

THE UNIVERSITY OF BRITISH COLUMBIA

Physics 108 Assignment # 9: INDUCTANCE & CIRCUITS

Wed. 9 Mar. 2005 — finish by Wed. 16 Mar.

1. **Solenoid as an RL Circuit:** A long wire with net resistance $R = 120 \Omega$ is wound onto a nonmagnetic spindle to make a solenoid whose cross-sectional area is $A = 0.02 \text{ m}^2$ and whose effective length is $\ell = 0.5 \text{ m}$. (Treat the coil as an ideal, long solenoid.) Using a battery with a $1 \text{ M}\Omega$ internal resistance, a magnetic field of $B_0 = 0.6 \text{ T}$ has been built up inside the solenoid. At $t = 0$ the battery is shorted out and then disconnected so that the current begins to be dissipated by the coil's resistance R . We find that after 3.6 ms the field in the coil has fallen to 0.1 T .
 - (a) How many joules of energy are stored in the coil at $t = 0$?
 - (b) How long does it take for the stored energy to fall to half its initial value?
 - (c) What is the total number of turns in the coil?
2. **LC Circuit Time-Dependence:** In an LC circuit with $C = 90 \mu\text{F}$ the current is given as a function of time by $I = 3.4 \cos(1800t + 1.25)$, where t is in seconds and I is in amperes.
 - (a) How soon after $t = 0$ will the current reach its maximum value?
 - (b) Calculate the inductance.
 - (c) Find the total energy in the circuit.
3. **Build Your Own Circuit:** You are given a 12 mH inductor and two capacitors of 7.0 and $3.0 \mu\text{F}$ capacitance. List all the resonant frequencies that can be produced by connecting these circuit elements in various combinations.
4. **LRR Circuit Time-Dependence:** In the circuit shown, the $\mathcal{E} = 12 \text{ V}$ battery has negligible internal resistance, the inductance of the coil is $L = 0.12 \text{ H}$ and the resistances are $R_1 = 120 \Omega$ and $R_2 = 70 \Omega$. The switch **S** is closed for several seconds, then opened. Make a quantitatively labelled graph with an abscissa of time (in milliseconds) showing the potential of point **A** with respect to ground, just before and then for 10 ms after the opening of the switch. Show also the variation of the potential at point **B** over the same time period.

