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Particle in a Box

At the expense of any pretensions of historical accu-
racy, I am going to see how many interesting conclu-
sions we can draw from one simple hypothesis posed
by Louis Victor Pierre Raymond duc de Broglie in his
26-page doctoral thesis in 1924. It had been shown
two decades earlier that light, which is certainly a
wave, comes quantized in clumps like particles (called
photons) with the energy of each photon equal to
Planck’s constant times its frequency: E = hν, where
h = 6.626 × 10−34 J-s is Planck’s constant. (It was
the explanation of this phenomenon in 1905 that won
Albert Einstein the Nobel prize. Relativity was just
gravy.) It had already been shown earlier still (in the
late Nineteenth Century) that an electromagnetic wave
carries both energy E and momentum p, in the ratio
E = pc where c is the speed of light. This ratio holds
also for quantized photons, which therefore have mo-
mentum p = hν/c. But for any wave, c = λν, so

λ =
h

p
. (1)

Louis’ hypothesis was amazingly simple: he reasoned
that if waves are like particles, then maybe particles

are like waves. In particular, an electron is in some
mysterious sense a wave with its wavelength λ given
in terms of its momentum p by Eq. (1). This simple
suggestion was the basis for the wave/particle du-
ality that has perplexed generations of Physics stu-
dents ever since (and formed the basis for all quantum
mechanics). But suppose we just take it at face value
and examine a few “obvious” consequences.

24.1 A 1-Dimensional Box

Figure 24.1 — First three allowed modes of a standing
wave confined to a 1-dimensional box.

Suppose an electron is confined somehow to a “1-
dimensional box” (like a bead on a wire). Actually
there are many examples of such systems; a DNA

molecule is an interesting example. The “box” (or
string, or however you want to think of it) has a length

ℓ. If the electron is truly confined to the box, then its
“wave” must have nodes (zeroes) at the ends of the
box — and be zero everywhere outside the box. This
is the familiar condition defining the allowed “modes”
of vibrations in a string or in a closed organ pipe:

λn =
2ℓ

n
(2)

where n is any nonzero integer.

If we put this together with de Broglie’s formula (1),
we get an equation for the momentum of the electron
in it’s nth mode:

pn =
nh

2ℓ
(3)

and if we recall that the kinetic energy associated with
a particle of mass m having momentum p is given by

E =
p2

2m
(4)

then we have the energy of the electron in its nth mode:

En =
n2h2

8mℓ2
. (5)

The electron not only has discrete “energy levels” but
it has an irreducible minimum energy for the lowest
possible state (the “ground state”):

E1 =
h2

8mℓ2
. (6)

The smaller the box, the bigger the ground state en-
ergy. Particles don’t “like” to be confined! This
has a number of profound consequences which we will
revisit shortly. But first let’s do a little trick and turn
our string into a circle. . . .

24.2 Fudging The Bohr Atom

If the electron travels in a circular path (as postulated
by Niels Bohr in 1913) then we must apply de Broglie’s
hypothesis in a slightly different way: namely, the elec-
tron’s “wave” must be single valued — it has to get
back to the same value as it travels around the closed
loop back to where it started. This means that the cir-
cumference of the loop is an integer number of wave-
lengths, or

2πrn = nλn (7)

where rn is the radius of the orbit for the nth allowed
mode. This in turn predicts a relationship between the
radius and the momentum,

rnpn = nh̄ (8)



2

where h̄ ≡ h/2π = 1.05458 × 10−34 J-s. [Actually in
any sensible system of units h̄ = 1, just like c = 1, but
we are forced by tyrannical bureaucrats and twisted
social conventions to use si units.]

But what is the product of the radius and the momen-
tum for a circular orbit? The angular momentum!
Thus Voila! We have Bohr’s hypothesis, namely that
angular momentum L is quantized in units of h̄:

Ln = nh̄ (9)

24.2.1 The Bohr Radius

We can play more games with Bohr’s hydrogen atom if
we like, using just Eq. (8) to relate rn and pn. Suppose
we ask, “What is keeping the electron in its orbit?”
The answer is, of course, “The Coulomb force of at-
traction between the positive nucleus and the negative
electron!” This centripetal force has the value (in si
units)

F (r) =
1

4πǫ◦

e2

r2
(10)

where e = 1.60217733× 10−19 C is the magnitude of
the charge on either an electron (−e) or a proton (+e)
and the ugly mess out front is the legacy of si units
— a constant stuck in to make it come out right. The
corresponding electrostatic potential energy is

V (r) = −

1

4πǫ◦

e2

r
(11)

(relative to V → 0 at r → ∞). We’ll need that mo-
mentarily.

A simple application of Newton’s second law gives

m
v2

r
=

p2

mr
=

1

4πǫ◦

e2

r2

where m is the mass of the electron. Cancelling one r
and rearranging gives

p2 =
1

4πǫ◦

me2

r
. (12)

Substituting Eq. (8) into Eq. (12) gives
(

nh̄

rn

)2

=
1

4πǫ◦

me2

rn

or (after some shuffling)

rn =
4πǫ◦n

2h̄2

me2
(13)

for the radius of the nth Bohr orbit of the H atom. The
lowest orbit (n = 1) has a special name and symbol:
the Bohr radius,

a◦ =
4πǫ◦h̄

2

me2
= 0.529189379Å (14)

where 1 Å = 10−10 m.

24.2.2 Bohr’s Energy Levels

Going on, we can calculate the net energy (kinetic plus
potential) of an electron in the nth Bohr orbital of the
H atom:

En =
p2

n

2m
−

1

4πǫ◦

e2

rn

or [again using Eq. (8) to substitute nh̄/rn for pn]

En =
n2h̄2

2mr2
n

−

1

4πǫ◦

e2

rn

.

Now we replace rn with our expression (13) to get

En =
n2h̄2

2m

(

me2

4πǫ◦n2h̄2

)2

− e2

[

me2

(4πǫ◦)
2
n2h̄2

]

which simplifies to

En = −

(

1

4πǫ◦

)2
me4

n2h̄2
= −

E0

n2
(15)

where E0 = 2.18× 10−18 J = 13.6055 eV (where 1 eV
= 1.60219×10−19 J). We have thus reproduced Bohr’s
explanation for the empirical formulae of Balmer and
Rydberg! Note that whereas the energy of confinement

of a particle in a box increases as n2 (where n − 1 is
the number of nodes inside the box), the Bohr energy
levels of an atom increase as −1/n2 (they get less neg-
ative and closer together as n increases). Of course, so
far all these calculations have been done in the classical
(nonrelativistic) limit. If the momenta get big enough
(p comparable to or greater than mc) we have to do
our calculations differently. . . .

24.3 Relativistic Energy

Let’s generalize our formula for kinetic energy so that
it is relativistically correct. For a massless particle
(like a photon) the expression (4) doesn’t make any
sense and is in fact wrong. Without stopping now to
explain where it comes from, I will just give you the
relativistically correct and completely general formula
for the total energy of a particle:

E2 = p2c2 + m2c4. (16)

Note that this total relativistic energy has the
irreducible value E0 = mc2 when the particle is at rest
(momentum = zero). This should ring a bell. To sepa-
rate the kinetic energy K from the total relativistic
energy we just subtract off E0.

It turns out [Don’t you love that phrase?] that de
Broglie’s relation (1) is relativistically correct! Thus
we can still use it to calculate the total energy even
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if the confined particle is ultrarelativistic or massless.
In fact, any particle acts pretty much like a photon
at high enough momentum, where we can ignore m2c4

in comparison with p2c2, in which case the formula
simplifies to E = pc or (for our ultrarelativistic particle
in a box)

En =
nhc

2ℓ
. (17)

24.3.1 Black Holes

As long as we’re being relativistic, why not go all the
way? Suppose a very lightweight particle is in orbit
around a very heavy mass m, attracted only by gravity.
A simple application of Newton’s Second Law yields
the orbital velocity

vorb =

√

Gm

r
. (18)

Taking this at face value, what happens when vorb →

c? For a given m, there is a radius called the
Schwarzschild radius

RS =
Gm

c2
(19)

for which anything close to the mass cannot maintain
its orbit without exceeding the speed of light. Since
this is impossible [I am being really sloppy and glib
now, but the conclusion is qualitatively correct] once
anything gets inside that radius it falls in the rest of
the way and never comes out. Even light. Hence the
term, “black hole”. Any mass m has its Rs; but
usually the density of a given lump of matter is not
high enough to place sufficient m inside a given r to
cause a black hole to form.

24.3.2 The Planck Length

An exception is the overly confined particle. Even
a massless photon, if confined to a small enough re-
gion, will have such an enormous energy of confinement
[from Eq. (17)] that its effective mass

meff =
nh

2ℓc
. (20)

(from E = meffc2) will be big enough to make ℓ smaller
than the Schwarzschild radius! Using meff in the for-
mula (19) for RS and setting ℓ = RS gives an approx-
imate formula for the Planck length

ℓP =

√

hG

c3
. (21)

If you try to confine any particle (even a photon) to
a region smaller than ℓP , it will cause a gravitational

collapse into a black hole. I.e. you can’t do it. This
is where quantum mechanics is certain to break down.
Want to do some leading edge Physics theory? Quan-
tum gravity is a good place to start.

By the way, the above handwaving derivation simply
explains why you can’t confine a particle to a prison
of dimensions smaller than the Planck length. It says
nothing about restrictions on an empty prison, nor
does it make any claims about any “grainyness” of
spacetime. If there is such quantization of space and
time, you will have to construct a different argument
for its existence. People do. But hey, this is weird
enough!


