
The University of British Columbia

Physics 108 Assignment # 11 SOLUTIONS:

INTERFERENCE

Wed. 23 Mar. 2005 — finish by Wed. 30 Mar.

1. NON-REFLECTIVE FILM COATING: A sheet of glass having an index of refraction of 1.35 is to be
coated with a film of material having a refractive index of 1.5 such that bluish-green light (wavelength = 500 nm)
is preferentially transmitted.

(a) What is the minimum thickness of the film that will achieve the desired result?
ANSWER: Reflected ray 1 picks up a phase shift ∆φ1 = π because it reflects off a
“denser” (higher n) medium. Ray 2 has no such shift because it reflects off a less dense
(lower n) medium; however, it goes further than ray 1 by ∆` = 2d (remember, all rays are
presumed to have normal incidence, even though they are sketched obliquely for clarity)
and therefore it is out of phase with ray 1 by an extra ∆φ2 = 2π∆`/λB = π(4dnB/λ)
where λB = λ/nB is the wavelength in medium A. Therefore the two rays are out of phase
by a total of

∆φ12 = ∆φ2 − ∆φ1 = π

(

4dnB

λ
− 1

)

= π

(

4 × d × 1.5

500 nm
− 1

)

altogether.

For a maximum transmission at λ we want minimum reflection — i.e. destructive interference between rays
1 and 2, which occurs when ∆φ12 is an odd multiple of π. In principle, no thickness at all (d → 0 or at least
d � λ) would give maximum transmission, but that would work equally well for all wavelengths, whereas the
question specifies “. . . preferentially transmitted.” Only for a nonzero film thickness can there be any dependence
of ∆φ12 upon λ. (Also, it’s hard to make a film of zero thickness!) Thus the minimum thickness d satisfying our

requirement is that for ∆φ12 = π or
4 × 1.5 × d

500 nm
= 2, giving d =

500 nm

3.0
or d = 166.7 nm.

(b) Why are other parts of the visible spectrum not also preferentially transmitted? ANSWER: At this
thickness, no longer wavelength (redder) light will have an optimal destructive interference of reflected light
(preferential transmission); meanwhile, the next shorter wavelength (bluer) light to be preferential transmitted

will have ∆φ12 = 3π, giving
4 × 1.5 × d

λ2

= 4 =⇒ λ2 = 1.5d = 250.0 nm [i.e. ultraviolet], which is not part

of the visible spectrum.

(c) Will the transmission of any colors be sharply reduced? ANSWER: At this d, ∆φ12 = 0 (constructive

interference =⇒ maximum of reflection) if
4 × 1.5 × d

λ3

= 1 =⇒ λ3 = 1000 nm [infrared] and ∆φ12 = 2π

(ditto) if
4 × 1.5 × d

λ4

= 3 =⇒ λ4 = 333.3 nm [near ultraviolet].
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2. FRINGES IN A WEDGE: A pefectly flat piece of glass (n =
1.45) is placed over a perfectly flat piece of black plastic (n = 1.30)
as shown below They touch at A. Green light of wavelength 525
nm is incident normally from above. Any light transmitted into
the plastic is completely absorbed. The location of the dark fringes
in the reflected light is shown in the sketch at lower right.

(a) How thick is the space between the glass and the plastic at B? ANSWER: Refer again to the sketch of
rays in problem 1. In this case nA = 1.45, nB = 1.0 and nC = 1.30, so ray 1 reflects off a less dense medium =⇒
no phase shift. Ray 2, however, reflects off a denser medium and so picks up a phase shift of π upon reflection; it

also travels further than ray 1, so the net phase difference between rays 1 and 2 is ∆φ12 = π

(

4dnB

λ
− 1

)

— i.e.

just as in problem 1! Here as usual λ refers to the wavelength in vacuum; nB is the index of refraction in the
medium between the plates, in this case air. This gives destructive interference (∆φ12 = −π) for d = 0, which
explains the dark fringe where the plates touch at A.

√

Between A and B we go through exactly 6 cycles of

light and dark fringes (6 × 2π in phase shift) =⇒
4dnB

λ
= 12 or d =

3 × 525 nm

1.0
or d = 1575 nm at B.

(b) Water (n = 1.33) seeps into the region between the glass and plastic. How many dark fringes are seen when
all the air has been displaced by water? ANSWER: Now both reflections (rays 1 and 2) are off less dense

media =⇒ neither picks up an extra phase shift of π and we have ∆φ12 = π

(

4dnB

λ

)

. There is now a bright

fringe (∆φ12 = 0) at A and at B we have ∆φ12 = 2π ×

(

2 × 1575× 1.33

525

)

= 7.98× (2π) — i.e. almost 8 full

cycles of light and dark =⇒ another light fringe at B and 8 dark fringes in between.

(The straightness and equal spacing of the fringes is an accurate test of the flatness of the glass.)

3. THREE-SLIT INTERFERENCE PATTERN: Light of
wavelength 600 nm is incident normally on three parallel narrow
slits separated by 0.60 mm. Sketch the intensity pattern
observed on a distant screen as a function of angle θ for the
range of values −0.003 ≤ θ ≤ 0.003 radians.

ANSWER: We can use the formula I = I0

[

sin Nδ

2

sin δ

2

]2

where

δ = 2π

(

d sin θ

λ

)

to draw the result by brute calculational effort,

but it is more instructive (and a lot less effort!) to generate the
sketch by a sequence of simpler qualitative arguments.

First consider the “gross structure” of the interference pattern: primary maxima occur when the phase difference between
adjacent slits (separated by d = 6.0 × 10−4 m) is an integer multiple of 2π: δ = 2π =⇒ our old friend d sin θ = mλ.
Here λ = 6.0 × 10−7 m so the criterion is sin θm ≈ θm = m/1000 i.e. after the central maximum at θ = 0, we
get principle maxima every 10−3 rad ≡ 1 mrad [milliradian]. This corresponds to a phasor diagram where all three

phasors line up. There are zeroes for diagrams where δ = 2π

(

m ± 1

3

)

giving

(

m ± 1

3

)

λ = d sin θz ≈ dθz — i.e.

when θz =

(

m ± 1

3

)

mrad. Finally, when δ = (2m + 1)π the phasor diagram shows the first two slits π out of phase,

exactly cancelling each other and leaving the third slit “by itself” to contribute an intensity equal to that of a single
slit on its own: a secondary maximum whose intensity is 1/N 2 = 1/9 of that in the principal maxima. The results are
sketched at right above.
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4. N-SLIT INTERFERENCE PATTERN: The figure below shows the intensity pattern produced by light
passing through an opaque foil with N narrow slits 0.3 mm apart and falling on a screen parallel to the foil 2.0 m
distant.

(Neglect the finite widths of the slits; this is an interference problem, not a diffraction problem.)

NOTE: The following derivation is far more verbose than necessary to solve the problem and is shown in detail
merely to document the explanation given in class for the simple qualitative rules (number of minima and secondary
maxima between principal maxima, etc.) that allow one to quickly analyze an interference pattern. All you really
need to solve this problem are those rules and the simple criterion for a principal maximum: d sin θm = mλ.

(a) What wavelength of light is being used? ANSWER: Since tan θmax =
6 mm

2 m
= 3 × 10−3, we may use the

small-angle approximation (sin θ ≈ θ), giving δ =
2πd

λ
θ and so I = I0

[

sin
(

Nπ d

λ
θ
)

sin
(

π d

λ
θ
)

]2

. For convenience define

x ≡ π
d

λ
θ =⇒

I

I0

=

[

sin(Nx)

sin x

]2

, which has zeroes wherever sin Nx = 0, except when sin x = 0; in that case we

use the rule lim
x→0

sin Nx

sin x
= lim

x→0

d

dx
(sin Nx)

d

dx
(sin x)

= lim
x→0

N cosNx

cosx
= N. Thus where sin x = 0 (i.e. where x = mπ or

where θ = mλ/d) we get a principal maximum with I = N 2I0. We see such maxima every 3 mm at a distance

of 2 m; i.e. since tan θ ≈ θ, every 1.5 mrad or 1.5× 10−3 =
λ

d

=⇒ λ = 1.5 × 10−3d = 1.5× 10−3 × 0.3× 10−3 m or λ = 4.5 × 10−7 m = 450 nm.

(b) How many slits are there? ANSWER: In between principal maxima we have (N − 1) zeroes where
sin Nx = 0 but sinx 6= 0. For instance, between x = 0 and x = π we have
x = π

N
, x = 2π

N
, x = 3π

N
, . . . x = (N − 1) π

N
all giving Nx = a multiple of π and thus sinNx = 0. The general

rule is thus (N − 1) zeroes and therefore (N − 2) secondary maxima between principal maxima. We can

therefore “read off the figure” N = 5 slits.


