
The University of British Columbia

Physics 210 Assignment #6:

FITTING

Tue. 19 Oct. 2010 — finish by Tue. 26 Oct.

In Assignments 4 and 5 you plotted points from the data
file data.db (or its reformatted equivalent) with asym-
metric uncertainties, using several different plotting ap-
plications. Some were far clumsier than others for this
purpose, and in several cases I was unable to turn off the
misleading little crossbars on the “error bars”.1 Now that
we can get something on a graph, it’s time to see which of
these applications works best for comparing the data with
a theoretical model. This is known as “fitting”.

In any fitting model the theory has parameters whose
values we optimize to obtain the best fit. Depending upon
the complexity of the model and the data, there are many
strategies for varying the parameters to find their best val-
ues in the shortest time.

There are also several possible criteria for defining
“best”, and we must choose one before we can even begin to
fit. Probably the most powerful methods involve Bayesian
inference,2 in which one asks different kinds of questions
from those one asks in more traditional methods involving
frequency-based probability theory, which we will use in
this course.3 Depending upon whether we have nonuniform
“error bars” or not, we should use either χ2 (“chi squared”)
minimization (also known as “weighted least squares” fits)
or “unweighted least squares” fits. The latter ignore uncer-
tainties and merely seek to produce the smallest possible
sum of the squares of the differences between experimental
and theoretical values of the dependent variable:

Minimize
N∑

i=1

[Y (xi, ~p)− yi]
2

(1)

where the data consist of N ordered pairs (“points”)
(xi, yi) and Y (x, ~p) is the theoretical function of x and
the n parameters ~p ≡ {p1, p2, · · · , pn}. Chi squared mini-
mization is better:

Minimize χ2 ≡
N∑

i=1

[Y (xi, ~p)− yi]
2

δy2i
(2)

where δyi is the uncertainty in yi.

Note that it is generally assumed that only the
dependent variable (generally “y”) has uncertainties, and

1In case you haven’t noticed, I am learning at least as much

as anyone else in this course. Thanks for your help!
2Google it!
3Of course, you are welcome to tackle Bayesian inference in

your Project!

furthermore that those uncertainties are symmetric. This
is rarely the case, as I have emphasized; I think people
just give up too easily on “getting it right”. My Java

applet muview will of course handle asymmetric uncertain-
ties, but none of the others will do this without a lot of
“data massaging”. To keep this Assignment from growing
too complicated, you can use muview on the original file
~phys210/HW/a04/data.db (recall Assignment 4) but for
the other applications we will just ignore any uncertainties
in xi and “symmetrize” the uncertainties in yi as shown in
the file ~phys210/HW/a06/dbf.dat and below:

1 -20 -1.9 0.2

1 -12 -1.2 0.2

1 -10 -0.95 0.075

2 -1 -0.05 0.05

3 5 0.55 0.075

3 7.5 0.8 0.175

3 10.5 1.1 0.1

3 15 1.6 0.1

where, as usual, the first column is the dataset number
and the second column contains xi values, but the third
and fourth columns contain yi and its uncertainty δyi, re-
spectively.

As usual, create your /home2/phys210/<you>/a06/

directory and the subdirectories muview/, gnuplot/,
extrema/, matlab/, octave/ and python/, where you
should store any files used to do the fitting, along with
the plotted results, using the respective applications.

With each application, learn how to fit the data in
data.db or dbf.dat and plot them along with the best
fit line on a simple graph in a plotfit.pdf file, stored
with the other files for that application, including a plain
text file ANSWER.txt giving any comments plus the results
of the fit [a description of the theoretical function Y (x, ~p),
the best-fit values of its parameters pj , the uncertainties

δpj in the parameters pj and the quality of the fit in χ2

per degree of freedom].

In real life you will want to fit with much more so-
phisticated functions Y (x, ~p), but here the emphasis is on
procedure; moreover, the data in data.db and dbf.dat

make a pretty straight line (as you may have noticed); so
just fit to a first-order polynomial (i.e. a straight line),
Y (x, ~p) = p0 + p1x, using χ2 minimization.

Now, in python you can probably find any number of
“canned” fitting packages just like those for the other ap-
plications; but python is a full-blown programming lan-
guage in its own right, so we are going to tackle a real
computational exercise in python, namely a simple one-
step numerical calculation of the best (minimum χ2) fit to
a straight line:

Y (x) = p0 + p1x (3)



2

The first step you have already done: tell python to read
from the dbf.dat file the number N of data points (xi, yi)
and the uncertainties δyi. Then we calculate the best val-
ues of p0 and p1 along with the resulting minimum value
of χ2, using the following algorithm:

Expand Eq. (2) in terms of Eq. (3):

χ2 ≡

N∑

i=1

[Y (xi, ~p)− yi]
2

δy2i

=
N∑

i=1

wi (p0 + p1xi − yi)
2

= p2
0

N∑

i=1

wi + 2p0p1

N∑

i=1

wixi + p2
1

N∑

i=1

wix
2

i

− 2p0

N∑

i=1

wiyi − 2p1

N∑

i=1

wixiyi +

N∑

i=1

wiy
2

i

where wi ≡ 1/δy2i can be thought of as a “weighting factor”
for each data point. Note that χ2 can now be expressed
as a function of two variables (p0 and p1) and a bunch of
constants calculated from the data:

χ2 = p2
0
S0 +2p0p1Sx + p2

1
Sxx − 2p0Sy − 2p1Sxy +Syy (4)

where the meanings of S0, Sx, Sy, Sxx, Sxy and Syy should
be clear from the above.

Our job is now to minimize that function with respect
to p0 and p1 simultaneously. You know that a function has
an extremum (maximum or minimum) where its derivative
is zero. In this case we want both partial derivatives to be
zero: ∂χ2/∂p0 = 0 and ∂χ2/∂p1 = 0. These requirements
give two equations in two unknowns:

∂χ2

∂p0
= 0 = 2p0S0 + 2p1Sx − 2Sy

∂χ2

∂p1
= 0 = 2p0Sx + 2p1Sxx − 2Sxy (5)

which you can easily solve for the values of p1 and p0 that
give the minimum χ2:

p0 =
SySxx − SxSxy

S0Sxx − S2
x

and p1 =
S0Sxy − SxSy

S0Sxx − S2
x

. (6)

This is pretty neat, and can (with considerable effort) be
generalized to higher-order polynomial fits, but it lacks
a vitally important feature: it does not yet tell you the
uncertainty in your best-fit values for p0 and p1. These
can be estimated by taking second derivatives and using
the operational definition of one standard deviation in each
parameter — namely, the displacement that causes χ2 to
increase by 1. But let’s leave that for later.

Don’t forget to have your python program report the
best fit and plot up the line through the points.

For Extra Credit (or just for fun)

If you finish all the above and are interested in the di-
rect numerical solution discussed in the last part, you are
encouraged to tackle one of the following tasks for a max-
imum of 10% extra marks:

• For the simple first-order polynomial fit, see if you
can find an analytical expression for the “1 sigma”
(one standard deviation, as defined above) uncertain-
ties in each of the two fit parameters. Implement this
in python and see if it reproduces the uncertainties
quoted by the other fitting applications. OR,

• try to extend the closed-form solution from a first-
order polynomial theory function to a second order
(quadratic) function. OR,

• if you’re very ambitious, try to generalize this ap-
proach to arbitrary order. [Only for Mathemati-
cians!]


