The Emergence

of Mechanics

What use are Newton’s “Laws” of Mechanics?
Even a glib answer to that question can easily
fill a 1-year course, if you really want to know.
My purpose here is merely to offer some hints
of how people learned to apply Newton’s Laws
to different types of Mechanics problems, began
to notice that they were repeating certain calcu-
lations over and over in certain wide classes of
problems, and eventually thought of cute short-
cuts that then came to have a life of their own.
That is, in the sense of Michael Polanyi’s The
Tacit Dimension, a number of new paradigms
emerged from the technology of practical appli-
cation of Newton’s Mechanics.

The mathematical process of emergence gener-
ally works like this: we take the SECOND LAwW
and transform it using a formal mathematical
identity operation such as “Do the same thing
to both sides of an equation and you get a new
equation that is equally valid.” Then we think up
names for the quantities on both sides of the new
equation and presto! we have a new paradigm.
I will show three important example of this pro-
cess, not necessarily the way they first were “dis-
covered,” but in such a way as to illustrate how
such things can be done. But first we will need
a few new mathematical tools.

Some Math Tricks

Differentials

We have learned that the symbols df and
dx represent the coupled changes in f(x) and
x, in the limit where the change in = (and conse-
quently also the change in f) become infinitesi-
mally small. We call these symbols the differ-

entials of f and z and distinguish them from
Af and Az only in this sense: Af and Ax can
be any size, but df and dx are always infinites-
imal — 1.e. small enough so that we can treat
f(z) as a straight line over an interval only dz
wide.

This does not change the interpretation of the

for the derivative of f(x)

with respect to x,x but it allows us to think of
these differentials df and dx as “normal” alge-
braic symbols that can be manipulated in the
usual fashion. For instance, we can write

df = (%) dx

which looks rather trivial in this form. However,
suppose we give the derivative its own name:

d
g(z) = é

. df
representation ——

Then the previous equation reads

df = g(x) dz df = g da

or just

which can now be read as an expression of the
relationship between the two differentials df and
dxz. Hold that thought.

As an example, consider our familiar kinemati-
cal quantities

_dv
~dt

_dx
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If we treat the differentials as simple algebraic
symbols, we can invert the latter definition and
write

1 dt
v da
(Don’t worry too much about what this “means”
for now.) Then we can multiply the left side of
the definition of a by 1/v and multiply the right

side by dt/dxz and get an equally valid equation:

a_dv dt_dv
v dt dx dx



or, multiplying both sides by v dz,
adr = vdv (1)

which is a good example of a mathematical iden-
tity, in this case involving the differentials of
distance and velocity. Hold that thought.

Antiderivatives

Suppose we have a function ¢g(z) which we know
is the derivative [with respect to x] of some other
function f(x), but we don’t know which — i.e.
we know g(z) explicitly but we don’t know [yet]
what f(z) it is the derivative of. We may then
ask the question, “What is the function f(x)
whose derivative [with respect to z] is g(x)?”
Another way of putting this would be to ask,
“What is the antiderivative of g(x)?”' Another
name for the antiderivative is the integral, which
is in fact the “official” version, but I like the
former better because the name suggests how
we go about “solving” one.?

'This is a lot like knowing that 6 is some number n mul-
tiplied by 2 and asking what n is. We figure this out by
asking ourselves the question, “What do I have to multiply
by 2 to get 67” Later on we learn to call this “division” and
express the question in the form, “What is n = 6/2?” but we
might just as well call it “anti-multiplication” because that is
how we solve it (unless it is too hard to do in our heads and
we have to resort to some complicated technology like long
division).

% Any introductory Calculus text will explain what an inte-
gral “means” in terms of visual pictures that the right hemi-
sphere can handle easily: whereas the derivative of f(z) is
the slope of the curve, the integral of g(x) is the area under
the curve. This helps to visualize the integral as the limit-
ing case of a summation: imagine the area under the curve
of g(x) from xo to x being divided up into N rectangular
columns of equal width Az = % (z — xo) and height g(z,),
where x,, = n Az is the position of the n® column. If N
is a small number, then Zivzl g(zn) Az is a crude approxi-
mation to the area under the smooth curve; but as N gets
bigger, the columns get skinnier and the approximation be-
comes more and more accurate and is eventually (as N — o)
exact! This is the meaning of the integral sign:

z N
/wo g(z)dz = ngnoo Zl g(zn) Az

(z — o) and Tn = nAz.

For a handy example consider g¢g(z) =
kx. Then the antiderivative [integral] of g(z)
with respect to z is f(z) = 3ka* + fo [where
fo is some constant| because the derivative [with
respect to x| of 2% is 22 and the derivative of any
constant is zero. Since any combination of con-
stants is also a constant, it is equally valid to
make the arbitrary constant term of the same
form as the part which actually varies with x,
viz. f(x) = tka® + Lkad. Thus fy is the
same thing as 3 k2§ and it is a matter of taste
which you want to use.

Naturally we have a shorthand way of writing
this. The differential equation

df = g(x) dx

can be turned into the integral equation

f@)= [ o) da 2)
which reads, “f(z) is the integral of g(z) with
respect to x from xy to x.” We have used the
rule that the integral of the differential of f [or
any other quantity] is just the quantity itself,®
in this case f:

Jar=1 (3)

Our example then reads
T T 1 9 1 9
/k':rdx:k'/ rdr = -kx® — - kuxj
o o 2 2

where we have used the feature that any con-
stant (like k) can be brought “outside the inte-

gral” — i.e. to the left of the integral sign /

Now let’s use these new tools to transform New-
ton’s SECOND LAW into something more com-
fortable.

Why do I put this nice graphical description in a footnote?
Because we can understand most of the Physics applications
of integrals by thinking of them as “antiderivatives” and be-
cause when we go to solve an integral we almost always do it
by asking the question, “What function is this the derivative
of?”  which means thinking of integrals as antiderivatives.
This is not a complete description of the mathematics, but it
is sufficient for the purposes of this course. [See? We really
do “deemphasize mathematics!”]

3This also holds for the integrals of differentials of vectors.




Impulse and Momentum

Multiplying a scalar times a vector is easy, it
just changes its dimensions and length — ¢.e. it
is transformed into a new kind of vector with
new units but which is still in the same direc-
tion. For instance, when we multiply the vector
velocity U by the scalar mass m we get the vec-
tor momentum p = m U. Let’s play a little game
with differentials and the SECOND LAW:
P
dt

Multiplying both sides by dt and integrating
gives

Fai—dp = [ Fa=[ ig=p—p,
to Py

(4)
The left hand side of the final equation is the
time integral of the net externally applied force
F. This quantity is encountered so often in Me-
chanics problems [especially when F is known
to be an explicit function of time, F(t)] that we
give it a name:

[ 20N —
/ F(t)dt = mMPULSE due to applied force F
to

(5)

Our equation can then be read as a sentence:

“The impulse created by the net external
force applied to a system is equal to the mo-
mentum change of the system.”

Conservation of Momentum

The IMPULSE AND MOMENTUM law is certainly
a rather simple transformation of Newton’s SEC-
OND LAw; in fact one may be tempted to think
of it as a trivial restatement of the same thing.
However, it is much simpler to use in many cir-
cumstances. The most useful application, sur-
prisingly enough, is when there is no external
force applied to the system and therefore no im-
pulse and no change in momentum! In such

cases the total momentum of the system does
not change. We call this the LAW OorF CONSER-
VATION OF MOMENTUM and use it much the
same as Descartes and Huygens did in the days
before Newton.?

Momentum conservation goes beyond Newton’s
FirsT LAw, though it may appear to be the
same idea. Suppose our “system” [trick word,
that!] consists not of one object but of several.
Then the “net” [another one!] momentum of
the system is the vector sum of the momenta
of its components. This is where the power of
momentum conservation becomes apparent. As
long as there are no external forces, there can be
as many forces as we like between the component
parts of the system without having the slightest
effect on their combined momentum. Thus, to
take a macabre but traditional example, if we
lob a hand grenade through the air, just after it
explodes (before any of the fragments hit any-
thing) all its pieces taken together still have the
same net momentum as before the explosion.

The LAw OF CONSERVATION OF MOMENTUM
is particularly important in analyzing the colli-
sions of elementary particles. Since such colli-
sions are the only means we have for performing
experiments on the forces between such parti-
cles, you can bet that every particle physicist is
very happy to have such a powerful (and simple-
to-use!) tool.

Example: Volkwagen-Cadillac Scattering

Let’s do a simple example in one dimension [thus
avoiding the complications of adding and sub-
tracting vectors| based on an apocryphal but
possibly true story: A Texas Cadillac dealer
once ran a TV ad showing a Cadillac run-
ning head-on into a parked Volkswagen Bug

“It should be remembered that René Descartes and Chris-
tian Huygens formulated the LAwW OF CONSERVATION OF
MoOMENTUM before Newton’s work on Mechanics. They
probably deserve to be remembered as the First Modern
Conservationists!



at 100 km/h. Needless to say, the Bug was
squashed flat. Figs. 11.1 and 11.2 show a simpli-
fied sketch of this event, using the “before-and-
after” technique with which our new paradigm
works best. Figure 11.1 shows an elastic colli-
sion, in which the cars bounce off each other;
Figure 11.2 shows a plastic collision in which
they stick together. For quantitative simplicity

Before:
= 100 km/h

ﬁ@

After:
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Figure 11.1 Sketch of a perfectly elastic collision
between a Cadillac initially moving at 100 km/h
and a parked Volkswagen Bug. For an elastic
collision, the magnitude of the relative velocity
between the two cars is the same before and af-
ter the collision. [The fact that the cars look
“crunched” in the sketch reflects the fact that
no actual collision between cars could ever be
perfectly elastic; however, we will use this limit-
ing case for purposes of illustration.

we assume that the Cadillac has exactly twice
the mass of the Bug (M = 2m). In both cases
the net initial momentum of the “Caddy-Bug
system” is MV; = 200m, where I have omit-
ted the “km/h” units of V;, the initial velocity
of the Caddy. Therefore, since all the forces act
between the components of the system, the total
momentum of the system is conserved and the
net momentum after the collision must also be

Before:
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Figure 11.2 A perfectly inelastic or plastic col-
lision in which the cars stick together and move
as a unit after the collision.

200m.

In the elastic collision, the final relative veloc-
ity of the two cars must be the same as before
the collision [this is one way of defining such a
collision]. Thus if we assume (as on the draw-
ing) that both cars move to the right after the
collision, with velocities V}; for the Caddy and

vy for the Bug, then
Uf—Vf: 100 or vy ZVf-i-lOO.

Meanwhile the total momentum must be the
same as initially:

MVy + mv; = 200m or

2me —+ m(Vf—l—l()O) = 200m
or 3mV; = 100m

giving the final velocities

1 1
Vi= 33§ km/h and vp = 133§ km /h.

In the plastic collision, the final system consists
of both cars stuck together and moving to the



right at a common velocity v;. Again the total
momentum must be the same as initially:

(M +m)v; =200m  or
3muvy = 200m or

2
vy = 663 km/h.

Several features are worth noting: first, the final
velocity of the Bug after the elastic collision is
actually faster than the Caddy was going when
it hit! If the Bug then runs into a brick wall,
well.... For anyone unfortunate enough to be
inside one of the vehicles the severity of the con-
sequences would be worst for the largest sudden
change in the velocity of that vehicle — ¢.e. for
the largest instantaneous acceleration of the pas-
senger. This quantity is far larger for both cars
in the case of the elastic collision. This is why
“collapsibility” is an important safety feature in
modern automotive design. You want your car
to be completely demolished in a severe colli-
sion, with only the passenger compartment left
intact, in order to minimize the recoil velocity.
This may be annoyingly expensive, but it is nice
to be around to enjoy the luxury of being an-
noyed!

Back to our story: The Cadillac dealer was,
of course, trying to convince prospective VW
buyers that they would be a lot safer in a
Cadillac — which is undeniable, except inso-
far as the Bug's greater maneuverability and
smaller “cross-section” [the size of the “target”
it presents to other vehicles] helps to avoid ac-
cidents. However, the local VW dealer took
exception to the Cadillac dealer’s stated edito-
rial opinion that Bugs should not be allowed
on the road. To illustrate his point, he ran
a TV ad showing a Mack truck running into
a parked Cadillac at 100 km/h. The Cadillac
was quite satisfactorily squashed and the VW
dealer suggested sarcastically that perhaps ev-
eryone should be required by law to drive Mack
trucks to enhance road safety. His point was well
taken.

Centre of Mass Velocity

If we calculate the total momentum of a com-
posite system and then divide by the total mass,
we obtain the velocity of the system-as-a-whole,
which we call the velocity of the centre of mass.
If we imagine “running alongside” the system at
this velocity we will be “in a reference frame
moving with the centre of mass,” where ev-
erything moves together and bounces apart [or
whatever| with a very satisfying symmetry. Re-
gardless of the internal forces of collisions, etc.,
the centre of mass [C'M| will be motionless in
this reference frame. This has many convenient
features, especially for calculations, and has the
advantage that the inifinite number of other pos-
sible reference frames can all agree upon a com-
mon description in terms of the CM. Where
exactly is the C'M of a system? Well, wait a bit
until we have defined torques and rigid bodies,
and then it will be easy to show how to find the
CM.

Work and Energy

We have seen how much fun it is to multiply the
SECOND LAW by a scalar (dt) and integrate the
result. What if we try multiplying through by
a vector? As we have seen in the chapter on
VECTORS, there are two ways to do this: the
scalar or “dot” product A. ]:3;, so named for the
symbol - between the two vectors, which yields a
scalar result, and the vector or “cross” product
A x ]§, whose name also reflects the appearance
of the symbol x between the two vectors, which
yields a vector result. The former is easier, so
let’s try it first.

In anticipation of situations where the applied
force F is an explicit function of the position®

°In the section on CIRCULAR MOTION we chose # to de-
note the vector position of a particle in a circular orbit, using
the centre of the circle as the origin for the # vector. Here
we are switching to & to emphasize that the current descrip-
tion works equally well for any type of motion, circular or



& —i.e. F(&) — let’s try using a differential
change in & as our multiplier:

F.dZ = mad- d&

= mdv-v
= mv-dv

where we have used the definitions of @ and ¥
with a little shifting about of the differential dt
and a reordering of the dot product [which we
may always do| to get the right-hand side [RH S|
of the equation in the desired form. A delightful
consequence of this form is that it allows us to
convert the RHS into an explicitly scalar form:
U - dU is zero if d¥ L ¥ — i.e. if the change in
velocity is perpendicular to the velocity itself,
so that the magnitude of the velocity does not
change, only the direction. [Recall the case of
circular motion!] If, on the other hand, dv ||
¥, then the whole effect of d¥ is to change the
magnitude of ¥, not its direction. Thus ¥ - dv
is precisely a measure of the speed v times the
differential change in speed, dv:

U-do=vdv (6)
so that our equation can now be written
F-dZ =muvdv

and therefore

€, v 1, 1,
/4F-d:13 m/ vdvzm(iv —§U0> (7)

T 0

(Recall the earlier discussion of an equivalent
antiderivative.)

otherwise. The two notations are interchangeable, but we
tend to prefer & when we are talking mainly about rectilin-
ear (straight-line) motion and # when we are referring our
coordinates to some centre or axis.

Just to establish the connection to the mathe-
matical identity adr = vdv, we multiply that
equation through by m and get ma dx = mw dv.
Now, in one dimension (no vectors needed) we
know to set ma = F' which gives us Fdr =
muv dv or, integrating both sides,

v L oo 1 5
/ Fdr = -mv*® — —mu,
o 2 2

which is the same equation in one dimension.

OK, so what? Well, again this formula kept
showing up over and over when people set out to
solve certain types of Mechanics problems, and
again they finally decided to recast the LAW in
this form, giving new names to the left and right
sides of the equation. We call F-dZ the work
dW done by exerting a force F through a dis-
tance d& [work is something we do| and we call
%va the kinetic energy 7. [kinetic energy is
an attribute of a moving mass| Let’s emphasize
these definitions:

—

w—’
/ F-d# =AW, (8)

—

€Tr

the WORK done by F(&) over a path from &, to

Z, and
1
imzﬂ =T, 9)

the KINETIC ENERGY of mass m at speed v.
Our equation can then be read as a sentence:

“When a force acts on a body, the kinetic
energy of the body changes by an amount
equal to the work done by the force exerted
through a distance.”

One nice thing about this “paradigm transfor-
mation” is that we have replaced a vector equa-
tion F =ma by a scalar equation AW = AT.
There are many situations in which the work
done is easily calculated and the direction of the
final velocity is obvious; one can then obtain the
complete “final state” from the “initial state” in
one quick step without having to go through the
details of what happens in between. Another
class of “before & after” problems solved!



Example: The Hill

Probably the most classic example of how the
WORK AND ENERGY law can be used is the
case of a ball rolling down a frictionless hill, pic-
tured schematically in Fig. 11.3. Now, Galileo

dx
N/T N
" 4
v, = 0O
1 v, = 0 @
Fxpanded
2 view
h NE h
3v3
.%

Figure 11.3 Sketch of a ball rolling down a fric-
tionless hill. In position 1, the ball is at rest. It
is then given an infinitesimal nudge and starts
to roll down the hill, passing position 2 on the
way. At the bottom of the hill [position 3] it has
its maximum speed wv3 , which is then dissipated
in rolling up the other side of the hill to position
4. Assuming that it stops on a slight slope at
both ends, the ball will keep rolling back and
forth forever.

was fond of this example and could have given
us a calculation of the final speed of the ball for
the case of a straight-line path (i.e. the inclined
plane); but he would have thrown up his hands
at the picture shown in Fig. 11.3! Consider one
spot on the downward slope, say position 2: the
F'BD of the ball is drawn in the expanded view,
showing the two forces N and W acting on
the mass m of the ball.® Now, the ball does

Tt is unfortunate that the conventional symbol for the
weight, W, uses the same letter as the conventional symbol
for the work, W. I will try to keep this straight by referring to
the weight always and only in its vector form and reserving
the scalar W for the work. But this sort of difficulty is
eventually inevitable.

not jump off the surface or burrow into it, so the
motion is strictly tangential to the hill at every
point.” Meanwhile, a frictionless surface cannot,
by definition, exert any force parallel to the sur-
face; this is why the normal force N s called
a “normal” force — it is always normal [perpen-
dicular] to the surface. So N L d& which
means that N -d& = 0 and the normal force
does no work ! This is an important general rule.
Only the gravitational force W does any work
on the mass m, and since W = —mgy is a
constant downward vector [where we define the
unit vector ¢ as “up”], it is only the downward
component of d& that produces any work at
all. That is, W -dE = —m g dy, where dy is the
component of d& directed upward.® That is, no
matter what angle the hill makes with the ver-
tical at any position, at that position the work
done by gravity in raising the ball a differential
height dy is given by dW = —mgdy [notice
that gravity does negative work going uphill and
positive work going downhill] and the net work
done in raising the ball a total distance Ay is
given by a rather easy integral:

AW:—mg/dy:—mgAy

where Ay is the height that the ball is raised in

the process. By our LAw, this must be equal to

the change in the kinetic energy 1T = %va SO

that ) )
—mv? — —mvj =
2 2

This formula governs both uphill rolls, in which
Ay is positive and the ball slows down, and
downhill rolls in which Ay is negative and
the ball speeds up. For the example shown in
Fig. 11.3 we start at the top with vy = v; =
0 and roll down to position 3, dropping the

—mgAy. (10)

"For now, I specifically exclude cases where the ball gets
going so fast that it does get airborne at some places.

8 Alas, another unfortunate juxtaposition of symbols! We
are using d& to describe the differential vector position
change and dy to describe the vertical component of d&.
Fortunately we have no cause to talk about the horizontal
component in this context, or we might wish we had used
dv after all!



height by an amount A in the process, so that
the maximum speed (at position 3) is given by
Loy

—muv; = mgh or

2gh.
5 g

V3 =
On the way up the other side the process ex-
actly reverses itself [though the details may be
completely different!] in that the altitude once
again increases and the velocity drops back to
Zero.

The most pleasant consequence of this paradigm
is that as long as the surface is truly frictionless,
we never have to know any of the details about
the descent to calculate the velocity at the bot-
tom! The ball can drop straight down, it can
roll up and down any number of little hills [as
long as none of them are higher than its origi-
nal position] or it can even roll through a tun-
nel or “black box” whose interior is hidden and
unknown — and as long as [ guarantee a fric-
tionless surface you can be confident that it will
come out the other end at the same speed as
if it had just fallen the same vertical distance
straight down. The direction of motion at the
bottom will of course always be tangential to the
surface.

For me it seems impossible to imagine the ball
rolling up and down the hill without starting to
think in terms of kinetic energy being stored up
somehow and then automatically re-emerging
from that storage as fresh kinetic energy. But
I have already been indoctrinated into this way
of thinking, so it is hard to know if this is really
a compelling metaphor or just an extremely suc-
cessful one. You be the judge. 1 will force myself
to hold off talking about potential energy until
I have covered the second prototypical example
of the interplay between work and energy.

The Stretched Spring

The spring embodies one of Physics’ premiere
paradigms, the linear restoring force. That is, a

S L S S

Figure 11.4 Sketch of a mass on a spring. In
the leftmost frame the mass m is at rest and the
spring is in its equilibrium position (i.e. neither
stretched nor compressed). [If gravity is pulling
the mass down, then in the equilibrium position
the spring is stretched just enough to counteract
the force of gravity. The equilibrium position
can still be taken to define the = = 0 posi-
tion.| In the second frame, the spring has been
gradually pulled down a distance x,,x and the
mass is once again at rest. Then the mass is
released and accelerates upward under the in-
fluence of the spring until it reaches the equi-
librium position again [third frame]. This time,
however, it is moving at its maximum velocity
Umax as it crosses the centre position; as soon
as it goes higher, it compresses the spring and
begins to be decelerated by a linear restoring
force in the opposite direction. Eventually, when
T = —Tmax, all the kinetic energy has been been
stored back up in the compression of the spring
and the mass is once again instantaneously at
rest [fourth frame]. It immediately starts mov-
ing downward again at maximum acceleration
and heads back toward its starting point. In the
absence of friction, this cycle will repeat forever.




force which disappears when the system in ques-
tion is in its “equilibrium position” =z, [which
we will define as the = = 0 position (29 =0) to
make the calculations easier| but increases as
x moves away from equilibrium, in such a way
that the magnitude of the force F is pro-
portional to the displacement from equilibrium
[F is linear in x| and the direction of F is
such as to try to restore = to the original po-
sition. The constant of proportionality is called
the spring constant, always written k. Thus
(using vector notation to account for the direc-
tionality)

F=-k&

(11)
which is the mathematical expression of the con-

cept of a linear restoring force. This is definitely
one to remember.

Keeping in mind that the F given above is
the force exerted by the spring against anyone
or anything trying to stretch or compress it. If
you are that stretcher/compressor, the force you
exert is —F. If you do work on the spring® by
stretching or compressing it!? by a differential
displacement d& from equilibrium, the differ-
ential amount of work done is given by

AW = —F -d& = k@ -dT = kadx

which we can integrate from x =0 (the equi-
librium position) to « (the final position) to
get the net work W:
z 1
W:k/ vdo = ~ka? (12)
0 2
Once you let go, the spring will do the same
amount of work back against the only thing try-

ing to impede it — namely, the inertia of the
mass m attached to it. This can be used with

°Tt is important to keep careful track of who is doing work
on whom, especially in this case, because if you are careless
the minus signs start jumping around and multiplying like
cockroaches!

107t doesn’t matter which — if you stretch it out you have
to pull in the same direction as it moves, while if you compress
it you have to push in the direction of motion, so either way
the force and the displacement are in the same direction and
you do positive work on the spring.

the WORK AND ENERGY Law to calculate the
speed vpax in the third frame of Fig. 11.4: since
Vo = 07

1 1 k
2 _ 2 2 2
§mvmax - §kxmax or Umax — E T max
k
or Umax = —_ |xmax|
m
where |Tyax| denotes the absolute value of

Tmax (i.€. its magnitude, always positive). Note
that this is a relationship between the maximum
values of v and x, which occur at different
times during the process.

Love as a Spring

Few other paradigms in Physics are so easy to
translate into “normal life” terms as the lin-
ear restoring force. As a whimsical example,
consider an intimate relationship between two
lovers. In this case z can represent “emotional
distance” — a difficult thing to quantify but an
easy one to imagine. There is some equilibrium
distance xy where at least one of the lovers
is most comfortable!’ — this time, just to show
how it works, we will not choose xzy to be the
zero position of x but leave it in the equations
explicitly. When circumstances (usually work)
force a greater emotional distance for a while,
the lover experiences a sort of tension that pulls
him or her back closer to the beloved. This is a
perfect analogy to the linear restoring force:

F=—k(z— )

What few people seem to recognize is that this
“force,” like any linear restoring force, is sym-
metric: it works the same in both directions, too
far apart and too close. When circumstances
permit a return to greater closeness, the lover
rushes back to the beloved (figuratively — we
are talking about emotional distance x here!)

"Sadly, xo is not always the same for both partners in the
relationship; this is a leading cause of tension in such cases.
[Doesn’t this metaphor extend gracefully?]
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and very often “overshoots” the equilibrium po-
sition o to get temporarily closer than is com-
fortable. The natural repulsion that then oc-
curs is no cause for dismay — you can’t really
have an attraction without it — but some peo-
ple seem surprised to discover that the attrac-
tion that binds them to their beloved does not
just keep acting no matter how close they get;
they are very upset that x cannot just keep get-
ting closer and closer without limit.'? In later
chapters I will have much more to say about the
oscillatory pattern that gets going [see Fig. 11.4]
when the overshoot is allowed to occur without
any friction to dissipate the energy stored in the
stretched spring [a process known as damping].
But first I really must pick up another essen-
tial paradigm that has been begging to be intro-
duced.

Potential Energy

Imagine yourself on skis, poised motionless at
the top of a snow-covered hill: one way or an-
other, you are deeply aware of the potential of
the hill to increase your speed. In Physics we
like to think of this obvious capacity as the po-
tential for gravity to increase your kinetic en-
ergy. We can be quantitative about it by go-
ing back to the bottom of the hill and recalling
the long trudge uphill that it took to get to the
top: this took a lot of work, and we know the
formula for how much: in raising your eleva-
tion by a height A you did an amount of work
W = mgh “against gravity” [where m is your
mass, of course]. That work is now somehow
“stored up” because if you slip over the edge it
will all come back to you in the form of kinetic
energy! What could be more natural than to
think of that “stored up work” as gravitational

121 suspect that such foolishness is merely an example of
single-valued logic [closer = better] obsessively misapplied,
rather than some more insidious psychopathology. But I
could be wrong!

potential energy

Vo=mgh (13)

which will all turn into kinetic energy if we allow
h to go back down to zero?'3

We can then picture a skier in a bowl-shaped val-
ley zipping down the slope to the bottom [V, —
T and then coasting back up to stop at the orig-
inal height [T"— V]| and (after a skillful flip-
turn) heading back downhill again [V, — T. In
the absence of friction, this could go on forever:
Vo=T = Vy—=T =V, =T — ....

The case of the spring is even more compelling,
in its way: if you push in the spring a distance =,
you have done some work W = %k r? “against
the spring.” If you let go, this work “comes
back at you” and will accelerate a mass until all
the stored energy has turned into kinetic energy.
Again, it is irresistible to call that “stored spring
energy” the potential energy of the spring,

Loy

Veo=ckx (14)

2
and again the scenario after the spring is re-
leased can be described as a perpetual cycle of
Vi=>T —-V,—>T—>V,>T— ....

Conservative Forces

Physicists so love their ENERGY paradigm that
it has been elevated to a higher status than the
original SECOND LAW from which it was de-
rived! In orer to make this switch, of course, we
had to invent a way of making the reverse deriva-
tion — i.e. obtaining the vector force F ex-
erted “spontaneously” by the system in question
from the scalar potential energy V of the sys-
tem. Here’s how: in one dimension we can forget
the vector stuff and just juggle the differentials

13The choice of a zero point for V, is arbitrary, of course,
just like our choice of where h = 0. This is not a problem
if we allow negative potential energies [which we do!] since
it is only the change in potential energy that appears in any
actual mechanics problem.



in dWe = Fedx, where the W, is the work
I do in exerting a force Fy,, “against the sys-
tem” through a distance dx. Assuming that all
the work I do against the system is conserved
by the system in the form of its potential energy
V, then dV = dWe. On the other hand, the
force F' exerted by the system [e.g. the force
exerted by the spring] is the equal and opposite
reaction force to the force I exert: F = —Fp..
The law for conservative forces in one dimension
is then

F=-— (15)

That is, the force of (e.g.) the spring is minus
the rate of change of the potential energy with
distance.

In three dimensions this has a little more com-
plicated form, since V(&) could in principle
vary with all three components of #: z,y and
z. We can talk about the three components in-
dependently,

o v oV

where the notation 0 is used to indicate deriva-
tives with respect to one variable of a function of
several variables [here V' (z,y, z)] with the other
variables held fixed. We call 0V /Ox the partial
derivative of V' with respect to x. In the same
spirit that moved us to invent vector notation
in the first place [i.e. making the notation more
compact], we use the gradient operator

- .0 0 0
V:x%

to express the three equations above in one com-
pact form:

F =-VV (17)
The gradient is easy to visualize in two dimen-
sions: suppose you are standing on a real hill.
Since your height h = z is actually propor-
tional to your gravitational potential energy V,,
it is perfectly consistent to view the actual hill
as a graph of the function V,(z,y) of East-
West coordinate x and North-South coordi-
nate y. In this picture, looking down on the
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hill from above, the direction of the gradient
ﬁvg is uphill, and the magnitude of the gradi-
ent is the slope of the hill at the position where
the gradient is evaluated. The nice feature is
that ﬁvg will automatically point “straight
up the hill” — d.e. in the steepest direction.
Thus —6&/9 points “straight downhill” — i.e.
in the direction a marble will roll if it is released
at that spot! There are lots of neat tricks we can
play with the gradient operator, but for now I’ll
leave it to digest.

Friction

What about not-so-conservative forces? In the
real world a lot of energy gets dissipated through
what is loosely known as friction. Nowhere will
you find an entirely satisfactory definition of
precisely what friction is, so [ won't feel guilty
about using the cop-out and saying that it is the
cause of all work that does not “get stored up
as potential energy.” That is, when I do work
against frictional forces, it will not reappear as
kinetic energy when I “let go.”

Where does it go? We have already started get-
ting used to the notion that energy is conserved,
so it is disturbing to find some work just be-
ing lost. Well, relax. The energy dissipated by
work against friction is still around in the form
of heat, which is something like disordered po-
tential and kinetic energy.'* We will talk more
about heat a few chapters later.

Torque and Angular Momentum

Finally we come to the formally trickiest trans-
formation of the SECOND LAW, the one involv-
ing the vector product (or “cross product”) of
F with the distance 7 away from some ori-

1[Not quite, but you can visualize lots of little atoms wig-
gling and jiggling seemingly at random — that’s heat, sort

of.]
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gin'® “O.” Here goes:

X |d= =F X —=7rxF
T l T ] gives T 7 T
Now, the distributive law for derivatives applies

to cross products, so

d ar dp
%[rxﬁ]_%xp—l-rxa
but
dr . o
E:’U and P = muv
d’f” — — —
SO axp:m(vxv)zo

because the cross product of any vector with it-
self is zero.'® Therefore

d (7 x p] = 7 X F
— [T =7 .
it P

If we define two new entities,

Pxp = Lo, (18)
the Angular Momentum about O
and
FxF = Fo, (19)

the Torque generated by F about O,

then we can write the above result in the form

dLo =
9 _ T,

o (20)

This equation looks remarkably similar to the
SECOND LaAw. In fact, it is the rotational ana-
logue of the SECOND LAw. It says that

“The rate of change of the angular
momentum of a body about the ori-
gin O is equal to the torque gener-
ated by forces acting about O.”

15Note that everything we discuss in this case will be with
reference to the chosen origin O, which may be chosen arbi-
trarily but must then be carefully remembered!

16Remember from the chapter on VECTORS that only the
perpendicular parts of two vectors contribute to the cross
product. Any two parallel vectors have zero cross product.
A vector crossed with itself is the simplest example.

So what? Well, if we choose the origin cleverly
this “new” Law gives us some very nice gen-
eralizations. Consider for instance an example
which occurs very often in physics: the central
force.

Central Forces

Many [maybe even most] forces in nature are di-
rected toward [or away from| some “source” of
the force. An obvious example is Newton’s Uni-
versal Law of Gravitation, but there are many
others evident, especially in elementary parti-
cle physics.!” We call these forces “central” be-
cause if we regard the point toward [or away
from| which the force points as the centre (or
origin O) of our coordinate system, from which
the position vector 7 is drawn, the cross prod-
uct between # and F (which is along ) is
always zero. That is,

“A central force produces no torque
about the centre; therefore the an-
gular momentum about the centre
remains constant under a central
force.”

This is the famous Law of CONSERVATION OF
ANGULAR MOMENTUM. Note the limitation on
its applicability.

The Figure Skater

Again, so what? Well, there are numerous exam-
ples of central forces in which angular momen-
tum conservation is used to make sense of other-
wise counterintuitive phenomena. For instance,
consider the classic image of the figure skater do-
ing a pirouette: she starts spinning with hands

"For instance, the electrostatic force between two point
charges obeys exactly the same “inverse square law” as grav-
itation, except with a much stronger constant of proportion-
ality and the inclusion of both positive and negative charges.
We will have lots more to do with that later on!



Figure 11.5 A contrived central-force problem.
The ball swings around (without friction, of
course) on the end of a string fixed at the ori-
gin O. The central force in the string cannot
generate any torque about O, so the angular
momentum Lo = muvr about (O must re-
main constant. As the string is pulled in slowly,
the radius r gets shorter so the momentum
p=mv = mrw has to increase to compensate.

and feet as far extended as possible, then pulls
them in as close to her body. As a result, even
though no torques were applied, she spins much
faster. Why? I can’t draw a good figure skater,
so I will resort to a cruder example [shown in
Fig. 11.5] that has the same qualitative features:
imagine a ball (mass m) on the end of a string
that emerges through a hole in an axle which is
held rigidly fixed. The ball is swinging around in
a circle in the end of the string. For an initial ra-
dius 7 and an initial velocity v = rw, the initial
momentum is mrw and the angular momentum
about O is Lo = mvr = mrw. Now suppose
we pull in the string until ' = %r. To keep the
same Lo the momentum (and therefore the
velocity) must increase by a factor of 2, which
means that the angular velocity w’ = 4w since
the ball is now moving at twice the speed but
has only half as far to go around the circumfer-
ence of the circle. The period of the “orbit” has
thus decreased by a factor of four!

Returning to our more @sthetic example of the
figure skater, if she is able to pull in all her mass
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a factor of 2 closer to her centre (on average)
then she will spin 4 times more rapidly in the
sense of revolutions per second or “Hertz” (Hz).

Kepler Again

A more formal example of the importance of
the Law of Conservation of Angular Momen-
tum under Central Forces is in its application
to Celestial Mechanics, where the gravitational
attraction of the Sun is certainly a classic cen-
tral force. If we always use the Sun as our origin
O, neglecting the influence of other planets and
moons, the orbits of the planets must obey Con-
servation of Angular Momentum about the Sun.
Suppose we draw a radius r from the Sun to
the planet in question, as in Fig. 11.6. The rate

Figure 11.6 A diagram illustrating the areal ve-
locity of an orbit. A planet (mass m) orbits
the Sun at a distance r. the shaded area is
equal to %r X rdf in the limit of infinitesimal
intervals [i.e. as df# — 0]. The areal veloc-
ity [rate at which this area is swept out] is thus

sridf/dt = $riw.

at which this radius vector “sweeps out area” as
the planet moves is %rQw, whereas the angular
momentum about the Sun is mr?w. The two
quantities differ only by the constants % and
m; therefore Kepler’s empirical observation that
the planetary orbits have constant “areal veloc-
ity” is equivalent to the requirement that the an-
gular momentum about the Sun be a conserved

quantity.
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Rigid Bodies

Despite the fact that all Earthly matter is com-
posed mostly of empty space sprinkled lightly
with tiny bits of mass called atomic nuclei and
even tinier bits called electrons, the forces be-
tween these bits are often so enormous that they
hold the bits rigidly locked in a regular array
called a solid. Within certain limits these arrays
behave as if they were inseperable and perfectly
rigid. It is therefore of some practical impor-
tance to develop a body of understanding of the
behaviour of such rigid bodies under the influ-
ence of external forces. This is where the equa-
tions governing rotation come in.

A Moment of Inertia, Please!

Just as in the translational [straight-line mo-
tion| part of Mechanics there is an inertial factor
m which determines how much p you get for a
given v =2 and how much a =v =7 you get
for a given F', so in rotational Mechanics there
is an angular analogue of the inertial factor that
determines how much Lo you get for a given
w =0 and how much a = & you get for a
given ['p. This angular inertial factor is called
the moment of inertia about O [we must always
specify the origin about which we are defining
torques and angular momentum| and is written
Ip with the prescription

Ip = / r2 dm (21)
where the integral represents a summation over
all little “bits” of mass dm [we call these “mass
elements”] which are distances r; away from
an axis through the point O. Here we discover
a slight complication: r; is measured from the
axis, not from O itself. Thus a mass element
dm that is a long way from O but right on
the axis will contribute nothing to [Ip. This
continues to get more complicated until we have
a complete description of Rotational Mechanics
with Ip as a tensor of inertia and lots of other

stuff I will never use again in this course. I be-
lieve I will stop here and leave the finer points of
Rotational Mechanics for later Physics courses!

Rotational Analogies

It is, however, worth remembering that all the
now-familiar [?] paradigms and equations of Me-
chanics come in “rotational analogues:”

Linear Angular
Version Version Name
x 0 angle
T=wv 6 =w angular velocity
r=v=a QEQ}:O{ angUIar.
acceleration
moment of
m 1o i )
Inertia
p=muv Lo = Ipw angular
momentum
F I'o torque
p=F Lo=To SECOND LaAw

rotational kinetic
energy

dW = Fdx dW =1df rotational work
F e _kr I — _rh torsional spring
law
Ve lka? Vo= Lleg? torsional
72 5§02 potential energy




Statics

The enormous technology of Mechanical Engi-
neering can be in some naive sense be reduced
to the two equations
ﬁ: ﬁ and -EO == fo.

Whole courses are taught on what amounts to
these two equations and the various tricks for
solving them in different types of situations.
Fortunately, this isn’t one of them! Just to
give a flavour, however, [ will mention the basic
problem-solving technique of Statics, the science
of things that are sitting still!'® That means

P =0 and l_';o =0 so that the relevant equa-
tions are now

S F =0 Y To =0

where the Y [summation] symbols emphasize
that there is never just one force or one torque
acting on a rigid body in equilibrium; if there
were, it (the force or torque) would be unbal-
anced and acceleration would inevitably result!

and

To solve complex three-dimensional Statics
problems it is often useful to back away from our
nice tidy vector formalism and explicitly write
out the “equations of equilibrium” in terms of
the components of the forces along the z,¢y and
z directions as well as the torques about the
x,y and z axes [which meet at the origin O]:

S F, =0 ST, =0 (22
S F, =0 ST, =0 (23)
SF =0 ST, =0 (24)

If you have some civil engineering to do, you
can work it out with these equations. Or hire
an Engineer. I suggest the latter.

'8This is pretty boring from a Physicist’s point of view, but
even Physicists are grateful when bridges do not collapse.
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Physics as Poetry

This has been a long chapter; it needs some sum-
mary remarks. All I have set out to do here is
to introduce the paradigms that emerged from
Newton’s SECOND LAwW through mathematical
identity transformations. This process of emer-
gence seems almost miraculous sometimes be-
cause by a simple [?] rearrangement of previ-
ously defined concepts we are able to create new
meaning that wasn’t there before! This is one of
the ways Physics bears a family resemblance to
Poetry and the other Arts. The Poet also juxta-
poses familiar images in a new way and creates
meaning that no one has ever seen before; this
is the finest product of the human mind and one
of the greatest inspirations to the human spirit.

In Physics, of course, the process is more slug-
gish, because we insist on working out all the
ramifications of every new paradigm shift and
evaluating its elegance and utility in some detail
before we decide to “go with it.” This explains
why it is so easy to describe just how the con-
cepts introduced in this chapter emerged from
Newton’s Mechanics, but not so easy to tidily
describe the consequences (or even the nature)
of more recent paradigm shifts whose implica-
tions are still being discovered. There is a lot of
technical overhead to creativity in Physics.

A Physics paradigm shift is a profound alter-
ation of the way Physicists see the world; but
what do the rest of us care? It can be argued
that such shifts have effects on our Reality even
if we choose to exclude Physics from our imme-
diate awareness. Examples of this are plentiful
even in Classical Mechanics, but the first dra-
matic social revolution that can be clearly seen
to have arisen largely from the practical con-
sequences of breakthroughs in Physics was the
Industrial Revolution, the origins of which will
be discussed in the chapter on Thermal Physics.



