Difference between revisions of "Stretched Exponentials"

From WeKey
Jump to navigationJump to search
 
Line 5: Line 5:
I don't much care for it. It will ''fit'' a wide variety of ZF-&micro;SR relaxation functions, but what do the results ''mean''? What do they tell us about the physics? There are cases where "root exponential" relaxation functions (<math>\beta = 1/2</math>) suggest a rapidly fluctuating spin glass, but fit results with <math>\beta</math> all the way from 0.25 to 3 have been published without any hint of irony. Please don't resort to this.
I don't much care for it. It will ''fit'' a wide variety of ZF-&micro;SR relaxation functions, but what do the results ''mean''? What do they tell us about the physics? There are cases where "root exponential" relaxation functions (<math>\beta = 1/2</math>) suggest a rapidly fluctuating spin glass, but fit results with <math>\beta</math> all the way from 0.25 to 3 have been published without any hint of irony. Please don't resort to this.
<center>
<center>
[[Image:StrExp_color.png|600px|inline image (click to see full size)]]
[[Image:StrExp_color.png|400px|inline image (click to see full size)]]
{| width="80%"
{| width="80%"
! align="left" |
! align="left" |

Latest revision as of 10:28, 17 September 2022

Relaxonomy --> here


In between exponential <math>\exp(-\lambda t)</math> and gaussian <math>\exp[-(\sigma t)^2]</math> relaxation (and indeed extending beyond either) is the much-abused empirical "stretched exponential" function,

<math>\exp[-(\Lambda t)^\beta]</math>

I don't much care for it. It will fit a wide variety of ZF-µSR relaxation functions, but what do the results mean? What do they tell us about the physics? There are cases where "root exponential" relaxation functions (<math>\beta = 1/2</math>) suggest a rapidly fluctuating spin glass, but fit results with <math>\beta</math> all the way from 0.25 to 3 have been published without any hint of irony. Please don't resort to this.

Error creating thumbnail: File missing

<math>G(t) = \exp[-(\Lambda t)^\beta]</math> for <math>\Lambda = 1</math> and <math>\beta = 0.25, 0.5, 1, 2, 3</math>. Only <math>\beta = 1, 2</math> and sometimes <math>0.5</math> have familiar physical meanings.