a**(1/3) 1 CBRT CBRT✠

DCBRT ✠

QCBRT✠

CCBRT ✠

ZCBRT ✠

CDCBRT✠

CQCBRT✠

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Exponential e**a 1 EXP EXP
DEXP
QEXP ✠

CEXP
ZEXP ✠

CDEXP ✠

CQEXP✠

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Natural

logarithm

log(a) 1 LOG ALOG
DLOG
QLOG✠

CLOG
ZLOG ✠

CDLOG✠

CQLOG✠

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32
Chapter 6 Intrinsic Functions 327

■ The error function: 2/sqrt(pi) x integral from 0 to a of exp(-t*t) dt

Common

logarithm

log10(a) 1 LOG10 ALOG10
DLOG10
QLOG10 ✠

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Error function

(See note below)
erf(a) 1 ERF ERF ✠

DERF ✠

REAL
DOUBLE

REAL
DOUBLE

Error function 1.0 - erf(a) 1 ERFC ERFC✠

DERFC ✠

REAL
DOUBLE

REAL
DOUBLE

TABLE 6-4 Other Mathematical Functions (Continued)

Intrinsic
Function Definition

No. of
Args.

Generic
Name

Specific
Names Argument Type Function Type
328 FORTRAN 77 Language Reference • July 2001

Character Functions

On an ASCII platform (including Sun systems):

■ ACHARis a nonstandard synonym for CHAR
■ IACHAR is a nonstandard synonym for ICHAR

On a non-ASCII platform, ACHARand IACHAR were intended to provide a way to

deal directly with ASCII.

TABLE 6-5 Character Functions

Intrinsic Function Definition

No.
of
Args.

Specific
Names Argument Type Function Type

Conversion

See Note (5).
Conversion to

character

Conversion to integer

See also:
TABLE 6-2.

1

1

CHAR
ACHAR✠

ICHAR
IACHAR ✠

INTEGER

CHARACTER

CHARACTER

INTEGER

Index of a substring Location of substring

a2 in string a1

See Note (10).

2 INDEX CHARACTER INTEGER

Length Length of character

entity

See Note (11).

1 LEN CHARACTER INTEGER

Lexically greater

than or equal

a1 ≥ a2

See Note (12).
2 LGE CHARACTER LOGICAL

Lexically greater

than

a1 > a2

See Note (12).
2 LGT CHARACTER LOGICAL

Lexically less than

or equal

a1 ≤ a2

See Note (12).
2 LLE CHARACTER LOGICAL

Lexically less than a1 < a2

See Note (12).
2 LLT CHARACTER LOGICAL
Chapter 6 Intrinsic Functions 329

Miscellaneous Functions

Other miscellaneous functions include bitwise functions, environmental inquiry

functions, and memory allocation and deallocation functions.

Bit Manipulation ✠

None of these functions are part of the FORTRAN 77 Standard.

TABLE 6-6 Bitwise Functions

Bitwise Operations
No. of
Args. Specific Name Argument Type Function Type

Complement 1 NOT INTEGER INTEGER

And 2

2

AND
IAND

INTEGER
INTEGER

INTEGER
INTEGER

Inclusive or 2

2

OR
IOR

INTEGER
INTEGER

INTEGER
INTEGER

Exclusive or 2

2

XOR
IEOR

INTEGER
INTEGER

INTEGER
INTEGER

Shift

See Note (14).
2 ISHFT INTEGER INTEGER

Left shift

See Note (14).
2 LSHIFT INTEGER INTEGER

Right shift

See Note (14).
2 RSHIFT INTEGER INTEGER

Logical right shift

See Note (14).
2 LRSHFT INTEGER INTEGER

Circular shift 3 ISHFTC INTEGER INTEGER

Bit extraction 3 IBITS INTEGER INTEGER

Bit set 2 IBSET INTEGER INTEGER

Bit test 2 BTEST INTEGER LOGICAL

Bit clear 2 IBCLR INTEGER INTEGER
330 FORTRAN 77 Language Reference • July 2001

The above functions are available as intrinsic or extrinsic functions. See also the

discussion of the library bit manipulation routines in the Fortran Library Reference
manual.

Environmental Inquiry Functions ✠

None of these functions are part of the FORTRAN 77 Standard.

TABLE 6-7 Environmental Inquiry Functions

Definition
No. of
Args. Generic Name Argument Type Function Type

Base of Number System 1 EPBASE INTEGER
REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER
INTEGER

Number of Significant Bits 1 EPPREC INTEGER
REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER
INTEGER

Minimum Exponent 1 EPEMIN REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER

Maximum Exponent 1 EPEMAX REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER

Least Nonzero Number 1 EPTINY REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Largest Number

Representable

1 EPHUGE INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Epsilon

See Note (16).
1 EPMRSP REAL

DOUBLE
REAL*16

REAL
DOUBLE
REAL*16
Chapter 6 Intrinsic Functions 331

Memory ✠

None of these functions are part of the FORTRAN 77 Standard.

Although malloc (3F) and free (3F) are not, strictly speaking, intrinsics, they are

listed here and in the Fortran Library Reference. Additional non-standard intrinsics,

such as isetjmp (3F), longjmp (3F), and date_and_time (3F), are also described in

the Fortran Library Reference and by their man pages.

Remarks

The following remarks apply to all of the intrinsic function tables in this chapter.

■ The abbreviation DOUBLEstands for DOUBLE PRECISION.

■ An intrinsic that takes INTEGERarguments accepts INTEGER*2, INTEGER*4, or

INTEGER*8.

■ INTEGERintrinsics that take INTEGERarguments return values of INTEGERtype

determined as follows – note that options -i2 , -dbl , and -xtypemap may alter

the default sizes of actual arguments:

■ mod sign dim max min and iand or ior xor ieor — size of the

value returned is the largest of the sizes of the arguments.

■ abs ishft lshift rshift lrshft ibset btest ivclr ishftc
ibits — size of the value returned is the size of the first argument.

TABLE 6-8 Memory Functions

Intrinsic

Function

Definition No.

of

Args

Specific Name Argument

Type

Function

Type

Location Address of

See Note (17).
1 LOC Any INTEGER*4

INTEGER*8

Allocate Allocate memory and

return address.

See Note (17).

1 MALLOC
MALLOC64

INTEGER*4
INTEGER*8

INTEGER
INTEGER*8

Deallocate Deallocate memory

allocated by MALLOC.
See Note (17).

1 FREE Any -

Size Return the size of the

argument in bytes.

See Note (18).

1 SIZEOF Any
expression

INTEGER
332 FORTRAN 77 Language Reference • July 2001

■ int epbase epprec — size of the value returned is the size of default

INTEGER.

■ ephuge — size of the value returned is the size of the default INTEGER, or the

size of the argument, whichever is largest.

■ Options that change the default data sizes (see “Size and Alignment of Data

Types” on page 29) also change the way some intrinsics are used. For example,

with -dbl in effect, a call to ZCOSwith a DOUBLE COMPLEXargument will

automatically become a call to CQCOSbecause the argument has been promoted to

COMPLEX*32. The following functions have this capability:

aimag alog amod cabs ccbrt ccos cdabs cdcbrt cdcos cdexp
cdlog cdsin cdsqrt cexp clog csin csqrt dabs dacos dacosd
dasin dasind datan datand dcbrt dconjg dcos dcosd dcosh ddim
derf derfc dexp dimag dint dlog dmod dnint dprod dsign dsin
dsind dsinh dsqrt dtan dtand dtanh idnint iidnnt jidnnt zabs
zcbrt zcos zexp zlog zsin zsqrt

■ The following functions permit arguments of an integer or logical type of any

size:

and iand ieor iiand iieor iior inot ior jiand jieor jior jnot
lrshft lshift not or rshift xor

■ An intrinsic that is shown to return a default REAL, DOUBLE PRECISION,
COMPLEX, or DOUBLE COMPLEXvalue will return the prevailing type depending

on certain compilation options. (See “Size and Alignment of Data Types” on

page 29.) For example, if compiled with -xtypemap=real:64,double:64 :

■ A call to a REAL function returns REAL*8
■ A call to a DOUBLE PRECISIONfunction returns REAL*8
■ A call to a COMPLEXfunction returns COMPLEX*16
■ A call to a DOUBLE COMPLEXfunction returns COMPLEX*16

Other options that alter the data sizes of default data types are –r8 and –dbl ,

which also promote DOUBLEto QUAD. The –xtypemap= option provides more

flexibility than these older compiler options and is preferred.

■ A function with a generic name returns a value with the same type as the

argument—except for type conversion functions, the nearest integer function, the

absolute value of a complex argument, and others. If there is more than one

argument, they must all be of the same type.

■ If a function name is used as an actual argument, then it must be a specific name.

■ If a function name is used as a dummy argument, then it does not identify an

intrinsic function in the subprogram, and it has a data type according to the same

rules as for variables and arrays.
Chapter 6 Intrinsic Functions 333

Notes on Functions

Tables and notes 1 through 12 are based on the “Table of Intrinsic Functions,” from

ANSI X3.9-1978 Programming Language FORTRAN, with the FORTRAN extensions

added.

(1) INT

If A is type integer, then INT(A) is A.

If A is type real or double precision, then:

if |A| < 1 , then INT(A) is 0

if |A| ≥ 1, then INT(A) is the greatest integer that does not exceed the magnitude

of A, and whose sign is the same as the sign of A. (Such a mathematical integer value

may be too large to fit in the computer integer type.)

If A is type complex or double complex, then apply the above rule to the real part of

A.

If A is type real, then IFIX(A) is the same as INT(A) .

(2) REAL

If A is type real, then REAL(A) is A.

If A is type integer or double precision, then REAL(A) is as much precision of the

significant part of A as a real datum can contain.

If A is type complex, then REAL(A) is the real part of A.

If A is type double complex, then REAL(A) is as much precision of the significant

part of the real part of A as a real datum can contain.

(3) DBLE

If A is type double precision, then DBLE(A) is A.

If A is type integer or real, then DBLE(A) is as much precision of the significant part

of A as a double precision datum can contain.

If A is type complex, then DBLE(A) is as much precision of the significant part of the

real part of A as a double precision datum can contain.

If A is type COMPLEX*16, then DBLE(A) is the real part of A.

(3’) QREAL

If A is type REAL*16 , then QREAL(A) is A.
334 FORTRAN 77 Language Reference • July 2001

If A is type integer, real, or double precision, then QREAL(A) is as much precision of

the significant part of A as a REAL*16 datum can contain.

If A is type complex or double complex, then QREAL(A) is as much precision of the

significant part of the real part of A as a REAL*16 datum can contain.

If A is type COMPLEX*16or COMPLEX*32, then QREAL(A) is the real part of A.

(4) CMPLX

If A is type complex, then CMPLX(A) is A.

If A is type integer, real, or double precision, then CMPLX(A) is

REAL(A) + 0i .

If A1 and A2 are type integer, real, or double precision, then CMPLX(A1,A2) is

REAL(A1) + REAL(A2)*i .

If A is type double complex, then CMPLX(A) is

REAL(DBLE(A)) + i*REAL(DIMAG(A)) .

If CMPLXhas two arguments, then they must be of the same type, and they may be

one of integer, real, or double precision.

If CMPLXhas one argument, then it may be one of integer, real, double precision,

complex, COMPLEX*16, or COMPLEX*32.

(4’) DCMPLX

If A is type COMPLEX*16, then DCMPLX(A) is A.

If A is type integer, real, or double precision, then DCMPLX(A) is

DBLE(A) + 0i .

If A1 and A2 are type integer, real, or double precision, then DCMPLX(A1,A2) is

DBLE(A1) + DBLE(A2)*i .

If DCMPLXhas two arguments, then they must be of the same type, and they may be

one of integer, real, or double precision.

If DCMPLXhas one argument, then it may be one of integer, real, double precision,

complex, COMPLEX*16, or COMPLEX*32.

(5) ICHAR

ICHAR(A) is the position of A in the collating sequence.

The first position is 0, the last is N-1, 0 ≤ICHAR(A) ≤N-1 , where N is the number of

characters in the collating sequence, and A is of type character of length one.

CHARand ICHAR are inverses in the following sense:

■ ICHAR(CHAR(I)) = I , for 0≤I ≤N-1
Chapter 6 Intrinsic Functions 335

■ CHAR(ICHAR(C)) = C , for any character C capable of representation in the

processor

(6) COMPLEX

A COMPLEXvalue is expressed as an ordered pair of reals, (ar, ai) , where ar is

the real part, and ai is the imaginary part.

(7) Radians

All angles are expressed in radians, unless the “Intrinsic Function” column includes

the “(degrees)” remark.

(8) COMPLEXFunction

The result of a function of type COMPLEXis the principal value.

(8’) CBRT

If a is of COMPLEXtype, CBRTresults in COMPLEX RT1=(A, B), where:

A ≥ 0.0 , and -60 degrees ≤ arctan (B/A) < + 60 degrees.

Other two possible results can be evaluated as follows:

■ RT2 = RT1 * (-0.5, square_root (0.75))
■ RT3 = RT1 * (-0.5, square_root (0.75))

(9) Argument types

All arguments in an intrinsic function reference must be of the same type.

(10) INDEX

INDEX(X,Y) is the place in X where Y starts. That is, it is the starting position

within character string X of the first occurrence of character string Y.

If Y does not occur in X, then INDEX(X,Y) is 0.

If LEN(X) < LEN(Y) , then INDEX(X,Y) is 0.

INDEX returns default INTEGER*4 data. If compiling for a 64-bit environment, the

compiler will issue a warning if the result overflows the INTEGER*4 data range. To

use INDEX in a 64-bit environment with character strings larger than the INTEGER*4
limit (2 Gbytes), the INDEX function and the variables receiving the result must be

declared INTEGER*8.

(11) LEN

LEN returns the declared length of the CHARACTERargument variable. The actual

value of the argument is of no importance.
336 FORTRAN 77 Language Reference • July 2001

LEN returns default INTEGER*4 data. If compiling for a 64-bit environment, the

compiler will issue a warning if the result overflows the INTEGER*4 data range. To

use LEN in a 64-bit environment with character variables larger than the INTEGER*4
limit (2 Gbytes), the LEN function and the variables receiving the result must be

declared INTEGER*8.

(12) Lexical Compare

LGE(X, Y) is true if X=Y, or if X follows Y in the collating sequence; otherwise, it

is false.

LGT(X, Y) is true if X follows Y in the collating sequence; otherwise, it is false.

LLE(X, Y) is true if X=Y, or if X precedes Y in the collating sequence; otherwise,

it is false.

LLT(X, Y) is true if X precedes Y in the collating sequence; otherwise, it is false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the shorter

operand is considered as if it were extended on the right with blanks.

(13) Bit Functions

See “VMS Language Extensions” on page 365 for details on other bitwise operations.

(14) Shift

LSHIFT shifts a1 logically left by a2 bits (inline code).

LRSHFTshifts a1 logically right by a2 bits (inline code).

RSHIFT shifts a1 arithmetically right by a2 bits.

ISHFT shifts a1 logically left if a2 > 0 and right if a2 < 0.

The LSHIFT and RSHIFT functions are the FORTRAN analogs of the C << and >>
operators. As in C, the semantics depend on the hardware.

The behavior of the shift functions with an out of range shift count is hardware

dependent and generally unpredictable. In this release, shift counts larger than 31

result in hardware dependent behavior.

(15) Environmental inquiries

Only the type of the argument is significant.

(16) Epsilon

Epsilon is the least e, such that 1.0 + e ≠ 1.0 .
Chapter 6 Intrinsic Functions 337

(17) LOC, MALLOC, and FREE

The LOCfunction returns the address of a variable or of an external procedure. The

function call MALLOC(n) allocates a block of at least n bytes, and returns the

address of that block.

LOCreturns default INTEGER*4 in 32-bit environments, INTEGER*8 in 64-bit

environments.

MALLOCis a library function and not an intrinsic. It too returns default INTEGER*4
in 32-bit environments, INTEGER*8 in 64-bit environments. However, MALLOCmust

be explicitly declared INTEGER*8 when compiling for 64-bit environments.

The value returned by LOCor MALLOCshould be stored in variables typed POINTER,

INTEGER*4, or INTEGER*8 in 64-bit environments. The argument to FREEmust be

the value returned by a previous call to MALLOCand hence should have data type

POINTER, INTEGER*4, or INTEGER*8.

MALLOC64always takes an INTEGER*8 argument (size of memory request in bytes)

and always returns an INTEGER*8 value. Use this routine rather than MALLOCwhen

compiling programs that must run in both 32-bit and 64-bit environments. The

receiving variable must be declared either POINTERor INTEGER*8.

(18) SIZEOF

The SIZEOF intrinsic cannot be applied to arrays of an assumed size, characters of a

length that is passed, or subroutine calls or names. SIZEOF returns default

INTEGER*4 data. If compiling for a 64-bit environment, the compiler will issue a

warning if the result overflows the INTEGER*4 data range. To use SIZEOF in a 64-

bit environment with arrays larger than the INTEGER*4 limit (2 Gbytes), the SIZEOF
function and the variables receiving the result must be declared INTEGER*8.

✠ VMS Intrinsic Functions

This section lists VMS FORTRAN intrinsic routines recognized by f77 . They are, of

course, nonstandard. ✠
338 FORTRAN 77 Language Reference • July 2001

VMS Double-Precision Complex

VMS Degree-Based Trigonometric

TABLE 6-9 VMS Double-Precision Complex Functions

Generic
Name

Specific
Names Function Argument Type Result Type

CDABS
CDEXP
CDLOG
CDSQRT

Absolute value

Exponential, e**a
Natural log

Square root

COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16

REAL*8
COMPLEX*16
COMPLEX*16
COMPLEX*16

CDSIN
CDCOS

Sine

Cosine

COMPLEX*16
COMPLEX*16

COMPLEX*16
COMPLEX*16

DCMPLX
DCONJG
DIMAG
DREAL

Convert to DOUBLE COMPLEX
Complex conjugate

Imaginary part of complex

Real part of complex

Any numeric
COMPLEX*16
COMPLEX*16
COMPLEX*16

COMPLEX*16
COMPLEX*16
REAL*8
REAL*8

TABLE 6-10 VMS Degree-Based Trigonometric Functions

Generic
Name

Specific
Names Function Argument Type Result Type

SIND
SIND
DSIND
QSIND

Sine -
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

COSD
COSD
DCOSD
QCOSD

Cosine -
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

TAND
TAND
DTAND
QTAND

Tangent -
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

ASIND
ASIND
DASIND
QASIND

Arc sine -
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16
Chapter 6 Intrinsic Functions 339

VMS Bit-Manipulation

ACOSD
ACOSD
DACOSD
QACOSD

Arc cosine -
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

ATAND
ATAND
DATAND
QATAND

Arc tangent -
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

ATAN2D
ATAN2D
DATAN2D
QATAN2D

Arc tangent of a1/a2 -
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

TABLE 6-11 VMS Bit-Manipulation Functions

Generic
Name

Specific
Names Function Argument Type Result Type

IBITS
IIBITS
JIBITS

From a1 , initial bit a2 , extract a3 bits -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

ISHFT

IISHFT
JISHFT

Shift a1 logically by a2 bits; if a2 positive shift

left, if a2 negative shift right

Shift a1 logically left by a2 bits

Shift a1 logically left by a2 bits

-

INTEGER*2
INTEGER*4

-

INTEGER*2
INTEGER*4

ISHFTC
IISHFTC
JISHFTC

In a1 , circular shift by a2 places, of right a3 bits -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IAND
IIAND
JIAND

Bitwise ANDof a1 , a2 -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IOR
IIOR
JIOR

Bitwise ORof a1 , a2 -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

TABLE 6-10 VMS Degree-Based Trigonometric Functions (Continued)

Generic
Name

Specific
Names Function Argument Type Result Type
340 FORTRAN 77 Language Reference • July 2001

IEOR
IIEOR
JIEOR

Bitwise exclusive ORof a1 , a2 -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

NOT
INOT
JNOT

Bitwise complement -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IBSET
IIBSET
JIBSET

In a1 , set bit a2 to 1

In a1 , set bit a2 to 1; return new a1
In a1 , set bit a2 to 1; return new a1

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

BTEST
BITEST
BJTEST

If bit a2 of a1 is 1, return .TRUE. -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IBCLR
IIBCLR
JIBCLR

In a1 , set bit a2 to 0; return new a1 -
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

TABLE 6-11 VMS Bit-Manipulation Functions (Continued)

Generic
Name

Specific
Names Function Argument Type Result Type
Chapter 6 Intrinsic Functions 341

VMS Multiple Integer Types

The possibility of multiple integer types is not addressed by the FORTRAN

Standard. f77 copes with their existence by treating a specific INTEGER-to-INTEGER
function name (IABS , and so forth) as a special sort of generic. The argument type is

used to select the appropriate runtime routine name, which is not accessible to the

programmer.

VMS FORTRAN takes a similar approach, but makes the specific names available.

TABLE 6-12 VMS Integer Functions

Specific Names Function Argument Type Result Type

IIABS
JIABS

Absolute value

Absolute value

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IMAX0
JMAX0

Maximum 1

Maximum 1

1. There must be at least two arguments.

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IMIN0
JMIN0

Minimum 1

Minimum 1
INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IIDIM
JIDIM

Positive difference 2

Positive difference 2

2. The positive difference is: a1-min(a1,a2))

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IMOD
JMOD

Remainder of a1/a2

Remainder of a1/a2

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IISIGN
JISIGN

Transfer of sign, |a1|*

sign(a2)

Transfer of sign, |a1|*

sign(a2)

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4
342 FORTRAN 77 Language Reference • July 2001

Functions Coerced to a Particular Type

Some VMS FORTRANfunctions coerce to a particular INTEGERtype.

TABLE 6-13 Translated Functions that VMS Coerces to a Particular Type

Specific Names Function
Argument
Type Result Type

IINT
JINT
LINT

Truncation toward zero

Truncation toward zero

Truncation toward zero

REAL*4
REAL*4
REAL*4

INTEGER*2
INTEGER*4
INTEGER*8

IIDINT
JIDINT

Truncation toward zero

Truncation toward zero

REAL*8
REAL*8

INTEGER*2
INTEGER*4

IIQINT
JIQINT

Truncation toward zero

Truncation toward zero

REAL*16
REAL*16

INTEGER*2
INTEGER*4

ININT
JNINT

Nearest integer, INT(a+.5*sign(a))
Nearest integer, INT(a+.5*sign(a))

REAL*4
REAL*4

INTEGER*2
INTEGER*4

IIDNNT
JIDNNT

Nearest integer, INT(a+.5*sign(a))
Nearest integer, INT(a+.5*sign(a))

REAL*8
REAL*8

INTEGER*2
INTEGER*4

IIQNNT
JIQNNT

Nearest integer, INT(a+.5*sign(a))
Nearest integer, INT(a+.5*sign(a))

REAL*16
REAL*16

INTEGER*2
INTEGER*4

IIFIX
JIFIX

Fix

Fix

REAL*4
REAL*4

INTEGER*2
INTEGER*4

IMAX1(a,a2,...)
JMAX1(a,a2,...)

Maximum of two or more arguments

Maximum of two or more arguments

REAL*4
REAL*4

INTEGER*2
INTEGER*4

IMIN1(a,a2,...)
JMIN1(a,a2,...)

Minimum of two or more arguments

Minimum of two or more arguments

READ*4
READ*4

INTEGER*2
INTEGER*4
Chapter 6 Intrinsic Functions 343

Functions Translated to a Generic Name

In some cases, each VMS-specific name is translated into an f77 generic name.

Zero Extend

The following zero-extend functions are recognized by f77 . The first unused high-

order bit is set to zero and extended toward the higher-order end to the width

indicated in the table

TABLE 6-14 VMS Functions That Are Translated into f77 Generic Names

Specific Names Function Argument Type Result Type

FLOATI
FLOATJ

Convert to REAL*4
Convert to REAL*4

INTEGER*2
INTEGER*4

REAL*4
REAL*4

DFLOTI
DFLOTJ

Convert to REAL*8
Convert to REAL*8

INTEGER*2
INTEGER*4

REAL*8
REAL*8

AIMAX0
AJMAX0

Maximum

Maximum

INTEGER*2
INTEGER*4

REAL*4
REAL*4

AIMIN0
AJMIN0

Minimum

Minimum

INTEGER*2
INTEGER*4

REAL*4
REAL*4

TABLE 6-15 Zero-Extend Functions

Generic Name
Specific
Names Function Argument Type Result Type

ZEXT Zero-extend - -

IZEXT Zero-extend BYTE
LOGICAL*1
LOGICAL*2
INTEGER*2

INTEGER*2

JZEXT Zero-extend BYTE
LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER
INTEGER*2
INTEGER*4

INTEGER*4
344 FORTRAN 77 Language Reference • July 2001

APPENDIX A

ASCII Character Set
345

This appendix contains two tables: ASCII character sets and control characters.

TABLE A-1 ASCII Character Set

Dec Oct Hex Name Dec Oct Hex Dec Oct Hex Name Dec Oct Hex

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

SP
!
"
#
$
%
&
’
(
)
*
+
,
–
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

‘
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
DEL
346 FORTRAN 77 Language Reference • July 2001

TABLE A-2 Control Characters ^=Control Key s^ =Shift and Control Keys

Dec Oct Hex Name Keys Meaning

0
1
2
3

000
001
002
003

00
01
02
03

NUL
SOH
STX
ETX

s^P
^A
^B
^C

Null or time fill character

Start of heading

Start of text

End of text (EOM)

4
5
6
7

004
005
006
007

04
05
06
07

EOT
ENQ
ACK
BEL

^D
^E
^F
^G

End of transmission

Enquiry (WRU)

Acknowledge (RU)

Bell

8
9
10
11

010
011
012
013

08
09
0A
0B

BS
HT
LF
VT

^H
^I
^J
^K

Backspace

Horizontal tab

Line feed (newline)

Vertical tab

12
13
14
15

014
015
016
017

0C
0D
0E
0F

FF
CR
SO
SI

^L
^M
^N
^O

Form Feed

Carriage Return

Shift Out

Shift In

16
17
18
19

020
021
022
023

10
11
12
13

DLE
DC1
DC2
DC3

^P
^Q
^R
^S

Data link escape

Device control 1 (X-ON)

Device control 2 (TAPE)

Device control 3 (X-OFF)

20
21
22
23

024
025
026
027

14
15
16
17

DC4
NAK
SYN
ETB

^T
^U
^V
^W

Device control 4 (TAPE)

Negative acknowledge

Synchronous idle

End of transmission blocks

24
25
26
27

030
031
032
033

18
19
1A
1B

CAN
EM
SS
ESC

^X
^Y
^Z
s^K

Cancel

End Of medium

Special sequence

Escape (^ [)

28
29
30
31

034
035
036
037

1C
1D
1E
1F

FS
GS
RS
US

s^L
s^M
s^N
s^O

File separator (^ \)

Group separator (^])

Record separator (^ ‘)

Unit separator (^ /)

127 177 7F DEL s^0 Delete or rubout (^ _)
Appendix A ASCII Character Set 347

348 FORTRAN 77 Language Reference • July 2001

APPENDIX B

Sample Statements

This appendix shows a table that contains selected samples of the f77 statement

types. The purpose is to provide a quick reference for syntax details of the more

common variations of each statement type.

Nonstandard features are tagged with a small black cross (✠).

TABLE B-1 FORTRAN Statement Samples

Name Examples Comments

ACCEPT ✠ ACCEPT *, A, I Compare to READ.

ASSIGN ASSIGN 9 TO I

ASSIGNMENT C = 'abc'
C = "abc"
C = S // 'abc'
C = S(I:M)

Character ✠

L = L1 .OR. L2
L = I .LE. 80

Logical

N = N+1
X = '7FF00000'x

Arithmetic

Hex ✠

CURR = NEXT
NEXT.ID = 82

Compare to

RECORD.

AUTOMATIC✠ AUTOMATIC A, B, C
AUTOMATIC REAL P, D, Q
IMPLICIT AUTOMATIC REAL (X-Z)

BACKSPACE BACKSPACE U
BACKSPACE(UNIT=U,IOSTAT=I, ERR=9)

BLOCK DATA BLOCK DATA
BLOCK DATA COEFFS
349

BYTE✠ BYTE A, B, C
BYTE A, B, C(10)
BYTE A /'x'/, B /255/, C(10) Initialize A and B

CALL CALL P(A, B)
CALL P(A, B, *9)
CALL P(A, B, &9)
CALL P

Alternate return

Alternate return ✠

CHARACTER CHARACTER C*80, D*1(4)
CHARACTER*18 A, B, C
CHARACTER A, B*3 /'xyz'/, C /'z'/ Initialize B and C✠

CLOSE CLOSE (UNIT=I)
CLOSE(UNIT=U, ERR=90, IOSTAT=I)

COMMON COMMON / DELTAS / H, P, T
COMMON X, Y, Z
COMMON P, D, Q(10,100)

COMPLEX COMPLEX U, V, U(3,6)
COMPLEX U*16
COMPLEX U*32
COMPLEX U/(1.0,1.0)/,V/(1.0,10.0)/

Double complex ✠

Quad complex ✠

Initialize U and V ✠

CONTINUE 100 CONTINUE

DATA DATA A, C / 4.01, 'z' /
DATA (V(I),I=1,3) /.7, .8, .9/
DATA ARRAY(4,4) / 1.0 /
DATA B,O,X,Y /B'0011111', O'37', X'1f',
Z'1f'/

✠

DECODE✠ DECODE (4, 1, S) V

DIMENSION DIMENSION ARRAY(4, 4)
DIMENSION V(1000), W(3)

DO DO 100 I = INIT, LAST, INCR
…
100 CONTINUE

DO I = INIT, LAST
…
END DO

Unlabeled DO✠

DO WHILE (DIFF .LE. DELTA)
…
END DO

DO WHILE✠

DO 100 WHILE (DIFF .LE. DELTA)
…
100 CONTINUE

✠

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
350 FORTRAN 77 Language Reference • July 2001

DOUBLE COMPLEX✠ DOUBLE COMPLEX U, V
DOUBLE COMPLEX U, V
COMPLEX U/(1.0,1.0D0)/,

V/(1.0,1.0D0)/

COMPLEX*16✠

COMPLEX✠
Initialize U and V ✠

DOUBLE PRECISION DOUBLE PRECISION A, D, Y(2)
DOUBLE PRECISION A,D/1.2D3/,Y(2)

REAL*8 ✠

Initialize D ✠

ELSE ELSE Compare to IF (Block)

ELSE IF ELSE IF

ENCODE✠ ENCODE(4, 1, T) A, B, C

END END

END DO✠ END DO Compare to DO

ENDFILE ENDFILE (UNIT=I)
ENDFILE I
ENDFILE(UNIT=U, IOSTAT=I, ERR=9)

END IF END IF

END MAP✠ END MAP Compare to MAP

END STRUCTURE END STRUCTURE Compare to STRUCTURE

END UNION✠ END UNION Compare to UNION

ENTRY ENTRY SCHLEP(X, Y)
ENTRY SCHLEP(A1, A2, *4)
ENTRY SCHLEP

EQUIVALENCE EQUIVALENCE (V(1), A(1,1))
EQUIVALENCE (V, A)
EQUIVALENCE (X,V(10)), (P,D,Q)

EXTERNAL EXTERNAL RNGKTA, FIT

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
Appendix B Sample Statements 351

FORMAT 10 FORMAT(//
2X,2I3,3F6.1,4E12.2,2A6,3L2)
10 FORMAT(// 2D6.1, 3G12.2)
10 FORMAT(2I3.3,3G6.1E3,4E12.2E3)

10 FORMAT('a quoted string',
" another", I2)

10 FORMAT(18Hhollerith string, I2)
10 FORMAT(1X, T10, A1, T20, A1)

Strings ✠

Hollerith

Tabs

10 FORMAT(5X,TR10,A1,TR10,A1,TL5,A1)
10 FORMAT(" Init=", I2, :, 3X,

"Last=", I2)
10 FORMAT(1X,"Enter path name ", $)

Tab right, left

:

$

10 FORMAT(F4.2, Q, 80 A1
10 FORMAT('Octal ',O6,', Hex ',Z6)
10 FORMAT(3F<N>.2)

Q ✠

Octal, hex ✠

Variable expression ✠

FUNCTION FUNCTION Z(A, B)
FUNCTION W(P,D, *9)
CHARACTER FUNCTION R*4(P,D,*9)
INTEGER*2 FUNCTION M(I, J) Short integer ✠

GO TO GO TO 99 Unconditional

GO TO I, (10, 50, 99)
GO TO I

Assigned

GO TO (10, 50, 99), I Computed

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
352 FORTRAN 77 Language Reference • July 2001

IF IF (I -K) 10, 50, 90 Arithmetic IF

IF (L) RETURN LOGICAL IF

IF (L) THEN
N=N+1
CALL CALC

ELSE
K=K+1
CALL DISP

ENDIF

BLOCK IF

IF (C .EQ. 'a') THEN
NA=NA+1
CALL APPEND

ELSE I F (C .EQ. 'b') THEN
NB=NB+1
CALL BEFORE

ELSE I F (C .EQ. 'c') THEN
NC=NC+1
CALL CENTER

END IF

BLOCK IF
With ELSE IF

IMPLICIT IMPLICIT COMPLEX (U-W,Z)
IMPLICIT UNDEFINED (A-Z)

INCLUDE ✠ INCLUDE 'project02/header'

INQUIRE INQUIRE(UNIT=3, OPENED=OK)
INQUIRE(FILE='mydata', EXIST=OK)
INQUIRE(UNIT=3, OPENED=OK,
IOSTAT=ERRNO)

INTEGER INTEGER C, D(4)
INTEGER C*2
INTEGER*4 A, B, C

Short integer ✠

INTEGER A/ 100 /, B , C / 9 / Initialize A and C ✠

INTRINSIC INTRINSIC SQRT, EXP

LOGICAL LOGICAL C
LOGICAL B*1, C*1
LOGICAL*1 B, C
LOGICAL*4 A, B, C

✠

✠

✠

LOGICAL B / .FALSE. /, C Initialize B ✠

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
Appendix B Sample Statements 353

Map ✠ MAP
CHARACTER *18 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP

Compare to STRUCTURE
and UNION

NAMELIST ✠ NAMELIST /CASE/ S, N, D

OPEN OPEN(UNIT=3, FILE="data.test")
OPEN(UNIT=3, IOSTAT=ERRNO)

OPTIONS ✠ OPTIONS /CHECK /EXTEND_SOURCE

PARAMETER PARAMETER (A="xyz"), (PI=3.14)
PARAMETER (A="z", PI=3.14)
PARAMETER X=11, Y=X/3 ✠

PAUSE PAUSE

POINTER ✠ POINTER (P, V), (I, X)

PRAGMA✠ EXTERNAL RNG ! $PRAGMA C(RNG) C()directive

PROGRAM PROGRAM FIDDLE

PRINT PRINT *, A, I List-directed

PRINT 10, A, I Formatted

PRINT 10, M Array M

PRINT 10, (M(I),I=J,K) Implied-DO

PRINT 10, C(I:K) Substring

PRINT '(A6,I3)', A, I
PRINT FMT='(A6,I3)', A, I

Character constant format

PRINT S, I
PRINT FMT=S, I

Switch variable has format

number

PRINT G Namelist ✠

READ READ *, A, I List-directed

READ 1, A, I Formatted

READ 10, M Array M

READ 10, (M(I),I=J,K) Implied-DO

READ 10, C(I:K) Substring

READ '(A6,I3)', A, I Character constant

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
354 FORTRAN 77 Language Reference • July 2001

READ(1, 2) X, Y
READ(UNIT=1, FMT=2) X,Y
READ(1, 2, ERR=8,END=9) X,Y
READ(UNIT=1,FMT=2,ERR=8,END=9) X,Y

Formatted read from a file

READ(*, 2) X, Y Formatted read from

standard input

READ(*, 10) M Array M

READ(*, 10) (M(I),I=J,K) Implied-DO

READ(*, 10) C(I:K) Substring

READ(1, *) X, Y
READ(*, *) X, Y

List-directed from file—

from standard input

READ(1, '(A6,I3)') X, Y
READ(1, FMT='(A6,I3)') X, Y

Character constant format

READ(1, C) X, Y
READ(1, FMT=C) X, Y

READ(1, S) X, Y
READ(1, FMT=S) X, Y

Switch variable has format

number

READ(*, G)
READ(1, G)

Namelist read ✠

Namelist read from a file ✠

READ(1, END=8, ERR=9) X, Y Unformatted direct access

READ(1, REC=3) V
READ(1 ' 3) V

Unformatted direct access

READ(1, 2, REC=3) V Formatted direct access

READ(CA, 1, END=8, ERR=9) X, Y Internal formatted

sequential

READ(CA, *, END=8, ERR=9) X, Y Internal list-directed

sequential access ✠

READ(CA, REC=4, END=8, ERR=9) X, Y Internal direct access ✠

REAL REAL R, M(4)
REAL R*4
REAL*8 A, B, C
REAL*16 A, B, C

✠

Double precision ✠

Quad precision ✠

REAL A / 3.14 /, B , C / 100.0 / Initialize A and C✠

RECORD✠ RECORD /PROD/ CURR,PRIOR,NEXT

RETURN RETURN
RETURN 2

Standard return

Alternate return

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
Appendix B Sample Statements 355

REWIND REWIND 1
REWIND I
REWIND (UNIT=U, IOSTAT=I, ERR=9)

SAVE SAVE A, /B/, C
SAVE

STATIC ✠ STATIC A, B, C
STATIC REAL P, D, Q
IMPLICIT STATIC REAL (X-Z)

STOP STOP
STOP "all done"

STRUCTURE STRUCTURE /PROD/
INTEGER*4 ID / 99 /
CHARACTER*18 NAME
CHARACTER*8 MODEL / 'XL' /
REAL*4 COST
REAL*4 PRICE

END STRUCTURE

SUBROUTINE SUBROUTINE SHR(A, B, *9)
SUBROUTINE SHR(A, B, &9)
SUBROUTINE SHR(A, B)
SUBROUTINE SHR

Alternate return ✠

TYPE ✠ TYPE *, A, I Compare to PRINT

UNION ✠ UNION
MAP

CHARACTER*18 MAJOR
END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

Compare to STRUCTURE

VIRTUAL ✠ VIRTUAL M(10,10), Y(100)

VOLATILE ✠ VOLATILE V, Z, MAT, /INI/

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
356 FORTRAN 77 Language Reference • July 2001

WRITE WRITE(1, 2) X, Y }
WRITE(UNIT=1, FMT=2) X, Y
WRITE(1, 2, ERR=8, END=9) X, Y
WRITE(UNIT=1,FMT=2,ERR=8,END=9) X,Y

Formatted write to a file

WRITE(* , 2) X, Y
WRITE(*, 10) M

Formatted write to

stdout (Array M)

WRITE(*, 10) (M(I),I=J,K) Implied-DO

WRITE(*, 10) C(I:K) Substring

WRITE(1, *) X, Y
WRITE(* , *) X, Y

List-directed write to a file

List-directed write to

standard output

WRITE(1, '(A6,I3)') X, Y
WRITE(1, FMT='(A6,I3)') X, Y

Character constant format

WRITE(1, C) X, Y
WRITE(1, FMT=C) X, Y

Character variable format

WRITE(1, S) X, Y
WRITE(1, FMT=S) X, Y

Switch variable has format

number

WRITE(*, CASE)
WRITE(1, CASE)

Namelist write ✠

Namelist write to a file ✠

WRITE(1, END=8, ERR=9) X, Y Unformatted sequential

access

WRITE(1, REC=3) V
WRITE(1 ' 3) V

Unformatted direct access

WRITE(1, 2, REC=3) V Formatted direct access

WRITE(CA, 1, END=8, ERR=9) X, Y Internal formatted

sequential

WRITE(CA, *, END=8, ERR=9) X, Y Internal list-directed

sequential access ✠

WRITE(CA, REC=4, END=8, ERR=9) X, Y Internal direct access ✠

TABLE B-1 FORTRAN Statement Samples (Continued)

Name Examples Comments
Appendix B Sample Statements 357

358 FORTRAN 77 Language Reference • July 2001

APPENDIX C

Data Representations

Whatever the size of the data element in question, the most significant bit of the data

element is always stored in the lowest-numbered byte of the byte sequence required

to represent that object.

This appendix is a brief introduction to data representation. For more in-depth

explanations, see the Fortran Programming Guide and Numerical Computation Guide.

Real, Double, and Quadruple Precision

Real, double precision, and quadruple precision number data elements are

represented according to the IEEE standard by the following form, where f is the bits

in the fraction.

(-1)sign * 2exponent-bias *1.f

TABLE C-1 Floating-point Representation

Single Double Quadruple

Sign Bit 31 Bit 63 Bit 127

Exponent Bits 30–23

Bias 127

Bits 62–52

Bias 1023

Bits 126-112

Bias 16583

Fraction Bits 22–0 Bits 51–0 Bits 111-0

Range approx. 3.402823e+38

1.175494e-38

1.797693e+308

2.225074e-308

3.362E-4932

1.20E+4932
359

Extreme Exponents

The representations of extreme exponents are as follows.

Zero (signed)

Zero (signed) is represented by an exponent of zero and a fraction of zero.

Subnormal Number

The form of a subnormal number is:

(-1) sign * 2 1-bias *0.f

where f is the bits in the significand.

Signed Infinity

Signed infinity—that is, affine infinity—is represented by the largest value that the

exponent can assume (all ones), and a zero fraction.

Not a Number (NaN)

Not a Number (NaN) is represented by the largest value that the exponent can

assume (all ones), and a nonzero fraction.

Normalized REALand DOUBLE PRECISIONnumbers have an implicit leading bit

that provides one more bit of precision than is stored in memory. For example, IEEE

double precision provides 53 bits of precision: 52 bits stored in the fraction, plus the

implicit leading 1.
360 FORTRAN 77 Language Reference • July 2001

IEEE Representation of Selected
Numbers

The values here are as shown by dbx , in hexadecimal.

Arithmetic Operations on Extreme
Values

This section describes the results of basic arithmetic operations with extreme and

ordinary values. We assume all inputs are positive, and no traps, overflow,

underflow, or other exceptions happen.

TABLE C-2 IEEE Representation of Selected Numbers

Value Single-Precision Double-Precision

+0 00000000 0000000000000000

-0 80000000 8000000000000000

+1.0 3F800000 3FF0000000000000

-1.0 BF800000 BFF0000000000000

+2.0 40000000 4000000000000000

+3.0 40400000 4008000000000000

+Infinity 7F800000 7FF0000000000000

-Infinity FF800000 FFF0000000000000

NaN 7Fxxxxxx 7FFxxxxxxxxxxxxx

TABLE C-3 Extreme Value Abbreviations

Abbreviation Meaning

Sub Subnormal number

Num Normalized number
Appendix C Data Representations 361

Note: Inf ± Inf and Inf + Inf = Inf ; Inf - Inf = NaN.

Inf Infinity (positive or negative)

NaN Not a Number

Uno Unordered

TABLE C-4 Extreme Values: Addition and Subtraction

Left
Operand

Right Operand

0 Sub Num Inf NaN

0 0 Sub Num Inf NaN

Sub Sub Sub Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Note NaN

NaN NaN NaN NaN NaN NaN

TABLE C-5 Extreme Values: Multiplication

Left
Operand

Right Operand

0 Sub Num Inf NaN

0 0 0 0 NaN NaN

Sub 0 0 NS Inf NaN

Num 0 NS Num Inf NaN

Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

TABLE C-3 Extreme Value Abbreviations (Continued)

Abbreviation Meaning
362 FORTRAN 77 Language Reference • July 2001

In the above table, NS means either Num or Sub result possible.

Notes:

■ If either X or Y is NaN, then X.NE.Y is .TRUE. , and the others (.EQ. , .GT. ,

.GE. , .LT. , .LE.) are .FALSE.

■ +0 compares equal to -0.

■ If any argument is NaN, then the results of MAXor MIN are undefined.

Bits and Bytes by Architecture

The order in which the data—the bits and bytes—are arranged differs between VAX

computers on the one hand, and SPARC computers on the other.

TABLE C-6 Extreme Values: Division

Left
Operand

Right Operand

0 Sub Num Inf NaN

0 NaN 0 0 0 NaN

Sub Inf Num Num 0 NaN

Num Inf Num Num 0 NaN

Inf Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN NaN

TABLE C-7 Extreme Values: Comparison

Left
Operand

Right Operand

0 Sub Num Inf NaN

0 = < < < Uno

Sub > < < Uno

Num > > < Uno

Inf > > > = Uno

NaN Uno Uno Uno Uno Uno
Appendix C Data Representations 363

The bytes in a 32-bit integer, when read from address n, end up in the register as

shown in the following tables.

The bits are numbered the same on these systems, even though the bytes are

numbered differently.

Following are some possible problem areas:

■ Passing binary data over the network. Use External Data Representation (XDR)

format or another standard network format to avoid problems.

■ Porting raster graphics images between architectures. If your program uses

graphics images in binary form, and they have byte ordering that is not the same

as for images produced by SPARC system routines, you must convert them.

■ If you convert character-to-integer or integer-to-character between architectures,

you should use XDR.

■ If you read binary data created on an architecture with a different byte order, then

you must filter it to correct the byte order.

See also the xdr (3N) man page.

TABLE C-8 Bits and Bytes for Intel and VAX Computers

Byte n+3 Byte n+2 Byte n+1 Byte n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Most Significant Least significant

TABLE C-9 Bits and Bytes for 680x0 and SPARC Computers

Byte n Byte n+1 Byte n+2 Byte n+3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Most Significant Least significant
364 FORTRAN 77 Language Reference • July 2001

APPENDIX D

VMS Language Extensions

This chapter describes the VMS Fortran extensions that f77 supports. These

extensions are all, of course, nonstandard. ✠

Background

This FORTRAN compiler includes the VMS extensions to make it as easy as possible

to port FORTRAN programs from VMS environments to Solaris environments. The

compiler provides almost complete compatibility with VMS FORTRAN. These

extensions are also accepted by the dbx debugger.

VMS Language Features in f77
This list is a summary of the VMS features that are accepted by f77 . Details are

elsewhere in this manual.

■ Namelist I/O

■ Unlabeled DO … ENDDO

■ Indefinite DO WHILE … ENDDO

■ BYTEdata type

■ Logical operations on integers, and arithmetic operations on logicals

■ Additional field and edit descriptors for FORMATstatements:

■ Remaining characters (Q)

■ Carriage Control ($)

■ Octal (O)
365

■ Hexadecimal (X)

■ Hexadecimal (Z)

■ Default field indicators for w, d, and e fields in FORMATstatements

■ Reading into Hollerith edit descriptors

■ APPENDoption for OPEN

■ Long names (32 characters)

■ _ and $ in names

■ Long source lines (132-character), if the -e option is on

■ Records, structures, unions, and maps

■ Getting addresses by the %LOCfunction

■ Passing arguments by the %VALfunction

■ End-of-line comments

■ OPTIONSstatement

■ VMS Tab-format source lines are valid.

■ Initialize in common

You can initialize variables in common blocks outside of BLOCK DATA
subprograms. You can initialize portions of common blocks, but you cannot

initialize portions of one common block in more than one subprogram.

■ Radix-50

Radix-50 constants are implemented as f77 bit-string constants, that is, no type is

assumed.

■ IMPLICIT NONE is treated as IMPLICIT UNDEFINED (A-Z)

■ VIRTUAL is treated as DIMENSION.

■ Initialize in declarations

Initialization of variables in declaration statements is allowed. Example:

■ Noncharacter format specifiers

If a runtime format specifier is not of type CHARACTER, the compiler accepts that

too, even though the FORTRAN Standard requires the CHARACTERtype.

■ Omitted arguments in subprogram calls

The compiler accepts omitted actual argument in a subroutine call, that is, two

consecutive commas compile to a null pointer. Reference to that dummy

argument gives a segmentation fault.

CHARACTER*10 NAME /'Nell'/
366 FORTRAN 77 Language Reference • July 2001

■ REAL*16

(SPARC only) The compiler treats variables of type REAL*16 as quadruple

precision.

■ Noncharacter variables

The FORTRAN Standard requires the FILE= specifier for OPENand INQUIRE to

be an expression of type CHARACTER. f77 accepts a numeric variable or array

element reference.

■ Consecutive operators

f77 allows two consecutive arithmetic operators when the second operator is a

unary + or - . Here are two consecutive operators:

The above statement is treated as follows:

■ Illegal real expressions

When the compiler finds a REALexpression where it expects an integer

expression, it truncates and makes a type conversion to INTEGER.

Examples: Contexts for illegal real expressions that f77 converts to integer:

■ Alternate RETURN
■ Dimension declarators and array subscripts

■ Substring selectors

■ Computed GO TO
■ Logical unit number, record number, and record length

■ Typeless numeric constants

Binary, hexadecimal and octal constants are accepted in VMS form.

Example: Constants–Binary (B), Octal (O), Hexadecimal (X or Z):

■ Function length on function name, rather than on the word FUNCTION

The compiler accepts nonstandard length specifiers in function declarations.

X = A ** -B

X = A ** (-B)

DATA N1 /B'0011111'/, N2/O'37'/, N3/X'1f'/, N4/Z'1f'/
Appendix D VMS Language Extensions 367

Example: Size on function name, rather than on the word FUNCTION:

■ TYPEand ACCEPTstatements are allowed.

■ Alternate return

The nonstandard & syntax for alternate-return actual arguments is treated as the

standard FORTRAN * syntax. Example:

■ The ENCODEand DECODEstatements are accepted.

■ Direct I/O with 'N record specifier

The nonstandard record specifier 'N for direct-access I/O statements is accepted.

Example: A nonstandard form for record specifier:

The above is treated as:

The logical unit number is K and the number of the record is N.

■ NAME, RECORDSIZE, and TYPEoptions—OPENhas the following alternative

options:

■ NAMEis treated as FILE
■ RECORDSIZEis treated as RECL
■ TYPE is treated as STATUS

■ DISPOSE=p

The DISPOSE=p clause in the CLOSEstatement is treated as STATUS=p.

■ Special Intrinsics

The compiler processes certain special intrinsic functions:

■ %VALis accepted

■ %LOCis treated as LOC

INTEGER FUNCTION FCN*2 (A, B, C)

CALL SUBX (I, *100, Z) ! Standard
CALL SUBX (I, &100, Z) ! Nonstandard alternate syntax

READ (K ' N) LIST

READ (UNIT=K, REC=N) LIST
368 FORTRAN 77 Language Reference • July 2001

■ %REF(expr) is treated as expr (with a warning if expris CHARACTER)

■ %DESCRis reported as an untranslatable feature

■ Variable Expressions in FORMATStatements

In general, inside a FORMATstatement, any integer constant can be replaced by an

arbitrary expression; the single exception is the n in an nH…edit descriptor. The

expression itself must be enclosed in angle brackets.

Example: The 6 in the following statement is a constant:

6 can be replaced by the variable N, as in:

VMS Features Requiring -xl or
-vax= spec
You get most VMS features automatically without any special options. For a few of

them, however, you must add the -xl option on the f77 command line.

In general, you need this -xl option if a source statement can be interpreted for

either a VMS way of behavior or an f77 way of behavior, and you want the VMS

way of behavior. The -xl option forces the compiler to interpret it as VMS

FORTRAN.

Note also the -vax= spec option, which allows specification of these VMS extensions

individually. See the Fortran User’s Guide for details.

Summary of Features That Require -xl[d]

You must use -xl[d] to access the following features:

■ Unformatted record size in words rather than bytes (-xl)

■ VMS-style logical file names (-xl)

■ Quote (") character introducing octal constants (-xl)

■ Backslash (\) as ordinary character within character constants (-xl)

■ Nonstandard form of the PARAMETERstatement (-xl)

1 FORMAT(3F6.1)

1 FORMAT(3F<N>.1)
Appendix D VMS Language Extensions 369

■ Debugging lines as comment lines or FORTRAN statements (-xld)

■ Align structures as in VMS FORTRAN (-xl)

Details of Features That Require -xl[d]

Here are the details:

■ Unformatted record size in words rather than bytes

In f77 , direct-access, unformatted files are always opened with the logical record

size in bytes.

If the –xl[d] option is not set, then the argument n in the OPENoption RECL=n is

assumed to be the number of bytes to use for the record size.

If the –xl[d] option is set, then the argument n in the OPENoption RECL=n is

assumed to be the number of words, so the compiler uses n*4 as the number of

bytes for the record size.

If the –xl[d] option is set, and if the compiler cannot determine if the file is

formatted or unformatted, then it issues a warning message that the record size

may need to be adjusted. This result could happen if the information is passed in

variable character strings.

The record size returned by an INQUIRE statement is not adjusted by the

compiler; that is, INQUIRE always returns the number of bytes.

These record sizes apply to direct-access, unformatted files only.

■ VMS-style logical file names

If the –xl[d] option is set, then the compiler interprets VMS logical file names on

the INCLUDEstatement if it finds the environment variable,

LOGICALNAMEMAPPING, to define the mapping between the logical names and

the UNIX path name.

You set the environment variable to a string of the form:

Remember these rules for VMS style logical file names:

■ Each lname is a logical name and each path1, path2, and so forth, is the path

name of a directory (without a trailing /).

■ It ignores all blanks when parsing this string.

■ It strips any trailing /[no]list from the file name in the INCLUDEstatement.

■ Logical names in a file name are delimited by the first : in the VMS file name.

"lname1=path1; lname2=path2; … "
370 FORTRAN 77 Language Reference • July 2001

■ It converts file names from lname1:file to the path1/file form.

■ For logical names, uppercase and lowercase are significant. If a logical name is

encountered on the INCLUDEstatement which is not specified in the

LOGICALNAMEMAPPING, the file name is used, unchanged.

■ Quote (") character introducing octal constants

If the –xl[d] compiler option is on, a VMS FORTRAN octal integer constant is

treated as its decimal form.

Example: VMS octal integer constant:

The above statement is treated as:

If the –xl[d] option is not on, then the "703 is an error.

With –xl[d] , the VMS FORTRAN notation "703 signals f77 to convert from the

integer octal constant to its integer decimal equivalent, 451 in this case. In VMS

FORTRAN, "703 cannot be the start of a character constant, because VMS

FORTRAN character constants are delimited by apostrophes, not quotes.

■ Backslash (\) as ordinary character within character constants

If the –xl[d] option is on, a backslash in a character string is treated as an

ordinary character; otherwise, it is treated as an escape character.

■ Nonstandard form of the PARAMETERstatement

The alternate PARAMETERstatement syntax is allowed, if the –xl[d] option is on.

Example: VMS alternate form of PARAMETERstatement omits the parentheses:

■ Debugging lines as comment lines or FORTRAN statements (-xld)

The compiler interprets debugging lines as comment lines or FORTRAN

statements, depending on whether the –xld option is set. If set, they are

compiled; otherwise, they are treated as comments.

JCOUNT = ICOUNT + "703

JCOUNT = ICOUNT + 451

PARAMETER FLAG1 = .TRUE.
Appendix D VMS Language Extensions 371

Example: Debugging lines:

With -xld , this code prints I and X. Without -xld , it does not print them.

■ Align structures as in VMS FORTRAN

Use this feature if your program has some detailed knowledge of how VMS

structures are implemented. If you need to share structures with C, you should

use the default: no -xl

Unsupported VMS FORTRAN

Most VMS FORTRAN extensions are incorporated into the f77 compiler. The

compiler writes messages to standard error for any unsupported statements in the

source file. The following is a list of the few VMS statements that are not supported.

■ DEFINE FILE statement

■ DELETEstatement

■ UNLOCKstatement

■ FIND statement

■ REWRITEstatement

■ KEYID and key specifiers in READstatements

■ Nonstandard INQUIRE specifiers

■ CARRIAGECONTROL
■ DEFAULTFILE
■ KEYED
■ ORGANIZATION
■ RECORDTYPE

■ Nonstandard OPENspecifiers

■ ASSOCIATEVARIABLE
■ BLOCKSIZE
■ BUFFERCOUNT
■ CARRIAGECONTROL
■ DEFAULTFILE

REAL A(5) / 5.0, 6.0, 7.0, 8.0, 9.0 /
DO I = 1, 5
X = A(I)**2

D PRINT *, I, X
END DO
PRINT *, 'done'
END
372 FORTRAN 77 Language Reference • July 2001

■ DISP[OSE]
■ EXTENDSIZE
■ INITIALSIZE
■ KEY
■ MAXREC
■ NOSPANBLOCKS
■ ORGANIZATION
■ RECORDTYPE
■ SHARED
■ USEROPEN

■ The intrinsic function, %DESCR

■ The following parameters on the OPTIONSstatement:

■ [NO]G_FLOATING
■ [NO]F77
■ CHECK=[NO]OVERFLOW
■ CHECK=[NO]UNDERFLOW

■ Some of the INCLUDEstatement

Some aspects of the INCLUDEstatement are converted. The INCLUDEstatement is

operating system–dependent, so it cannot be completely converted automatically.

The VMS version allows a module-name and a LIST control directive that are

indistinguishable from a continuation of a UNIX file name. Also, VMS ignores

alphabetic case, so if you are inconsistent about capitalization, distinctions are

made where none are intended.

■ Getting a long integer—expecting a short

In VMS FORTRAN, you can pass a long integer argument to a subroutine that

expects a short integer. This feature works if the long integer fits in 16 bits,

because the VAX addresses an integer by its low-order byte. This feature does not
work on SPARC systems.

■ Those VMS system calls that are directly tied to that operating system

■ Initializing a common block in more than one subprogram

■ Alphabetizing common blocks so you can rely or depend on the order in which

blocks are loaded. You can specify the older with the -M mapfile option to ld .

■ If you use the defaults for both of the following:

■ The OPENoption BLANK=

■ The BN/BZ/B format edit specifiers

then formatted numeric input ignores imbedded and trailing blanks. The

corresponding VMS defaults treat them as zeros.
Appendix D VMS Language Extensions 373

374 FORTRAN 77 Language Reference • July 2001

Index
SYMBOLS
! , 17

$, 12

edit descriptor, 273

NAMELIST delimiter, 313

%DESCR, 368

%FILL , 56, 239

%LOC, 368

%REF, 368

%VAL, 368

&, 99, 101, 313, 368

', 368

' , 32

* , 103, 105, 368

alternate return, 99, 101

comments, 17

+, 274

. , 57

∆, blank character, 270

/ , 298, 306

// concatenate string, 74

:
array bounds, 47

character constants, 34

edit descriptor, 298

substring operator, 52

<>, 11, 155, 156

=, 87

?, 316

✠, 10

\ , 11

_, 12

NUMERICS
0, 1, + vertical format control, 273

A
A format specifier, 275

ACCEPT, 84, 368

access

append option in open, 194

modes, 259

options in OPEN, 194

SEQUENTIAL in OPEN file, 194

two modes for accessing a file, 259

ACHAR, 324

address

assignment, pointers, 63

malloc , 63

adjustable array bounds, 48

alignment

structures, as in VMS, 370, 372

summary of data types, 29

allowed I/O combinations, 259

alternate

octal notation, 37

return, 227, 368

ampersand, alternate return, 99, 101, 368
Index 375

anonymous field, 56, 239

ANSI X3.9-1978 FORTRAN standard, 9

apostrophe

character constants, 32, 34

direct-access record, 216, 265, 368

format specifier, 271

append on open, 194

arguments

dummy, disallowed in NAMELIST, 310

fields, 56, 224

omitted, 366

records, 56, 224

arithmetic

assignment, 72

assignment statement, 90

expression, 68, 69

IF , 165

intrinsic functions, 321

operations on extreme values, 361

operator, 68

array

adjustable bounds, 48

assumed size, 48

bounds, 47

character, 47, 104

complex numbers, 112

declarators, 46

definition, 46

dimensions, 47

double-complex, 131

elements

data types, 22

disallowed in NAMELIST, 310

input by NAMELIST, 315

names with no subscripts, 49

ordering, 51

real, 223

subscripts, 49

ASCII character set, 345

ASSIGN, 85

assignment

arithmetic, 72, 90

character, 75, 76

logical, 78

statement, 87

assumed size array, 48

asterisk

alternate return, 99, 368

hex and octal output, 283

AUTOMATIC, 92

automatic structure not allowed, 93

B
B

constant indicator, 41

format specifier, 272

backslash, 11, 32, 369, 371

BACKSPACE, 94

backspace character, 34

basic terms, 10

binary

constants, 41

I/O, 304

initialization, 41

operator, 68

binary file, 195

bit

and byte order, 363

manipulation functions, 330, 340

operators, 72

blank

column one, 261, 307

control, 272

field in octal or hex input, 282

fields in octal or hex input, 283

line comments, 17

not significant in words, 13

BLANK OPEN specifier, 196

BLOCK DATA, 96

initialize, 366

names, 12

block IF , 166

BN format specifier, 272

boundary for variable alignment, 29

bounds on arrays, 47

BYTE, 98

byte and bit order, 363

BYTE data type, 23

BZ format specifier, 272
376 FORTRAN 77 Language Reference • July 2001

C
c

comments, 17

directive, 17

CALL, 99

carriage control, 260, 273

$, 273

all files, 262

blank, 0, 1, 273

first character, 273

space, 0, 1 , 273

carriage return, $ edit descriptor, 273

case, 12, 13

CHAR, 91, 324

CHARACTER
data type, 24

statement, 103

character

array, 47

assignment, 75, 76, 91

boundary, 29

concatenate, 74

constant

delimiter, 313

NAMELIST, 314

constants, 32

declared length, 105

declaring the length, 104

dummy argument, 104

editing, 275

expression, 74

format specifier, 366

functions, 329

join, 74

null constants, 32

operator, 74

packing, 103

set, 10

strings, 104

substring, 52

valid characters in names, 12

characters, special, 11

CLOSE, 106

CMPLX, 324

colon (:)

array bounds, 47

edit descriptor, 298

substring operator, 52

column one formatting, 260

combinations of I/O, 259

commas in formatted input, 294

comments, 17

! , 17

* , 17

blank-line, 17

C, 17

embedded, 366

end-of-line, 17, 366

COMMON, 12, 108, 366

compilers, accessing, 5

complex

array, 112

constant in NAMELIST, 315

constants, 34

data type, 24

statement, 110

COMPLEX*16, 25, 35

COMPLEX*32, 25, 35

COMPLEX*8, 25

computed GO TO, 162

concatenation

of strings, 74

operator, 74

conditional termination control, 298

consecutive

commas, NAMELIST, 315

operators, 367

constant

expression, 80

names (symbolic constants), 12

null character constants, 32

octal, 367

radix-50, 366

signed, 31

typeless numeric, 367

unsigned, 31

values in NAMELIST, 314

constants, 31

binary, 41

characters, 32

complex, 34

COMPLEX*16, 35

COMPLEX*32, 35

double complex, 35
Index 377

double-precision real, 39

fortran 95-style, 44

hex, 41

integer, 36

logical, 37

octal, 41

quad complex, 35

quad real, 40

real, 37

REAL*16 , 40

REAL*4, 38

REAL*8, 39

typeless, 41

continuation lines, 15, 16

CONTINUE, 113

control characters, 12, 42, 74

in assignment, 76, 91

meanings, 347

D
d comments, 17

D format specifier, 288

DATA, 114

data

namelist syntax, 313, 316

representation

double precision, 359

real number, 359

signed infinity, 360

type

BYTE, 23

CHARACTER, 24

COMPLEX, 24

COMPLEX*16, 25

COMPLEX*32, 25

COMPLEX*8, 25

DOUBLE COMPLEX, 25, 25

DOUBLE PRECISION, 25

INTEGER, 26

INTEGER*4, 26

LOGICAL, 27

LOGICAL*1 , 23, 27

LOGICAL*2 , 27

LOGICAL*4 , 27, 28

of an expression, 71

properties, 23

quad real , 28

REAL, 28

REAL*16 , 28

REAL*4, 28

REAL*8, 28

short integer, 26

data types and data structures, 21

DBLE, 323

DBLEQ, 323

DCMPLX, 324

deallocate memory by free , 64

debug statement, 371

decimal point in octal or hex input, 282

declaration

field, 54, 189, 238

initialize in, 366

map, 60, 247

record, 56, 224

structure, 54

union, 60

DECODE, 117

default

inquire options, 178

delimiter

character constant, 313

NAMELIST: $ or &, 313

DFLOAT, 323

DIMENSION, 119

dimension arrays, 47

direct

I/O, 264

I/O record specifier, 217, 265, 368

DIRECT option for ACCESS in OPEN file , 194

directives

general, 17

parallelization, 18

DISPOSE option for CLOSE, 368

DO, 122

DO WHILE, 127

DOALL directive, 19

documentation index, 6

documentation, accessing, 6

dollar sign

edit descriptor, 273

in names, 12

NAMELIST delimiter, 313
378 FORTRAN 77 Language Reference • July 2001

DOSERIAL directive, 19

DOUBLE COMPLEX, 25, 130

DOUBLE PRECISION, 25, 132

double quote, 369, 371

character constants, 32

preceding octal constants, 37

double spacing print, 261

double-complex

arrays, 131

constants, 35

data type, 25

double-precision

complex, 25

complex function, 338

data representation, 359

editing, 288

real constants, 39

DREAL, 323

dummy arguments and NAMELIST, 310

E
-e , 16

E format specifier, 290

edit descriptor

/ , 298

: , 298

A, 275

D, 288

E, 290

F, 292

G, 293

I , 278

L, 280

P, 296

positional, 283

Q, 294

S, 297

SP, 297

SS, 297

SU, 297

T, 283

X, 283

ELSE, 133

ELSE IF , 135

embedded comments, 366

empty spaces in structures, 56, 239

ENCODE, 117, 137

END, 138

END DO, 139

END FILE , 140

END IF , 142

END MAP, 143

end of text, 74

END STRUCTURE, 144

END UNION, 145

end-of-line comments, 17, 366

ENTRY, 146

environmental inquiry functions, 331

epbase , 331

ephuge , 331

epmax, 331

epmin , 331

epmrsp , 331

epprec , 331

eptiny , 331

equals statement, 87

EQUIVALENCE, 149

ERR
INQUIRE, 178

OPEN specifier, 196

READ, 218

WRITE, 252

error

I/O, 258

escape sequences, 34

evaluation of expressions, 82

executable statements, 14

exponential editing, 290

exponents in octal or hex input, 282

expression

arithmetic, 68, 69

character, 74

constant, 80

evaluation, 82

logical, 77

variable format, 155

extended source lines, 16

extensions, 10

EXTERNAL, 151
Index 379

extract substring, 52

extreme

exponent data representation, 360

values for arithmetic operations, 361

F
F format specifier, 292

field, 54

argument that is a field, 56, 224

COMMON with a field, 56, 224

declaration, 54, 189, 238

DIMENSION with a field, 56, 224

dimensioning in type statements, 55, 239

EQUIVALENCE, not allowed in, 56, 225

list, 55

list of a structure, 54, 239

map with a field, 60, 247

name, %FILL , 56, 239

NAMELIST, not allowed in, 56, 225

offset, 56, 239

reference, 57

SAVE, not allowed in, 56, 225

type, 56, 239

file

append on open, 194

carriage control on all files, 262

INQUIRE, 176

internal, 266

limit on number open, 257

names, VMS logical, 369, 370

preattached, 263

properties, 176

query, 176

See also scratch files

specifier for opening, 194

two access modes for, 259

FILE= specifier, 367

filling with asterisks or spaces, hex and octal

output, 283

first character carriage control, 273

FLOAT, 323

form feed character, 34

FORM specifier in OPEN, 195

FORM='BINARY' , 304

FORM='PRINT' , 260

FORMAT, 153

format

$, 273

/ , 298

: , 298

A, 275

B, 272

BN, 272

BZ, 272

D, 288

defaults for field descriptors, 270

E, 290

F, 292

G, 293

I , 278

L, 280

O, 281

of source line, 15

P, 296

Q, 294

R, 288

read into hollerith edit descriptor, 278

S, 297

SP, 297

specifier, 366

SS, 297

standard fixed, 15

SU, 297

tab, 16

variable expressions, 155, 156

vertical control, 273

X, 283

Z, 281

format specifier " , 287

formats, 299

runtime, 212, 217, 252, 278, 299

variable format expressions, 301

formatted

I/O, 267

output, 261

formatted I/O, 267

forms of I/O, 259

FORTRAN
list of statements, 15

Fortran 95-style constants, 44

free , 64, 332

FUNCTION, 157
380 FORTRAN 77 Language Reference • July 2001

function

bit-manipulation, 340

double-precision complex, 338

integer, 342

intrinsic, 321

length specifier, 367

malloc , 63

memory allocation and deallocation, 332

names, 12

type coercing, 343

types, 22

zero-extend, 344

G
G format specifier, 293

general real editing, 293

GO TO, 160, 164

GO TO assigned, 160

GO TO unconditional, 164

GO TO, computed, 162

H
hex and octal

format, 281

format samples, 282

input, 281

input rules, 282

output, 282, 283

hexadecimal

constants, 41

initialization, 41

hollerith, 90, 278

horizontal positioning, 283

I
I format specifier, 278

I/O, 259

allowable combinations, 259

binary, 304

direct, 264

errors, 258

random, 264

summary, 259

-i2 , 26

IACHAR, 324

ICHAR, 324

IDINT , 323

IEEE

representation of selected numbers, 361

IF , 165, 166, 169

IFIX , 323

illegal REAL expressions, 367

IMPLICIT , 170

implicit

none data typing, 366

typing, 21

implicit data typing, 21

INCLUDE, 173, 370

initial line, 15

initialize

in BLOCK DATA, 366

in COMMON, 366

in declaration, 366

input commas, 294

INQUIRE, 176, 178

inquire

by file, 181

by unit, 176, 181

specifiers summary, 177

inquire option

ACCESS, 178

BLANK, 178

defaults, 178

DIRECT, 178

ERR, 178

EXIST , 179

FILE , 179

FORM, 179

FORMATTED, 179

IOSTAT, 179

NAME, 179

NAMED, 179

NEXTREC, 180

none for permissions, 176

NUMBER, 180

OPENED, 180

RECL, 180

SEQUENTIAL, 180
Index 381

UNFORMATTED, 180

UNIT, 180

INT , 323

INTEGER, 26, 182

integer

and logical, 72

constants, 36

editing, 278

functions, 342

logical, mixed expressions, 71

operand with logical operator, 72

short, 37

INTEGER*2, 26

INTEGER*4, 26

INTEGER*8, 26

internal files, 266

INTRINSIC , 184

intrinsic functions, 319, 338

arithmetic, 321

character, 329

environmental inquiry, 331

mathematical, 327

memory allocation and deallocation, 332

special VMS, 368

trigonometric, 325

type conversions, 323

invalid characters for data, 12

ioinit , 263

IOSTAT OPEN specifier, 196

IQINT , 323

ishift , 337

ISO 1539-1980 FORTRAN standard, 9

J
join strings, 74

K
key word, 10

kind type parameter in constants, 44

L
L format specifier, 280

label of statement, 10

leading spaces or zeros, hex and octal output, 283

left-to-right

exception, 69

precedence, 69

len , declared length, 105

length

function length specifier, 157, 159, 367

LEN function, 105

line of source code, 16

names, 12

string, 105

variable length records, 195

line

formats, 15

length, 16

tab-format, 15, 366

line feed, 74

linked list, 210

list-directed

I/O, 306

input, 306

output, 306

output to a print file, 261

literal constant, 10

literals type REAL*16 , 367

loc , 63, 332

location of scratch files, 196

LOGICAL, 27, 186

logical

assignment, 78, 90

constants, 37

editing, 280

expression, 77

expression meaning, 78

file names in the INCLUDE, 174

file names, VMS, 369, 370

IF , 169

integer, mixed, 72

LOGICAL*1 data type, 23

operator precedence, 77

unit preattached, 263

units, 257

LOGICAL*1 , 27
382 FORTRAN 77 Language Reference • July 2001

LOGICAL*2 , 27

LOGICAL*4 , 27

LOGICAL*8 , 28

long lines in source code, 16

lower case, 12, 13

lrshft , 337

M
malloc , 63, 332

man pages, accessing, 4

MANPATHenvironment variable, setting, 5

MAP, 60, 189, 247

maximum

number of open files, 257

memory

get by malloc , 63

release by free , 64

memory allocation and deallocation functions, 332

mixed

integer and logical, 71, 72

mode, 70, 71

mixed mode, 71

mixing format of source lines, 16

modifying

carriage control, 273

multithreading

See parallelization

N
name of scratch files, 196

NAME option for OPEN, 368

NAMELIST, 190, 311, 313, 314

$, 312

&, 313

ask for names, 316

namelist-specifier, 311

NML=, 311

prompt for names, 316

restrictions, 310

WRITE, 311

namelist

data, 313, 316

data syntax, 314

END, 313

I/O, 309

negative values, hex and octal output, 283

nested substructure, 58

newline character, 34, 74

NML=, 312

noncharacter runtime format specifier, 366

none, implicit data typing, 366

nonexecutable statements, 14

nonstandard

PARAMETER, 369, 371

notation octal alternate, 37

null

character, 34

character constants, 32

data item, NAMELIST, 315

number of

continuation lines, 16

open files, 257

numeric constant, typeless, 367

O
O

constant indicator, 41

edit descriptor, 281

octal

alternate notation, 37

constant, 367

constants, 41

initialization, 41

octal and hex

format, 281

format samples, 282

input, 281

input rules, 282

output, 282, 283

offset of fields, 56, 239

omitted arguments, 366

OPEN
specifier

ACCESS, 194

BLANK, 196

ERR, 196

FILE , 194
Index 383

FORM, 195

IOSTAT, 196

RECL, 195

STATUS, 196

UNIT, 193

OPEN
options, 368

print file, 260

statement, 192, 197

open files, limit of, 257

operand, 67

operator, 67

** , 68

// concatenate string, 74

: substring, 52

character, 74

concatenation, 74

precedence, 69

relational, 79

two consecutive operators, 70, 367

with extreme values, 361

optimization problems with pointers, 65

option

DISPOSE for CLOSE, 368

-e , 16

i2 short integer, 26

long lines, 16

NAME for OPEN, 368

number of continuation lines, 16

OPTIONS, 200

order bit and byte, 363

P
P edit descriptor, 296

packing character, 103

padding, 17

PARAMETER
nonstandard alternate, 369, 371

statement, 55, 202, 239

parameter name, 12

PATH environment variable, setting, 4

PAUSE, 205

permissions

ACCESS in INQUIRE, 176

pointee, 207

POINTER, 207

pointer, 61, 207

address assignment, 63

address by LOC, 63, 207

disallowed in NAMELIST, 310

linked list, 210

problems with optimization, 65

restrictions, 64

VOLATILE, 207

pointer-based variable, 64, 310

positional

edit descriptor, 283

format editing, 283

preattached

files, 263

logical units, 263

precedence

logical operator, 77

operators, 69

PRINT, 212

print file, 195, 260, 307

procedures, 14

PROGRAM, 215

program, 10

names, 12

units, 14

promote types, 70

prompt

for namelist names, 316

properties, file, 176

Q
Q edit descriptor, 294

QCMPLX, 324

QEXT, 323

QEXTD, 323

QFLOAT, 323

QREAL, 323

quad

complex, 25

complex constants, 35

exponent, 40

real constants, 40

real data type, 28
384 FORTRAN 77 Language Reference • July 2001

type REAL*16 literals, 367

quadruple precision, See quad

quote, 369, 371

character constants, 32

format specifier, 287

preceding octal constants, 37

R
-r4 , 30

radix, 288

radix-50 constant, 366

random

I/O, 264

READ, 216

read

into hollerith edit descriptor, 278

REAL, 28, 222

expressions, illegal, 367

intrinsic, 323

real

arrays, 223

constants, 37

data representation of reals, 359

editing, 288, 292

REAL*16 , 28, 40, 367

REAL*4, 28, 38

REAL*8, 28, 39

RECL specifier in OPEN, 195

recl=1 , variable length records, 195

RECORD, 224

record, 54

argument that is a record, 56, 224

assignment, 91

AUTOMATIC, not allowed in, 225

COMMON with a record, 56, 224

DATA, not allowed in, 56, 225

DIMENSION with a record, 56

disallowed in NAMELIST, 310

EQUIVALENCE, not allowed in, 56, 225

NAMELIST, not allowed in, 56, 225

PARAMETER, not allowed in, 225

reference, 57

SAVE, not allowed in, 56, 225

size, unformatted, 369, 370

specifier, direct-access, 216, 265, 368

statement, 56

STATIC, not allowed in, 225

variable length, 195

recursive, 92, 159, 234

reference

field, 57

record, 57

relational operator, 79

release memory by free , 64

repeat NAMELIST, 315

representation of data, 359

requesting namelist names, 316

restrictions

fields, 56, 239

hex and octal output, 283

NAMELIST, 310

names, 12

pointers, 64

Q edit descriptor, 296

records, 56, 224

structures, 55, 238

substructures, 60

RETURN, 227

return alternate, 227, 228, 368

reverse solidus, 11

REWIND, 229

rshift , 337

runtime formats, 212, 217, 252, 278, 299, 301

S
S edit descriptor, 297

same line response, 273

sample statements, 349

SAVE, 231

scale

control, 296

factor, 296

scratch files

defined, 262

location, 197

naming, 196

SCRATCH option for OPEN, 196

SEQUENTIAL option for ACCESS in OPEN file, 194

shell prompts, 3
Index 385

short

integer data type, 26

integers, 37

sign control, 297

signed constant, 31

signed infinity data representation, 360

signs in octal or hex input, 282

single spacing, 261

size of character string, 105

SIZEOF, 332

sizes, summary of data types, 29

skip

NAMELIST, 315

slash

editing, 298

list-directed input, 306

slew control, 260, 273

SNGL, 323

SNGLQ, 323

Solaris versions supported, 3

source

line formats, 15

lines long, 16

tab-format, 366

SP edit descriptor, 297

space, 11, 13, 273

spaces, leading, hex and octal output, 283

special characters, 11, 34

SS edit descriptor, 297

standard

fixed format source, 15

units, 257

standards

conformance, 9

start of heading and text, 74

statement, 10, 14

function, 233

label, 10

list of all statements, 15

samples, 349

STATIC, 236

STATUS OPEN specifier, 196

stderr , 257

stdin , 257

stdout , 257

STOP, 237

string

assignment, 75

concatenate, 74

in list-directed I/O, 308

join, 74

NAMELIST, 313

STRUCTURE, 238

structure, 54

alignment, VMS, 370, 372

disallowed in NAMELIST, 310

dummy field, 56, 239

empty space, 56

fill space, 239

name, 54, 55, 239

nested, 58

not allowed as a substructure of itself, 60

restrictions, 55

substructure, 58

syntax, 54

union, 60, 247

SU edit descriptor, 297

subprogram names, 12

SUBROUTINE, 241

subscript

arrays, 49

expressions, 50

substring, 52

disallowed in NAMELIST, 310

NAMELIST, 313

substructure, 58

map, 60, 247

union, 60, 247

successive operators, 70

summary

I/O, 259

inquire options, 177

suppress carriage return, 273

symbolic

constant name, 12

name, 10, 12

syntax

field Reference, 57

INQUIRE statement, 176

maps, 60, 247

NAMELIST
input, 312
386 FORTRAN 77 Language Reference • July 2001

input data, 313, 316

output, 311

statement, 309

OPEN statement, 192

record reference, 57

records, 56, 224

structure, 54, 238

unions, 60, 247

T
T edit descriptor, 283

tab, 11

character, 34

control, 283

format source, 16, 366

TASKCOMMON directive, 19

temporary files, 196

terminal

I/O, 273

termination control edit descriptor, 298

TMPDIR environment variable, 197

top of page, 261

two consecutive operators, 367

TYPE, 243, 368

type

coercing functions, 343

field names, 56, 239

REAL*16 , 367

type, 244

typeless

constants, 41

numeric constant, 367

types

array elements, 22

files, 259

functions, 22

summary of, 29

typographic conventions, 2

U
unary + or -, 367

unary operator, 69

unconditional GO TO, 164

underscore

in function or subprogram names, 12

names with, 12

unformatted

I/O, 301

record size, 369, 370

UNION, 247

union declaration, 60, 247

unit, logical unit preattached, 263

UNIT, OPEN specifier, 193

unsigned constant, 31

upper case, 12, 13

V
valid

characters for data, 12

characters in character set, 12

characters in names, 12

values, extreme for arithmetic operations, 361

variable

boundary, 29

definition of, 45

Example FORMAT expression, 156

name, 12

part of iolist, 212

variable formats, 155, 217, 252, 269, 278, 299, 300,

301

variable-length records, 195

vertical format control, 260

$, 273

space,0, 1, +, 273

vertical tab character, 34

VIRTUAL, 249, 366

VMS FORTRAN

align structures, 370

features with -xl
backslash, 12, 34, 307

D or d debug lines, 17

debugging lines, 371

logical file names, 174, 369, 370

parameter form, 202, 204, 371

quotes, 89

record length, 195, 370

features with -xl
record length, 180
Index 387

unsupported extensions, 372

VOLATILE, 250

W
width defaults for field descriptors, 270

word boundary, 29

WRITE, 251

X
X

constant indicator, 41

edit descriptor, 283

-xl , 17, 24, 32, 34, 89, 368, 369, 371

-xld , 371

-xtypemap , 30

Z
Z

constant indicator, 41

edit descriptor, 281

zero, leading, in hex and octal output, 283

zero-extend functions, 344
388 FORTRAN 77 Language Reference • July 2001

	FORTRAN 77 Language Reference
	Contents
	Before You Begin
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun WorkShop Development Tools and Man Pages
	Accessing Sun WorkShop Documentation
	Accessing Related Documentation
	Ordering Sun Documentation
	Sending Your Comments

	Elements of FORTRAN
	Standards Conformance
	Extensions
	Basic Terms
	Character Set
	Symbolic Names
	Program Units
	Statements
	Executable and Nonexecutable Statements
	FORTRAN Statements

	Source Line Formats
	Standard Fixed Format
	Tab-Format
	Mixing Formats
	Continuation Lines
	Extended Lines
	Padding
	Comments and Blank Lines
	Directives

	Data Types and Data Items
	Types
	Rules for Data Typing
	Array Elements
	Functions
	Properties of Data Types

	CHARACTER
	COMPLEX
	DOUBLE PRECISION
	INTEGER
	LOGICAL
	REAL
	Size and Alignment of Data Types

	Constants
	Character Constants
	Complex Constants
	COMPLEX*16 Constants
	COMPLEX*32 (Quad Complex) Constants
	Integer Constants
	Logical Constants
	Real Constants
	REAL*8 (Double-Precision Real) Constants
	REAL*16 (Quad Real) Constants
	Typeless Constants (Binary, Octal, Hexadecimal)
	@Fortran 95-Style Constants

	Variables
	Arrays
	Array Declarators
	Array Names with No Subscripts
	Array Subscripts
	Array Ordering

	Substrings
	@Structures
	Syntax
	Field Declaration
	Rules and Restrictions for Structures
	Rules and Restrictions for Fields
	Record Declaration
	Record and Field Reference
	Substructure Declaration
	Unions and Maps

	@Pointers
	Syntax Rules
	Usage of Pointers
	Address and Memory
	Optimization and Pointers

	Expressions
	Expressions, Operators, and Operands
	Arithmetic Expressions
	Basic Arithmetic Expressions
	Mixed Mode
	Arithmetic Assignment

	Character Expressions
	Character String Assignment
	Rules of Assignment

	Logical Expressions
	Logical Assignment

	Relational Operator
	Constant Expressions
	@Record Assignment
	Evaluation of Expressions

	Statements
	@ACCEPT�
	Description

	ASSIGN
	Description
	Restrictions
	Examples

	Assignment, v = e
	Description
	Examples

	@AUTOMATIC
	Description
	Restrictions
	Examples
	Restrictions

	BACKSPACE
	Description
	Examples

	BLOCK DATA
	Description
	Restrictions
	Example

	@BYTE
	Description
	Example

	CALL
	Description
	Examples

	CHARACTER
	Description
	Examples

	CLOSE
	Description
	Comments
	Examples

	COMMON
	Description
	Restrictions
	Examples

	COMPLEX
	Description
	Comments
	Examples

	CONTINUE
	Description
	Example

	DATA
	Description
	Examples

	@DECODE/ENCODE
	Description
	Example

	DIMENSION
	Description
	Examples

	DO
	Description
	Restrictions
	Comments
	Examples

	@DO WHILE
	Description
	Restrictions
	Comments
	Examples

	@DOUBLE COMPLEX
	Description
	Comments

	DOUBLE PRECISION
	Description
	Example

	ELSE
	Description
	Restrictions
	Examples

	ELSE IF
	Description
	Restrictions
	Example

	@ENCODE/DECODE
	Description
	Example

	END
	Description
	Example

	END DO
	Description
	Examples

	END FILE
	Description
	Restrictions
	Examples

	END IF
	Description
	Examples

	END MAP
	Description
	Restrictions
	Example

	@END STRUCTURE
	Description
	Example

	@END UNION
	Description
	Example

	ENTRY
	Description
	Restrictions
	Examples

	EQUIVALENCE
	Description
	Restrictions
	Example

	EXTERNAL
	Description
	Restrictions
	Examples

	FORMAT
	Description
	Restrictions
	Warnings
	Examples

	FUNCTION (External)
	Description
	Restrictions
	Examples

	GO TO (Assigned)
	Description
	Restrictions
	Example

	GO TO (Computed)
	Description
	Restrictions
	Example

	GO TO (Unconditional)
	Description
	Restrictions
	Example

	IF (Arithmetic)
	Description
	Example

	IF (Block)
	Description
	Restrictions
	Examples

	IF (Logical)
	Description
	Example

	IMPLICIT
	Description
	Restrictions
	Examples

	@INCLUDE
	Description
	Examples

	INQUIRE
	Description
	Examples

	INTEGER
	Description
	Restrictions
	Examples

	INTRINSIC
	Description
	Restrictions

	LOGICAL
	Description

	LOGICAL
	Examples

	@MAP
	Description
	Example

	@NAMELIST
	Description
	Restrictions
	Example

	OPEN
	Description
	Examples

	@OPTIONS
	Description
	Restrictions
	Example

	PARAMETER
	Description
	Restrictions
	Examples

	PAUSE
	Description

	@POINTER
	Description
	Examples

	PRINT
	Description
	Restrictions
	Examples

	PROGRAM
	Description
	Restrictions
	Example

	READ
	Description
	Examples

	REAL
	Description
	Examples

	@RECORD
	Description
	Restrictions
	Example

	RETURN
	Description
	Examples

	REWIND
	Description
	Examples

	SAVE
	Description
	Restrictions
	Example

	Statement Function, f(...) = e
	Description
	Restrictions
	Examples

	@STATIC
	Description
	Example

	STOP
	Description
	Examples

	@STRUCTURE
	Description
	Restrictions
	Restrictions for Fields
	Examples

	SUBROUTINE
	Description
	Examples

	@TYPE
	Description
	Example

	The Type Statement
	Description
	Restrictions
	Example

	@UNION and MAP
	Description
	Example

	@VIRTUAL
	Description
	Example

	@VOLATILE
	Description
	Example

	WRITE
	Description
	Restrictions
	Comments
	Examples

	Input and Output
	Essential FORTRAN I/O Concepts
	Logical Units
	I/O Errors
	General Restriction
	Kinds of I/O
	Combinations of I/O
	Printing Files
	Special Uses of OPEN
	Scratch Files
	Changing I/O Initialization with IOINIT

	Direct Access
	Unformatted I/O
	Formatted I/O

	Internal Files
	Sequential Formatted I/O
	Direct Access I/O

	Formatted I/O
	Input Actions
	Output Actions
	Format Specifiers
	Runtime Formats
	Variable Format Expressions (<e>)

	Unformatted I/O
	Sequential Access I/O
	Direct Access I/O

	@�Binary I/O
	List-Directed I/O
	Output Format
	Unquoted Strings
	Internal I/O

	NAMELIST I/O
	Syntax Rules
	Restrictions
	Output Actions
	Input Actions
	Data Syntax
	Name Requests

	Intrinsic Functions
	Arithmetic and Mathematical Functions
	Arithmetic
	Type Conversion
	Trigonometric Functions
	Other Mathematical Functions

	Character Functions
	Miscellaneous Functions
	Bit Manipulation @
	Environmental Inquiry Functions @
	Memory @

	Remarks
	Notes on Functions
	@�VMS Intrinsic Functions
	VMS Double-Precision Complex
	VMS Degree-Based Trigonometric
	VMS Bit-Manipulation
	Functions Coerced to a Particular Type
	Functions Translated to a Generic Name
	Zero Extend

	ASCII Character Set
	Sample Statements
	Data Representations
	Real, Double, and Quadruple Precision
	Extreme Exponents
	Zero (signed)
	Subnormal Number
	Signed Infinity
	Not a Number (NaN)

	IEEE Representation of Selected Numbers
	Arithmetic Operations on Extreme Values
	Bits and Bytes by Architecture

	VMS Language Extensions
	Background
	VMS Language Features in f77
	VMS Features Requiring -xl or �vax=spec
	Summary of Features That Require -xl[d]
	Details of Features That Require -xl[d]
	Unsupported VMS FORTRAN

	Index

