
The University of British Columbia

Physics 210 Assignment # 7:

FORTRAN

Tue. 26 Oct. 2010 — finish by Tue. 02 Nov.

You now know how to “program” in various “program-
ming environments” — bash, muview, gnuplot, extrema,
matlab and octave — and in a full-featured “scripted lan-
guage”, python. There are many, many more of both,
and by now you should sense that a given task can prob-
ably be implemented in any one of them, as long as it is
“Turing-complete”,1 but each has its own strengths and
weaknesses.

One weakness of scripted languages is that the com-
puter’s CPU has to interpret the instructions before it can
execute them. This takes time, so if you want your algo-
rithm to run faster you should get the interpretation out of
the way ahead of time and make a binary executable ver-
sion of your program in machine code that your CPU can
execute directly. This is called compiling, and all appli-
cations that involve massive, time-consuming calculations
are written in compilable languages. The most common of
these are C and C++, but the oldest and in many respects
the simplest is FORTRAN, which is still the most widely used
for certain types of computational physics. So this week
we will introduce ourselves to FORTRAN.

On hyper, the FORTRAN compiler is gfortran, which
stands for the GNU implementation of Fortran 95. (There
is a lot of idiosyncratic history here — big surprise. . . .)

As usual, create your /home2/phys210/$USER/a07/ di-
rectory and put all your finished results in it.

1. TELL A fib: Recall the Fibonacci numbers?
The file ~phys210/fib.f contains the FORTRAN

source code to generate a sequence of Fibonacci num-
bers, starting from one specified by the user and con-
tinuing for an additional number of Fibonacci num-
bers also specified by the user.2

(a) Go through the file fib.f and add comments

that explain what each step is doing. Be ver-
bose! Remember, in FORTRAN any line that
starts with a C or a c is a comment, and is ig-
nored by the compiler.

(b) Compile your edited source code with all the
comments using the command

gfortran fib.f -o fib

which creates an executable image in the file

1Google it!
2Also recall the factorials script in Assignment 3.

fib (if you left out the “-o fib” part, it would
put the executable image in the default file
a.out).

(c) Try it out using the command “./fib”
If it works, you are done with this part. If not,
go back to step (a). (I may have made a mis-
take. :-)

2. LINFIT PROGRAM: Using what you have
learned about FORTRAN from fib.f (plus lots of ad-
ditional Google-ing and reading, no doubt), “port”
the python code you wrote last week into a FORTRAN

program linfit.f (source code) and compile the
linfit executable image. Your program should ask
a question like, “Where is the file with the data you
want read in?” It should read and interpret your
answer, read in the data from the specified file, cal-
culate the best linear fit, print out the results, and
exit.

3. LINFIT SUBROUTINE: You may notice that
there are two types of things going on here: a bunch
of input/output (“I/O”) and a calculation that could
easily be generalized and used in a lot of different
situations. When this happens, it is tempting to put
the generalizable part into a subroutine which is
“called” from the main program when the data is all
read in and ready to fit. To do this we separate our
source code into two files, the first (linfit main.f)
containing the main program with its I/O specifics
and a line like

call linfit (npts, x, y, w, p0, p1)

and the second (linfit sub.f) containing the sub-
routine “source” code, starting with the lines

subroutine linfit (npts, x, y, w, p0, p1)

integer npts

real x(*), y(*), w(*), p0, p1

. . . and ending with. . .

return

end

Generating the executable image is only slightly more
complicated now that it has to be assembled from
two components. See if you can guess how to do
this. (Try the most obvious guess first!)

4. GO TO THE LIBRARY: When we get a
lot of subroutines and functions3 it becomes useful
to store the components as object modules (*.o)
in a library like libmy.a (a “static” library) or
/usr/lib/libmyutils.so (a “dynamic” or “shared”
library). Here you will only need to manage the first

3A function is like a subroutine that returns just one “an-
swer” — compare linfit which returns two: p0 and p1. If you
declare a function like function squared (x) you might call it
in the form y = squared(x) in your main program.

2

type, which are used like a grocery store: you se-
lect the ingredients you need from the inventory, take
them home and make a tasty meal from them. The
latter type are more like pizza delivery: when you
want to run a program that uses modules from a
shared library, the required modules are installed at
run time and can be (as the name suggests) shared

by many other tasks running simultaneously. If you
want to learn more about the latter, Google shared

dynamic libraries.

To learn about static libraries, just say “man ar” —
because the program that manages static libraries is
called ar (for “archiver”). All you really need to
know are these three steps:

(a) Generate an object module linfit sub.o

from the source code linfit sub.f using the
gfortran compiler:

gfortran -c linfit sub.f

(b) Insert (or replace) the linfit sub.o in the
libmy.a library:

ar rcs libmy.a linfit sub.o

(c) Build your program (again with gfortran, re-
trieving linfit sub.o from libmy.a:

gfortran linfit main.f libmy.a -o linfit4

Do it. Save all your results in the usual place, along
with all your source code, object modules and exe-
cutable files.

5. make IT SO: All this coding and compiling
and archiving and building and installing can get
very complicated, especially when you are build-
ing an application that uses object modules from
many libraries, and particularly when you are mak-
ing changes to required subroutines and functions in
different libraries and trying to keep the assorted li-
braries (and the final product) all up to date! Al-
though it would be wonderful if one “spoke Geek”
well enough to give all these instructions to the com-
puter in the right order every time without any goofs,
any reasonable person would want to have (at least
as a “backup”) some sort of stored script that re-
members it all for you — a program in its own right,
in other words, but this time a program for building

an application.

In Linux this script is called a Makefile, be-
cause the program that interprets the commands
in the Makefile is called make and, as usual,
it is invoked by the command “make”. See (e.g.)
http://en.wikipedia.org/wiki/Make_(software)

or Google “Makefile” for details.

4Note how clever gfortran is: you don’t need to tell it which

object module(s) you need from the libmy.a library (which may
archive many!) — it will go look for whatever it is missing in
that archive.

The syntax of a Makefile is extremely arcane.
Some consider it to be the ultimate in “Geek
lingo”. Nevertheless it is possible to adapt a
working Makefile to make your own project, by
just changing the names of the programs, libraries
and sources. If you copy the files fib_main.f,
fib_sub.f and Makefile from ~phys210/ to your
own /home2/phys210/$USER/a07/ directory, cd to
that directory and enter the terse command

make

you should get a new version of the fib exe-
cutable and a new file called libmy.a containing the
fib sub.o object module. Then, without necessar-
ily understanding exactly what the Makefile is do-
ing,5 edit and adapt your copy of the Makefile to
add linfit sub.o to the libmy.a static library and,
from it and linfit main.f, compile and build your
linfit executable.

Once this works, you can make any modifications
you like to either linfit main.f or linfit sub.f

and generate a new, up-to-date, executable linfit

just by entering “make”.

5Very few users of Makefiles have any idea how they work
when they first try one out! But after a few adaptations to
their own purposes, they begin to get a fair idea — and this is
enough for the time being.

