
Allez OOP!

a cartoon version of

Object-Oriented Programming

Tuesday, October 5, 2010

Start up.

Read in some data.

Do something with it.

Do something else.

Check to see if we’re done yet.

Nope. Go on... Yep. Stop

cartoon version of linear programming (e.g. FORTRAN)

Tuesday, October 5, 2010

Philosophy
Plato: IDEAL

real1 real2 real3 ...

Computer
Science

Philosophy
Plato: IDEAL

real1 real2 real3 ...

Philosophy
Plato: IDEAL

real1 real2 real3 ...

e1 e2 e3 ...

ELECTRON

Physics
(QFT)

OOP

Object-Oriented Programming:
another Instance of the Platonic Ideal?

Tuesday, October 5, 2010

cartoon version of OO programming (e.g. python)

Object CLASS foo
(Plato’s IDEAL)

Property foo.p1
Property foo.p2

Container foo.c1
Container foo.c2

Method foo.m1
Method foo.m2

etc.

Instance f = foo()
(Plato’s reali)

Property f.p1
Property f.p2

Container f.c1
Container f.c2

Method f.m1
Method f.m2

etc.

Instantiate

+ Communication between Instances, . . .

Tuesday, October 5, 2010

There are many Object-Oriented Programming languages.

Some examples are:

Java (the Queen of OOP)

PHP (surprise!)

C++ (?)

Python (this week’s lesson)

. . .
One thing to be keenly aware of:

You can build your own Classes, but usually you are instantiating
extremely sophisticated Classes developed by others!

When you steal from one author, it's plagiarism; if you steal from many, it's research. - Wilson Mizner
Tuesday, October 5, 2010

#! /usr/bin/env python

from pyx import *
import sys

The command argument is the data file name:
print sys.argv[1]

Use LaTeX to make title & axis labels:
text.set(mode="latex")

Instantiate graphxy object with size, limits and labels:
h = 0.8*6 # (height of plot box [in inches?])
w = 0.8*8 # (width of plot box [in inches?])
xmin = -25.0 # Note: without decimal points, these are treated as integers!
xmax = 20.0
ymin = -2.4
ymax = 2.0
g = graph.graphxy(width=w, height=h,
 x=graph.axis.linear(min=xmin, max=xmax,
 title="{\large\sf Independent Variable ``X''}"),
 y=graph.axis.linear(min=ymin, max=ymax,
 title="{\large\sf Dependent Variable ``Y''}")
)

. . .
Tuesday, October 5, 2010

. . .
Plot the data directly from the input file:
g.plot(graph.data.file(sys.argv[1],
 x=2, dxmax=3, dxmin=4, y=5, dymax=6, dymin=7),
 styles=[graph.style.errorbar(size=0, errorbarattrs=[color.rgb.blue]),
 graph.style.symbol(graph.style.symbol.circle,size=0.075,
 symbolattrs=[color.rgb.red])])

Include the graph title, aesthetically located:
g.text(g.width/8, g.height+0.2, "{\large\sl Just Some Typical Data}")

Plot the zero-axes as "strokes" in screen coordinates:
xrng = xmax-xmin
x0pos = g.width*abs(xmin)/xrng
yrng = ymax-ymin
y0pos = g.height*abs(ymin/yrng)
g.stroke(path.line(x0pos, 0, x0pos, g.height),
 [style.linestyle.dashed, color.rgb.blue])
g.stroke(path.line(0, y0pos, g.width, y0pos),
 [style.linestyle.dashed, color.rgb.blue])

. . .

Tuesday, October 5, 2010

Write an eps file:
g.writeEPSfile("data-pyx.eps")
Write a pdf file:
g.writePDFfile("data-pyx.pdf")

print(" ")
print("---")
print("NOTE: PyX is designed for writing eps or pdf files!")
print("You will not see the plot on your screen unless")
print("you # gv data-pyx.eps or # xpdf data-pyx.pdf later.")
print("---")
print(" ") Just Some Typical Data

−2

−1

0

1

2

D
ep

en
de

nt
V
ar

ia
bl

e
“Y

”

−20 −10 0 10 20

Independent Variable “X”

Tuesday, October 5, 2010

