
In the Beginning . . .

was the Command Line

by Neal Stephenson

1999

About twenty years ago Jobs and Wozniak,
the founders of Apple, came up with the very
strange idea of selling information processing
machines for use in the home. The business
took off, and its founders made a lot of money
and received the credit they deserved for be-
ing daring visionaries. But around the same
time, Bill Gates and Paul Allen came up with
an idea even stranger and more fantastical:
selling computer operating systems. This was
much weirder than the idea of Jobs and Woz-
niak. A computer at least had some sort of
physical reality to it. It came in a box, you
could open it up and plug it in and watch
lights blink. An operating system had no tan-
gible incarnation at all. It arrived on a disk,
of course, but the disk was, in effect, noth-
ing more than the box that the OS came in.
The product itself was a very long string of
ones and zeroes that, when properly installed
and coddled, gave you the ability to manipu-
late other very long strings of ones and zeroes.
Even those few who actually understood what
a computer operating system was were apt to
think of it as a fantastically arcane engineer-
ing prodigy, like a breeder reactor or a U-2 spy
plane, and not something that could ever be
(in the parlance of high-tech) “productized.”

Yet now the company that Gates and Allen
founded is selling operating systems like
Gillette sells razor blades. New releases of op-
erating systems are launched as if they were
Hollywood blockbusters, with celebrity en-
dorsements, talk show appearances, and world
tours. The market for them is vast enough
that people worry about whether it has been
monopolized by one company. Even the least
technically-minded people in our society now
have at least a hazy idea of what operating

systems do; what is more, they have strong
opinions about their relative merits. It is com-
monly understood, even by technically unso-
phisticated computer users, that if you have
a piece of software that works on your Mac-
intosh, and you move it over onto a Windows
machine, it will not run. That this would, in
fact, be a laughable and idiotic mistake, like
nailing horseshoes to the tires of a Buick.

A person who went into a coma before Mi-
crosoft was founded, and woke up now, could
pick up this morning’s New York Times and
understand everything in it — almost:

Item: the richest man in the world made
his fortune from-what? Railways? Shipping?
Oil? No, operating systems. Item: the De-
partment of Justice is tackling Microsoft’s sup-
posed OS monopoly with legal tools that were
invented to restrain the power of Nineteenth-
Century robber barons. Item: a woman friend
of mine recently told me that she’d broken off a
(hitherto) stimulating exchange of e-mail with
a young man. At first he had seemed like such
an intelligent and interesting guy, she said, but
then “he started going all PC-versus-Mac on
me.”

What the hell is going on here? And does
the operating system business have a future,
or only a past? Here is my view, which is
entirely subjective; but since I have spent a
fair amount of time not only using, but pro-
gramming, Macintoshes, Windows machines,
Linux boxes and the BeOS, perhaps it is not
so ill-informed as to be completely worthless.
This is a subjective essay, more review than
research paper, and so it might seem unfair
or biased compared to the technical reviews
you can find in PC magazines. But ever since
the Mac came out, our operating systems have
been based on metaphors, and anything with
metaphors in it is fair game as far as I’m con-
cerned.

2

MGBs, TANKS, AND BATMOBILES

Around the time that Jobs, Wozniak, Gates,
and Allen were dreaming up these unlikely
schemes, I was a teenager living in Ames, Iowa.
One of my friends’ dads had an old MGB
sports car rusting away in his garage. Some-
times he would actually manage to get it run-
ning and then he would take us for a spin
around the block, with a memorable look of
wild youthful exhiliration on his face; to his
worried passengers, he was a madman, stalling
and backfiring around Ames, Iowa and eating
the dust of rusty Gremlins and Pintos, but in
his own mind he was Dustin Hoffman tooling
across the Bay Bridge with the wind in his
hair.

In retrospect, this was telling me two things
about people’s relationship to technology. One
was that romance and image go a long way to-
wards shaping their opinions. If you doubt it
(and if you have a lot of spare time on your
hands) just ask anyone who owns a Macintosh
and who, on those grounds, imagines him- or
herself to be a member of an oppressed minor-
ity group.

The other, somewhat subtler point, was that
interface is very important. Sure, the MGB
was a lousy car in almost every way that
counted: balky, unreliable, underpowered.
But it was fun to drive. It was responsive. Ev-
ery pebble on the road was felt in the bones,
every nuance in the pavement transmitted in-
stantly to the driver’s hands. He could listen
to the engine and tell what was wrong with it.
The steering responded immediately to com-
mands from his hands. To us passengers it was
a pointless exercise in going nowhere — about
as interesting as peering over someone’s shoul-
der while he punches numbers into a spread-
sheet. But to the driver it was an experience.
For a short time he was extending his body
and his senses into a larger realm, and doing

things that he couldn’t do unassisted.

The analogy between cars and operating sys-
tems is not half bad, and so let me run with it
for a moment, as a way of giving an executive
summary of our situation today.

Imagine a crossroads where four competing
auto dealerships are situated. One of them
(Microsoft) is much, much bigger than the oth-
ers. It started out years ago selling three-
speed bicycles (MS-DOS); these were not per-
fect, but they worked, and when they broke
you could easily fix them.

There was a competing bicycle dealership next
door (Apple) that one day began selling mo-
torized vehicles — expensive but attractively
styled cars with their innards hermetically
sealed, so that how they worked was something
of a mystery.

The big dealership responded by rushing a
moped upgrade kit (the original Windows)
onto the market. This was a Rube Gold-
berg contraption that, when bolted onto a
three-speed bicycle, enabled it to keep up, just
barely, with Apple-cars. The users had to wear
goggles and were always picking bugs out of
their teeth while Apple owners sped along in
hermetically sealed comfort, sneering out the
windows. But the Micro-mopeds were cheap,
and easy to fix compared with the Apple-cars,
and their market share waxed.

Eventually the big dealership came out with
a full-fledged car: a colossal station wagon
(Windows 95). It had all the aesthetic appeal
of a Soviet worker housing block, it leaked oil
and blew gaskets, and it was an enormous suc-
cess. A little later, they also came out with a
hulking off-road vehicle intended for industrial
users (Windows NT) which was no more beau-
tiful than the station wagon, and only a little
more reliable.

Since then there has been a lot of noise and

3

shouting, but little has changed. The smaller
dealership continues to sell sleek Euro-styled
sedans and to spend a lot of money on ad-
vertising campaigns. They have had GOING
OUT OF BUSINESS! signs taped up in their
windows for so long that they have gotten all
yellow and curly. The big one keeps making
bigger and bigger station wagons and ORVs.

On the other side of the road are two competi-
tors that have come along more recently.

One of them (Be, Inc.) is selling fully op-
erational Batmobiles (the BeOS). They are
more beautiful and stylish even than the Euro-
sedans, better designed, more technologically
advanced, and at least as reliable as anything
else on the market — and yet cheaper than the
others.

With one exception, that is: Linux, which is
right next door, and which is not a business
at all. It’s a bunch of RVs, yurts, tepees, and
geodesic domes set up in a field and organized
by consensus. The people who live there are
making tanks. These are not old-fashioned,
cast-iron Soviet tanks; these are more like the
M1 tanks of the U.S. Army, made of space-age
materials and jammed with sophisticated tech-
nology from one end to the other. But they are
better than Army tanks. They’ve been modi-
fied in such a way that they never, ever break
down, are light and maneuverable enough to
use on ordinary streets, and use no more fuel
than a subcompact car. These tanks are be-
ing cranked out, on the spot, at a terrific pace,
and a vast number of them are lined up along
the edge of the road with keys in the ignition.
Anyone who wants can simply climb into one
and drive it away for free.

Customers come to this crossroads in throngs,
day and night. Ninety percent of them go
straight to the biggest dealership and buy sta-
tion wagons or off-road vehicles. They do not
even look at the other dealerships.

Of the remaining ten percent, most go and buy
a sleek Euro-sedan, pausing only to turn up
their noses at the philistines going to buy the
station wagons and ORVs. If they even notice
the people on the opposite side of the road,
selling the cheaper, technically superior vehi-
cles, these customers deride them cranks and
half-wits.

The Batmobile outlet sells a few vehicles to
the occasional car nut who wants a second ve-
hicle to go with his station wagon, but seems
to accept, at least for now, that it’s a fringe
player.

The group giving away the free tanks only
stays alive because it is staffed by volunteers,
who are lined up at the edge of the street with
bullhorns, trying to draw customers’ attention
to this incredible situation. A typical conver-
sation goes something like this:

Hacker with bullhorn: “Save your money! Ac-
cept one of our free tanks! It is invulnera-
ble, and can drive across rocks and swamps at
ninety miles an hour while getting a hundred
miles to the gallon!”

Prospective station wagon buyer: “I know
what you say is true. . . but. . . er. . . I don’t
know how to maintain a tank!”

Bullhorn: “You don’t know how to maintain a
station wagon either!”

Buyer: “But this dealership has mechanics on
staff. If something goes wrong with my station
wagon, I can take a day off work, bring it here,
and pay them to work on it while I sit in the
waiting room for hours, listening to elevator
music.”

Bullhorn: “But if you accept one of our free
tanks we will send volunteers to your house to
fix it for free while you sleep!”

Buyer: “Stay away from my house, you freak!”

4

Bullhorn: “But. . . ”

Buyer: “Can’t you see that everyone is buying
station wagons?”

BIT-FLINGER

The connection between cars, and ways of in-
teracting with computers, wouldn’t have oc-
curred to me at the time I was being taken
for rides in that MGB. I had signed up to
take a computer programming class at Ames
High School. After a few introductory lec-
tures, we students were granted admission into
a tiny room containing a teletype, a telephone,
and an old-fashioned modem consisting of a
metal box with a pair of rubber cups on the
top (note: many readers, making their way
through that last sentence, probably felt an
initial pang of dread that this essay was about
to turn into a tedious, codgerly reminiscence
about how tough we had it back in the old
days; rest assured that I am actually position-
ing my pieces on the chessboard, as it were,
in preparation to make a point about truly
hip and up-to-the minute topics like Open
Source Software). The teletype was exactly
the same sort of machine that had been used,
for decades, to send and receive telegrams. It
was basically a loud typewriter that could only
produce UPPERCASE LETTERS. Mounted
to one side of it was a smaller machine with a
long reel of paper tape on it, and a clear plastic
hopper underneath.

In order to connect this device (which was not
a computer at all) to the Iowa State Univer-
sity mainframe across town, you would pick up
the phone, dial the computer’s number, listen
for strange noises, and then slam the handset
down into the rubber cups. If your aim was
true, one would wrap its neoprene lips around
the earpiece and the other around the mouth-
piece, consummating a kind of informational

soixante-neuf. The teletype would shudder as
it was possessed by the spirit of the distant
mainframe, and begin to hammer out cryptic
messages.

Since computer time was a scarce resource, we
used a sort of batch processing technique. Be-
fore dialing the phone, we would turn on the
tape puncher (a subsidiary machine bolted to
the side of the teletype) and type in our pro-
grams. Each time we depressed a key, the
teletype would bash out a letter on the pa-
per in front of us, so we could read what we’d
typed; but at the same time it would convert
the letter into a set of eight binary digits, or
bits, and punch a corresponding pattern of
holes across the width of a paper tape. The
tiny disks of paper knocked out of the tape
would flutter down into the clear plastic hop-
per, which would slowly fill up what can only
be described as actual bits. On the last day of
the school year, the smartest kid in the class
(not me) jumped out from behind his desk
and flung several quarts of these bits over the
head of our teacher, like confetti, as a sort of
semi-affectionate practical joke. The image of
this man sitting there, gripped in the opening
stages of an atavistic fight-or-flight reaction,
with millions of bits (megabytes) sifting down
out of his hair and into his nostrils and mouth,
his face gradually turning purple as he built up
to an explosion, is the single most memorable
scene from my formal education.

Anyway, it will have been obvious that my
interaction with the computer was of an ex-
tremely formal nature, being sharply divided
up into different phases, viz.: (1) sitting at
home with paper and pencil, miles and miles
from any computer, I would think very, very
hard about what I wanted the computer to do,
and translate my intentions into a computer
language — a series of alphanumeric symbols
on a page. (2) I would carry this across a sort
of informational cordon sanitaire (three miles

5

of snowdrifts) to school and type those letters
into a machine — not a computer — which
would convert the symbols into binary num-
bers and record them visibly on a tape. (3)
Then, through the rubber-cup modem, I would
cause those numbers to be sent to the univer-
sity mainframe, which would (4) do arithmetic
on them and send different numbers back to
the teletype. (5) The teletype would convert
these numbers back into letters and hammer
them out on a page and (6) I, watching, would
construe the letters as meaningful symbols.

The division of responsibilities implied by all
of this is admirably clean: computers do arith-
metic on bits of information. Humans con-
strue the bits as meaningful symbols. But this
distinction is now being blurred, or at least
complicated, by the advent of modern oper-
ating systems that use, and frequently abuse,
the power of metaphor to make computers ac-
cessible to a larger audience. Along the way
— possibly because of those metaphors, which
make an operating system a sort of work of
art — people start to get emotional, and grow
attached to pieces of software in the way that
my friend’s dad did to his MGB.

People who have only interacted with comput-
ers through graphical user interfaces like the
MacOS or Windows — which is to say, almost
everyone who has ever used a computer —
may have been startled, or at least bemused,
to hear about the telegraph machine that I
used to communicate with a computer in 1973.
But there was, and is, a good reason for using
this particular kind of technology. Human be-
ings have various ways of communicating to
each other, such as music, art, dance, and fa-
cial expressions, but some of these are more
amenable than others to being expressed as
strings of symbols. Written language is the
easiest of all, because, of course, it consists of
strings of symbols to begin with. If the sym-
bols happen to belong to a phonetic alpha-

bet (as opposed to, say, ideograms), converting
them into bits is a trivial procedure, and one
that was nailed, technologically, in the early
nineteenth century, with the introduction of
Morse code and other forms of telegraphy.

We had a human/computer interface a hun-
dred years before we had computers. When
computers came into being around the time
of the Second World War, humans, quite nat-
urally, communicated with them by simply
grafting them on to the already-existing tech-
nologies for translating letters into bits and
vice versa: teletypes and punch card machines.

These embodied two fundamentally different
approaches to computing. When you were us-
ing cards, you’d punch a whole stack of them
and run them through the reader all at once,
which was called batch processing. You could
also do batch processing with a teletype, as
I have already described, by using the paper
tape reader, and we were certainly encouraged
to use this approach when I was in high school.
But — though efforts were made to keep us
unaware of this — the teletype could do some-
thing that the card reader could not. On the
teletype, once the modem link was established,
you could just type in a line and hit the return
key. The teletype would send that line to the
computer, which might or might not respond
with some lines of its own, which the teletype
would hammer out — producing, over time, a
transcript of your exchange with the machine.
This way of doing it did not even have a name
at the time, but when, much later, an alter-
native became available, it was retroactively
dubbed the Command Line Interface.

When I moved on to college, I did my com-
puting in large, stifling rooms where scores
of students would sit in front of slightly up-
dated versions of the same machines and write
computer programs: these used dot-matrix
printing mechanisms, but were (from the com-
puter’s point of view) identical to the old tele-

6

types. By that point, computers were better at
time-sharing — that is, mainframes were still
mainframes, but they were better at commu-
nicating with a large number of terminals at
once. Consequently, it was no longer necessary
to use batch processing. Card readers were
shoved out into hallways and boiler rooms, and
batch processing became a nerds-only kind of
thing, and consequently took on a certain el-
dritch flavor among those of us who even knew
it existed. We were all off the Batch, and on
the Command Line, interface now — my very
first shift in operating system paradigms, if
only I’d known it.

A huge stack of accordion-fold paper sat on
the floor underneath each one of these glori-
fied teletypes, and miles of paper shuddered
through their platens. Almost all of this pa-
per was thrown away or recycled without ever
having been touched by ink — an ecological
atrocity so glaring that those machines soon
replaced by video terminals — so-called “glass
teletypes” — which were quieter and didn’t
waste paper. Again, though, from the com-
puter’s point of view these were indistinguish-
able from World War II-era teletype machines.
In effect we still used Victorian technology
to communicate with computers until about
1984, when the Macintosh was introduced with
its Graphical User Interface. Even after that,
the Command Line continued to exist as an
underlying stratum — a sort of brainstem re-
flex — of many modern computer systems all
through the heyday of Graphical User Inter-
faces, or GUIs as I will call them from now
on.

GUIs

Now the first job that any coder needs to do
when writing a new piece of software is to fig-
ure out how to take the information that is

being worked with (in a graphics program, an
image; in a spreadsheet, a grid of numbers)
and turn it into a linear string of bytes. These
strings of bytes are commonly called files or
(somewhat more hiply) streams. They are to
telegrams what modern humans are to Cro-
Magnon man, which is to say the same thing
under a different name. All that you see on
your computer screen — your Tomb Raider,
your digitized voice mail messages, faxes, and
word processing documents written in thirty-
seven different typefaces — is still, from the
computer’s point of view, just like telegrams,
except much longer, and demanding of more
arithmetic.

The quickest way to get a taste of this is to
fire up your web browser, visit a site, and then
select the View/Document Source menu item.
You will get a bunch of computer code that
looks something like this:

<HTML>

<HEAD>

<TITLE> C R Y P T O N O M I C O N</TITLE>

</HEAD>

<BODY BGCOLOR="#000000" LINK="#996600" ALINK="#FFFFFF" VLINK="#663300">

<MAP NAME="navtext">

<AREA SHAPE=RECT HREF="praise.html" COORDS="0,37,84,55">

<AREA SHAPE=RECT HREF="author.html" COORDS="0,59,137,75">

<AREA SHAPE=RECT HREF="text.html" COORDS="0,81,101,96">

<AREA SHAPE=RECT HREF="tour.html" COORDS="0,100,121,117">

<AREA SHAPE=RECT HREF="order.html" COORDS="0,122,143,138">

<AREA SHAPE=RECT HREF="beginning.html" COORDS="0,140,213,157">

</MAP>

<CENTER>

<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0" WIDTH="520">

<TR>

<TD VALIGN=TOP ROWSPAN="5">

</TD>

<TD VALIGN=TOP COLSPAN="2">

<IMG SRC="images/main_banner.gif" ALT="Cryptonomincon by Neal

Stephenson" WIDTH="479" HEIGHT="122" BORDER="0">

</TD>

</TR>

This crud is called HTML (HyperText Markup
Language) and it is basically a very simple
programming language instructing your web
browser how to draw a page on a screen. Any-
one can learn HTML and many people do. The
important thing is that no matter what splen-

7

did multimedia web pages they might repre-
sent, HTML files are just telegrams.

When Ronald Reagan was a radio announcer,
he used to call baseball games by reading the
terse descriptions that trickled in over the tele-
graph wire and were printed out on a pa-
per tape. He would sit there, all by himself
in a padded room with a microphone, and
the paper tape would eke out of the machine
and crawl over the palm of his hand printed
with cryptic abbreviations. If the count went
to three and two, Reagan would describe the
scene as he saw it in his mind’s eye: “The
brawny left-hander steps out of the batter’s
box to wipe the sweat from his brow. The
umpire steps forward to sweep the dirt from
home plate.” and so on. When the cryptogram
on the paper tape announced a base hit, he
would whack the edge of the table with a pen-
cil, creating a little sound effect, and describe
the arc of the ball as if he could actually see
it. His listeners, many of whom presumably
thought that Reagan was actually at the ball-
park watching the game, would reconstruct the
scene in their minds according to his descrip-
tions.

This is exactly how the World Wide Web
works: the HTML files are the pithy descrip-
tion on the paper tape, and your Web browser
is Ronald Reagan. The same is true of Graph-
ical User Interfaces in general.

So an OS is a stack of metaphors and ab-
stractions that stands between you and the
telegrams, and embodying various tricks the
programmer used to convert the information
you’re working with — be it images, e-mail
messages, movies, or word processing docu-
ments — into the necklaces of bytes that are
the only things computers know how to work
with. When we used actual telegraph equip-
ment (teletypes) or their higher-tech substi-
tutes (“glass teletypes,” or the MS-DOS com-
mand line) to work with our computers, we

were very close to the bottom of that stack.
When we use most modern operating sys-
tems, though, our interaction with the ma-
chine is heavily mediated. Everything we do
is interpreted and translated time and again
as it works its way down through all of the
metaphors and abstractions.

The Macintosh OS was a revolution in both
the good and bad senses of that word. Ob-
viously it was true that command line inter-
faces were not for everyone, and that it would
be a good thing to make computers more ac-
cessible to a less technical audience — if not
for altruistic reasons, then because those sorts
of people constituted an incomparably vaster
market. It was clear the the Mac’s engineers
saw a whole new country stretching out before
them; you could almost hear them muttering,
“Wow! We don’t have to be bound by files as
linear streams of bytes anymore, vive la revo-
lution, let’s see how far we can take this!” No
command line interface was available on the
Macintosh; you talked to it with the mouse, or
not at all. This was a statement of sorts, a cre-
dential of revolutionary purity. It seemed that
the designers of the Mac intended to sweep
Command Line Interfaces into the dustbin of
history.

My own personal love affair with the Macin-
tosh began in the spring of 1984 in a com-
puter store in Cedar Rapids, Iowa, when a
friend of mine — coincidentally, the son of the
MGB owner — showed me a Macintosh run-
ning MacPaint, the revolutionary drawing pro-
gram. It ended in July of 1995 when I tried
to save a big important file on my Macintosh
Powerbook and instead instead of doing so, it
annihilated the data so thoroughly that two
different disk crash utility programs were un-
able to find any trace that it had ever existed.
During the intervening ten years, I had a pas-
sion for the MacOS that seemed righteous and
reasonable at the time but in retrospect strikes

8

me as being exactly the same sort of goofy in-
fatuation that my friend’s dad had with his
car.

The introduction of the Mac triggered a sort
of holy war in the computer world. Were
GUIs a brilliant design innovation that made
computers more human-centered and there-
fore accessible to the masses, leading us to-
ward an unprecedented revolution in human
society, or an insulting bit of audiovisual gim-
crackery dreamed up by flaky Bay Area hacker
types that stripped computers of their power
and flexibility and turned the noble and seri-
ous work of computing into a childish video
game?

This debate actually seems more interesting
to me today than it did in the mid-1980s. But
people more or less stopped debating it when
Microsoft endorsed the idea of GUIs by com-
ing out with the first Windows. At this point,
command-line partisans were relegated to the
status of silly old grouches, and a new conflict
was touched off, between users of MacOS and
users of Windows.

There was plenty to argue about. The first
Macintoshes looked different from other PCs
even when they were turned off: they con-
sisted of one box containing both CPU (the
part of the computer that does arithmetic on
bits) and monitor screen. This was billed, at
the time, as a philosophical statement of sorts:
Apple wanted to make the personal computer
into an appliance, like a toaster. But it also
reflected the purely technical demands of run-
ning a graphical user interface. In a GUI ma-
chine, the chips that draw things on the screen
have to be integrated with the computer’s cen-
tral processing unit, or CPU, to a far greater
extent than is the case with command-line in-
terfaces, which until recently didn’t even know
that they weren’t just talking to teletypes.

This distinction was of a technical and ab-

stract nature, but it became clearer when the
machine crashed (it is commonly the case with
technologies that you can get the best insight
about how they work by watching them fail).
When everything went to hell and the CPU
began spewing out random bits, the result, on
a CLI machine, was lines and lines of perfectly
formed but random characters on the screen
— known to cognoscenti as “going Cyrillic.”
But to the MacOS, the screen was not a tele-
type, but a place to put graphics; the image
on the screen was a bitmap, a literal render-
ing of the contents of a particular portion of
the computer’s memory. When the computer
crashed and wrote gibberish into the bitmap,
the result was something that looked vaguely
like static on a broken television set — a “snow
crash.”

And even after the introduction of Windows,
the underlying differences endured; when a
Windows machine got into trouble, the old
command-line interface would fall down over
the GUI like an asbestos fire curtain sealing
off the proscenium of a burning opera. When
a Macintosh got into trouble it presented you
with a cartoon of a bomb, which was funny
the first time you saw it.

And these were by no means superficial dif-
ferences. The reversion of Windows to a CLI
when it was in distress proved to Mac partisans
that Windows was nothing more than a cheap
facade, like a garish afghan flung over a rotted-
out sofa. They were disturbed and annoyed by
the sense that lurking underneath Windows’
ostensibly user-friendly interface was — liter-
ally — a subtext.

For their part, Windows fans might have made
the sour observation that all computers, even
Macintoshes, were built on that same subtext,
and that the refusal of Mac owners to admit
that fact to themselves seemed to signal a will-
ingness, almost an eagerness, to be duped.

9

Anyway, a Macintosh had to switch individual
bits in the memory chips on the video card,
and it had to do it very fast, and in arbi-
trarily complicated patterns. Nowadays this
is cheap and easy, but in the technological
regime that prevailed in the early 1980s, the
only realistic way to do it was to build the
motherboard (which contained the CPU) and
the video system (which contained the mem-
ory that was mapped onto the screen) as a
tightly integrated whole — hence the single,
hermetically sealed case that made the Macin-
tosh so distinctive.

When Windows came out, it was conspicu-
ous for its ugliness, and its current successors,
Windows 95 and Windows NT, are not things
that people would pay money to look at ei-
ther. Microsoft’s complete disregard for aes-
thetics gave all of us Mac-lovers plenty of op-
portunities to look down our noses at them.
That Windows looked an awful lot like a di-
rect ripoff of MacOS gave us a burning sense
of moral outrage to go with it. Among people
who really knew and appreciated computers
(hackers, in Steven Levy’s non-pejorative sense
of that word) and in a few other niches such
as professional musicians, graphic artists and
schoolteachers, the Macintosh, for a while, was
simply the computer. It was seen as not only
a superb piece of engineering, but an embodi-
ment of certain ideals about the use of technol-
ogy to benefit mankind, while Windows was
seen as a pathetically clumsy imitation and a
sinister world domination plot rolled into one.
So very early, a pattern had been established
that endures to this day: people dislike Mi-
crosoft, which is okay; but they dislike it for
reasons that are poorly considered, and in the
end, self-defeating.

CLASS STRUGGLE ON THE

DESKTOP

Now that the Third Rail has been firmly
grasped, it is worth reviewing some basic facts
here: like any other publicly traded, for-profit
corporation, Microsoft has, in effect, borrowed
a bunch of money from some people (its stock-
holders) in order to be in the bit business. As
an officer of that corporation, Bill Gates has
one responsibility only, which is to maximize
return on investment. He has done this incred-
ibly well. Any actions taken in the world by
Microsoft-any software released by them, for
example — are basically epiphenomena, which
can’t be interpreted or understood except in-
sofar as they reflect Bill Gates’s execution of
his one and only responsibility.

It follows that if Microsoft sells goods that are
aesthetically unappealing, or that don’t work
very well, it does not mean that they are (re-
spectively) philistines or half-wits. It is be-
cause Microsoft’s excellent management has
figured out that they can make more money
for their stockholders by releasing stuff with
obvious, known imperfections than they can
by making it beautiful or bug-free. This is an-
noying, but (in the end) not half so annoying
as watching Apple inscrutably and relentlessly
destroy itself.

Hostility towards Microsoft is not difficult to
find on the Net, and it blends two strains: re-
sentful people who feel Microsoft is too power-
ful, and disdainful people who think it’s tacky.
This is all strongly reminiscent of the heyday
of Communism and Socialism, when the bour-
geoisie were hated from both ends: by the pro-
les, because they had all the money, and by
the intelligentsia, because of their tendency to
spend it on lawn ornaments. Microsoft is the
very embodiment of modern high-tech pros-
perity — it is, in a word, bourgeois — and so
it attracts all of the same gripes.

10

The opening “splash screen” for Microsoft
Word 6.0 summed it up pretty neatly: when
you started up the program you were treated
to a picture of an expensive enamel pen ly-
ing across a couple of sheets of fancy-looking
handmade writing paper. It was obviously a
bid to make the software look classy, and it
might have worked for some, but it failed for
me, because the pen was a ballpoint, and I’m
a fountain pen man. If Apple had done it,
they would’ve used a Mont Blanc fountain pen,
or maybe a Chinese calligraphy brush. And I
doubt that this was an accident. Recently I
spent a while re-installing Windows NT on one
of my home computers, and many times had to
double-click on the “Control Panel” icon. For
reasons that are difficult to fathom, this icon
consists of a picture of a clawhammer and a
chisel or screwdriver resting on top of a file
folder.

These aesthetic gaffes give one an almost un-
controllable urge to make fun of Microsoft,
but again, it is all beside the point — if Mi-
crosoft had done focus group testing of possi-
ble alternative graphics, they probably would
have found that the average mid-level office
worker associated fountain pens with effete
upper management toffs and was more com-
fortable with ballpoints. Likewise, the regular
guys, the balding dads of the world who prob-
ably bear the brunt of setting up and main-
taining home computers, can probably relate
better to a picture of a clawhammer — while
perhaps harboring fantasies of taking a real
one to their balky computers.

This is the only way I can explain certain pe-
culiar facts about the current market for oper-
ating systems, such as that ninety percent of
all customers continue to buy station wagons
off the Microsoft lot while free tanks are there
for the taking, right across the street.

A string of ones and zeroes was not a diffi-
cult thing for Bill Gates to distribute, one he’d

thought of the idea. The hard part was sell-
ing it — reassuring customers that they were
actually getting something in return for their
money.

Anyone who has ever bought a piece of soft-
ware in a store has had the curiously deflat-
ing experience of taking the bright shrink-
wrapped box home, tearing it open, finding
that it’s 95 percent air, throwing away all the
little cards, party favors, and bits of trash, and
loading the disk into the computer. The end
result (after you’ve lost the disk) is nothing ex-
cept some images on a computer screen, and
some capabilities that weren’t there before.
Sometimes you don’t even have that — you
have a string of error messages instead. But
your money is definitely gone. Now we are al-
most accustomed to this, but twenty years ago
it was a very dicey business proposition. Bill
Gates made it work anyway. He didn’t make
it work by selling the best software or offer-
ing the cheapest price. Instead he somehow
got people to believe that they were receiving
something in exchange for their money.

The streets of every city in the world are
filled with those hulking, rattling station wag-
ons. Anyone who doesn’t own one feels a lit-
tle weird, and wonders, in spite of himself,
whether it might not be time to cease resis-
tance and buy one; anyone who does, feels
confident that he has acquired some meaning-
ful possession, even on those days when the
vehicle is up on a lift in an auto repair shop.

All of this is perfectly congruent with mem-
bership in the bourgeoisie, which is as much a
mental, as a material state. And it explains
why Microsoft is regularly attacked, on the
Net, from both sides. People who are inclined
to feel poor and oppressed construe everything
Microsoft does as some sinister Orwellian plot.
People who like to think of themselves as in-
telligent and informed technology users are
driven crazy by the clunkiness of Windows.

11

Nothing is more annoying to sophisticated
people to see someone who is rich enough to
know better being tacky — unless it is to real-
ize, a moment later, that they probably know
they are tacky and they simply don’t care and
they are going to go on being tacky, and rich,
and happy, forever. Microsoft therefore bears
the same relationship to the Silicon Valley elite
as the Beverly Hillbillies did to their fussy
banker, Mr. Drysdale — who is irritated not
so much by the fact that the Clampetts moved
to his neighborhood as by the knowledge that,
when Jethro is seventy years old, he’s still go-
ing to be talking like a hillbilly and wearing
bib overalls, and he’s still going to be a lot
richer than Mr. Drysdale.

Even the hardware that Windows ran on,
when compared to the machines put out by
Apple, looked like white-trash stuff, and still
mostly does. The reason was that Apple
was and is a hardware company, while Mi-
crosoft was and is a software company. Ap-
ple therefore had a monopoly on hardware
that could run MacOS, whereas Windows-
compatible hardware came out of a free mar-
ket. The free market seems to have decided
that people will not pay for cool-looking com-
puters; PC hardware makers who hire design-
ers to make their stuff look distinctive get
their clocks cleaned by Taiwanese clone mak-
ers punching out boxes that look as if they
belong on cinderblocks in front of someone’s
trailer. But Apple could make their hard-
ware as pretty as they wanted to and simply
pass the higher prices on to their besotted con-
sumers, like me. Only last week (I am writing
this sentence in early Jan. 1999) the technol-
ogy sections of all the newspapers were filled
with adulatory press coverage of how Apple
had released the iMac in several happenin’ new
colors like Blueberry and Tangerine.

Apple has always insisted on having a hard-
ware monopoly, except for a brief period in

the mid-1990s when they allowed clone-makers
to compete with them, before subsequently
putting them out of business. Macintosh hard-
ware was, consequently, expensive. You didn’t
open it up and fool around with it because do-
ing so would void the warranty. In fact the
first Mac was specifically designed to be dif-
ficult to open — you needed a kit of exotic
tools, which you could buy through little ads
that began to appear in the back pages of mag-
azines a few months after the Mac came out
on the market. These ads always had a cer-
tain disreputable air about them, like pitches
for lock-picking tools in the backs of lurid de-
tective magazines.

This monopolistic policy can be explained in
at least three different ways.

THE CHARITABLE EXPLANATION is that
the hardware monopoly policy reflected a drive
on Apple’s part to provide a seamless, unified
blending of hardware, operating system, and
software. There is something to this. It is hard
enough to make an OS that works well on one
specific piece of hardware, designed and tested
by engineers who work down the hallway from
you, in the same company. Making an OS to
work on arbitrary pieces of hardware, cranked
out by rabidly entrepeneurial clonemakers on
the other side of the International Date Line,
is very difficult, and accounts for much of the
troubles people have using Windows.

THE FINANCIAL EXPLANATION is that
Apple, unlike Microsoft, is and always has
been a hardware company. It simply depends
on revenue from selling hardware, and cannot
exist without it.

THE NOT-SO-CHARITABLE EXPLANA-
TION has to do with Apple’s corporate cul-
ture, which is rooted in Bay Area Baby Boom-
dom.

Now, since I’m going to talk for a moment

12

about culture, full disclosure is probably in
order, to protect myself against allegations of
conflict of interest and ethical turpitude: (1)
Geographically I am a Seattleite, of a Sat-
urnine temperament, and inclined to take a
sour view of the Dionysian Bay Area, just
as they tend to be annoyed and appalled by
us. (2) Chronologically I am a post-Baby
Boomer. I feel that way, at least, because I
never experienced the fun and exciting parts
of the whole Boomer scene — just spent a lot
of time dutifully chuckling at Boomers’ mad-
deningly pointless anecdotes about just how
stoned they got on various occasions, and po-
litely fielding their assertions about how great
their music was. But even from this remove
it was possible to glean certain patterns, and
one that recurred as regularly as an urban leg-
end was the one about how someone would
move into a commune populated by sandal-
wearing, peace-sign flashing flower children,
and eventually discover that, underneath this
facade, the guys who ran it were actually con-
trol freaks; and that, as living in a commune,
where much lip service was paid to ideals of
peace, love and harmony, had deprived them
of normal, socially approved outlets for their
control-freakdom, it tended to come out in
other, invariably more sinister, ways.

Applying this to the case of Apple Computer
will be left as an exercise for the reader, and
not a very difficult exercise.

It is a bit unsettling, at first, to think of Ap-
ple as a control freak, because it is completely
at odds with their corporate image. Weren’t
these the guys who aired the famous Super
Bowl ads showing suited, blindfolded execu-
tives marching like lemmings off a cliff? Isn’t
this the company that even now runs ads pic-
turing the Dalai Lama (except in Hong Kong)
and Einstein and other offbeat rebels?

It is indeed the same company, and the fact
that they have been able to plant this image

of themselves as creative and rebellious free-
thinkers in the minds of so many intelligent
and media-hardened skeptics really gives one
pause. It is testimony to the insidious power
of expensive slick ad campaigns and, perhaps,
to a certain amount of wishful thinking in the
minds of people who fall for them. It also
raises the question of why Microsoft is so bad
at PR, when the history of Apple demonstrates
that, by writing large checks to good ad agen-
cies, you can plant a corporate image in the
minds of intelligent people that is completely
at odds with reality. (The answer, for people
who don’t like Damoclean questions, is that
since Microsoft has won the hearts and minds
of the silent majority — the bourgeoisie —
they don’t give a damn about having a slick
image, any more then Dick Nixon did. “I want
to believe,” — the mantra that Fox Mulder
has pinned to his office wall in The X-Files
— applies in different ways to these two com-
panies; Mac partisans want to believe in the
image of Apple purveyed in those ads, and
in the notion that Macs are somehow funda-
mentally different from other computers, while
Windows people want to believe that they are
getting something for their money, engaging in
a respectable business transaction).

In any event, as of 1987, both MacOS and
Windows were out on the market, running on
hardware platforms that were radically differ-
ent from each other — not only in the sense
that MacOS used Motorola CPU chips while
Windows used Intel, but in the sense — then
overlooked, but in the long run, vastly more
significant — that the Apple hardware busi-
ness was a rigid monopoly and the Windows
side was a churning free-for-all.

But the full ramifications of this did not be-
come clear until very recently — in fact, they
are still unfolding, in remarkably strange ways,
as I’ll explain when we get to Linux. The up-
shot is that millions of people got accustomed

13

to using GUIs in one form or another. By
doing so, they made Apple/Microsoft a lot of
money. The fortunes of many people have be-
come bound up with the ability of these com-
panies to continue selling products whose sal-
ability is very much open to question.

HONEY-POT, TAR-PIT, WHATEVER

When Gates and Allen invented the idea of
selling software, they ran into criticism from
both hackers and sober-sided businesspeople.
Hackers understood that software was just in-
formation, and objected to the idea of sell-
ing it. These objections were partly moral.
The hackers were coming out of the scientific
and academic world where it is imperative to
make the results of one’s work freely available
to the public. They were also partly practi-
cal; how can you sell something that can be
easily copied? Businesspeople, who are polar
opposites of hackers in so many ways, had ob-
jections of their own. Accustomed to selling
toasters and insurance policies, they naturally
had a difficult time understanding how a long
collection of ones and zeroes could constitute
a salable product.

Obviously Microsoft prevailed over these ob-
jections, and so did Apple. But the objec-
tions still exist. The most hackerish of all
the hackers, the Ur-hacker as it were, was
and is Richard Stallman, who became so an-
noyed with the evil practice of selling software
that, in 1984 (the same year that the Macin-
tosh went on sale) he went off and founded
something called the Free Software Founda-
tion, which commenced work on something
called GNU. Gnu is an acronym for Gnu’s Not
Unix, but this is a joke in more ways than one,
because GNU most certainly IS Unix,. Be-
cause of trademark concerns (“Unix” is trade-
marked by AT&T) they simply could not claim

that it was Unix, and so, just to be extra safe,
they claimed that it wasn’t. Notwithstanding
the incomparable talent and drive possessed
by Mr. Stallman and other GNU adherents,
their project to build a free Unix to compete
against Microsoft and Apple’s OSes was a lit-
tle bit like trying to dig a subway system with
a teaspoon. Until, that is, the advent of Linux,
which I will get to later.

But the basic idea of re-creating an operat-
ing system from scratch was perfectly sound
and completely doable. It has been done many
times. It is inherent in the very nature of op-
erating systems.

Operating systems are not strictly necessary.
There is no reason why a sufficiently dedicated
coder could not start from nothing with every
project and write fresh code to handle such
basic, low-level operations as controlling the
read/write heads on the disk drives and light-
ing up pixels on the screen. The very first
computers had to be programmed in this way.
But since nearly every program needs to carry
out those same basic operations, this approach
would lead to vast duplication of effort.

Nothing is more disagreeable to the hacker
than duplication of effort. The first and most
important mental habit that people develop
when they learn how to write computer pro-
grams is to generalize, generalize, generalize.
To make their code as modular and flexible as
possible, breaking large problems down into
small subroutines that can be used over and
over again in different contexts. Consequently,
the development of operating systems, despite
being technically unnecessary, was inevitable.
Because at its heart, an operating system is
nothing more than a library containing the
most commonly used code, written once (and
hopefully written well) and then made avail-
able to every coder who needs it.

So a proprietary, closed, secret operating sys-

14

tem is a contradiction in terms. It goes against
the whole point of having an operating system.
And it is impossible to keep them secret any-
way. The source code — the original lines of
text written by the programmers — can be
kept secret. But an OS as a whole is a col-
lection of small subroutines that do very spe-
cific, very clearly defined jobs. Exactly what
those subroutines do has to be made public,
quite explicitly and exactly, or else the OS is
completely useless to programmers; they can’t
make use of those subroutines if they don’t
have a complete and perfect understanding of
what the subroutines do.

The only thing that isn’t made public is ex-
actly how the subroutines do what they do.
But once you know what a subroutine does,
it’s generally quite easy (if you are a hacker)
to write one of your own that does exactly the
same thing. It might take a while, and it is te-
dious and unrewarding, but in most cases it’s
not really hard.

What’s hard, in hacking as in fiction, is not
writing; it’s deciding what to write. And the
vendors of commercial OSes have already de-
cided, and published their decisions.

This has been generally understood for a long
time. MS-DOS was duplicated, functionally,
by a rival product, written from scratch, called
ProDOS, that did all of the same things in
pretty much the same way. In other words,
another company was able to write code that
did all of the same things as MS-DOS and sell
it at a profit. If you are using the Linux OS,
you can get a free program called WINE which
is a windows emulator; that is, you can open
up a window on your desktop that runs win-
dows programs. It means that a completely
functional Windows OS has been recreated in-
side of Unix, like a ship in a bottle. And
Unix itself, which is vastly more sophisticated
than MS-DOS, has been built up from scratch
many times over. Versions of it are sold by

Sun, Hewlett-Packard, AT&T, Silicon Graph-
ics, IBM, and others.

People have, in other words, been re-writing
basic OS code for so long that all of the
technology that constituted an “operating sys-
tem” in the traditional (pre-GUI) sense of
that phrase is now so cheap and common that
it’s literally free. Not only could Gates and
Allen not sell MS-DOS today, they could not
even give it away, because much more power-
ful OSes are already being given away. Even
the original Windows (which was the only win-
dows until 1995) has become worthless, in that
there is no point in owning something that can
be emulated inside of Linux — which is, itself,
free.

In this way the OS business is very different
from, say, the car business. Even an old run-
down car has some value. You can use it for
making runs to the dump, or strip it for parts.
It is the fate of manufactured goods to slowly
and gently depreciate as they get old and have
to compete against more modern products.

But it is the fate of operating systems to be-
come free.

Microsoft is a great software applications com-
pany. Applications — such as Microsoft Word
— are an area where innovation brings real,
direct, tangible benefits to users. The innova-
tions might be new technology straight from
the research department, or they might be in
the category of bells and whistles, but in any
event they are frequently useful and they seem
to make users happy. And Microsoft is in the
process of becoming a great research company.
But Microsoft is not such a great operating
systems company. And this is not necessarily
because their operating systems are all that
bad from a purely technological standpoint.
Microsoft’s OSes do have their problems, sure,
but they are vastly better than they used to
be, and they are adequate for most people.

15

Why, then, do I say that Microsoft is not
such a great operating systems company? Be-
cause the very nature of operating systems is
such that it is senseless for them to be devel-
oped and owned by a specific company. It’s a
thankless job to begin with. Applications cre-
ate possibilities for millions of credulous users,
whereas OSes impose limitations on thousands
of grumpy coders, and so OS-makers will for-
ever be on the shit-list of anyone who counts
for anything in the high-tech world. Applica-
tions get used by people whose big problem
is understanding all of their features, whereas
OSes get hacked by coders who are annoyed by
their limitations. The OS business has been
good to Microsoft only insofar as it has given
them the money they needed to launch a really
good applications software business and to hire
a lot of smart researchers. Now it really ought
to be jettisoned, like a spent booster stage
from a rocket. The big question is whether
Microsoft is capable of doing this. Or is it ad-
dicted to OS sales in the same way as Apple
is to selling hardware?

Keep in mind that Apple’s ability to monopo-
lize its own hardware supply was once cited,
by learned observers, as a great advantage
over Microsoft. At the time, it seemed to
place them in a much stronger position. In
the end, it nearly killed them, and may kill
them yet. The problem, for Apple, was that
most of the world’s computer users ended up
owning cheaper hardware. But cheap hard-
ware couldn’t run MacOS, and so these people
switched to Windows.

Replace “hardware” with “operating sys-
tems,” and “Apple” with “Microsoft” and you
can see the same thing about to happen all
over again. Microsoft dominates the OS mar-
ket, which makes them money and seems like
a great idea for now. But cheaper and bet-
ter OSes are available, and they are growingly
popular in parts of the world that are not so

saturated with computers as the US. Ten years
from now, most of the world’s computer users
may end up owning these cheaper OSes. But
these OSes do not, for the time being, run
any Microsoft applications, and so these peo-
ple will use something else.

To put it more directly: every time someone
decides to use a non-Microsoft OS, Microsoft’s
OS division, obviously, loses a customer. But,
as things stand now, Microsoft’s applications
division loses a customer too. This is not such
a big deal as long as almost everyone uses Mi-
crosoft OSes. But as soon as Windows’ market
share begins to slip, the math starts to look
pretty dismal for the people in Redmond.

This argument could be countered by saying
that Microsoft could simply re-compile its ap-
plications to run under other OSes. But this
strategy goes against most normal corporate
instincts. Again the case of Apple is instruc-
tive. When things started to go south for Ap-
ple, they should have ported their OS to cheap
PC hardware. But they didn’t. Instead, they
tried to make the most of their brilliant hard-
ware, adding new features and expanding the
product line. But this only had the effect of
making their OS more dependent on these spe-
cial hardware features, which made it worse for
them in the end.

Likewise, when Microsoft’s position in the OS
world is threatened, their corporate instincts
will tell them to pile more new features into
their operating systems, and then re-jigger
their software applications to exploit those
special features. But this will only have the
effect of making their applications dependent
on an OS with declining market share, and
make it worse for them in the end.

The operating system market is a death-trap,
a tar-pit, a slough of despond. There are only
two reasons to invest in Apple and Microsoft.
(1) each of these companies is in what we

16

would call a co-dependency relationship with
their customers. The customers Want To Be-
lieve, and Apple and Microsoft know how to
give them what they want. (2) each company
works very hard to add new features to their
OSes, which works to secure customer loyalty,
at least for a little while.

Accordingly, most of the remainder of this es-
say will be about those two topics.

THE TECHNOSPHERE

Unix is the only OS remaining whose GUI (a
vast suite of code called the X Windows Sys-
tem) is separate from the OS in the old sense
of the phrase. This is to say that you can run
Unix in pure command-line mode if you want
to, with no windows, icons, mouses, etc. what-
soever, and it will still be Unix and capable of
doing everything Unix is supposed to do. But
the other OSes: MacOS, the Windows family,
and BeOS, have their GUIs tangled up with
the old-fashioned OS functions to the extent
that they have to run in GUI mode, or else
they are not really running. So it’s no longer
really possible to think of GUIs as being dis-
tinct from the OS; they’re now an inextricable
part of the OSes that they belong to — and
they are by far the largest part, and by far the
most expensive and difficult part to create.

There are only two ways to sell a product:
price and features. When OSes are free, OS
companies cannot compete on price, and so
they compete on features. This means that
they are always trying to outdo each other
writing code that, until recently, was not con-
sidered to be part of an OS at all: stuff like
GUIs. This explains a lot about how these
companies behave.

It explains why Microsoft added a browser to
their OS, for example. It is easy to get free

browsers, just as to get free OSes. If browsers
are free, and OSes are free, it would seem that
there is no way to make money from browsers
or OSes. But if you can integrate a browser
into the OS and thereby imbue both of them
with new features, you have a salable product.

Setting aside, for the moment, the fact that
this makes government anti-trust lawyers re-
ally mad, this strategy makes sense. At least,
it makes sense if you assume (as Microsoft’s
management appears to) that the OS has to
be protected at all costs. The real question
is whether every new technological trend that
comes down the pike ought to be used as a
crutch to maintain the OS’s dominant posi-
tion. Confronted with the Web phenomenon,
Microsoft had to develop a really good web
browser, and they did. But then they had a
choice: they could have made that browser
work on many different OSes, which would
give Microsoft a strong position in the Inter-
net world no matter what happened to their
OS market share. Or they could make the
browser one with the OS, gambling that this
would make the OS look so modern and sexy
that it would help to preserve their dominance
in that market. The problem is that when
Microsoft’s OS position begins to erode (and
since it is currently at something like ninety
percent, it can’t go anywhere but down) it will
drag everything else down with it.

In your high school geology class you prob-
ably were taught that all life on earth ex-
ists in a paper-thin shell called the biosphere,
which is trapped between thousands of miles
of dead rock underfoot, and cold dead radioac-
tive empty space above. Companies that sell
OSes exist in a sort of technosphere. Under-
neath is technology that has already become
free. Above is technology that has yet to be
developed, or that is too crazy and speculative
to be productized just yet. Like the Earth’s
biosphere, the technosphere is very thin com-

17

pared to what is above and what is below.

But it moves a lot faster. In various parts of
our world, it is possible to go and visit rich fos-
sil beds where skeleton lies piled upon skeleton,
recent ones on top and more ancient ones be-
low. In theory they go all the way back to the
first single-celled organisms. And if you use
your imagination a bit, you can understand
that, if you hang around long enough, you’ll
become fossilized there too, and in time some
more advanced organism will become fossilized
on top of you.

The fossil record — the La Brea Tar Pit —
of software technology is the Internet. Any-
thing that shows up there is free for the tak-
ing (possibly illegal, but free). Executives at
companies like Microsoft must get used to the
experience — unthinkable in other industries
— of throwing millions of dollars into the de-
velopment of new technologies, such as Web
browsers, and then seeing the same or equiv-
alent software show up on the Internet two
years, or a year, or even just a few months,
later.

By continuing to develop new technologies and
add features onto their products they can keep
one step ahead of the fossilization process, but
on certain days they must feel like mammoths
caught at La Brea, using all their energies to
pull their feet, over and over again, out of the
sucking hot tar that wants to cover and en-
velop them.

Survival in this biosphere demands sharp tusks
and heavy, stomping feet at one end of the or-
ganization, and Microsoft famously has those.
But trampling the other mammoths into the
tar can only keep you alive for so long. The
danger is that in their obsession with staying
out of the fossil beds, these companies will for-
get about what lies above the biosphere: the
realm of new technology. In other words, they
must hang onto their primitive weapons and

crude competitive instincts, but also evolve
powerful brains. This appears to be what
Microsoft is doing with its research division,
which has been hiring smart people right and
left (Here I should mention that although I
know, and socialize with, several people in
that company’s research division, we never
talk about business issues and I have little to
no idea what the hell they are up to. I have
learned much more about Microsoft by using
the Linux operating system than I ever would
have done by using Windows).

Never mind how Microsoft used to make
money; today, it is making its money on a kind
of temporal arbitrage. “Arbitrage,” in the
usual sense, means to make money by taking
advantage of differences in the price of some-
thing between different markets. It is spatial,
in other words, and hinges on the arbitrageur
knowing what is going on simultaneously in
different places. Microsoft is making money
by taking advantage of differences in the price
of technology in different times. Temporal ar-
bitrage, if I may coin a phrase, hinges on the
arbitrageur knowing what technologies people
will pay money for next year, and how soon af-
terwards those same technologies will become
free. What spatial and temporal arbitrage
have in common is that both hinge on the ar-
bitrageur’s being extremely well-informed; one
about price gradients across space at a given
time, and the other about price gradients over
time in a given place.

So Apple/Microsoft shower new features upon
their users almost daily, in the hopes that
a steady stream of genuine technical inno-
vations, combined with the “I want to be-
lieve” phenomenon, will prevent their cus-
tomers from looking across the road towards
the cheaper and better OSes that are avail-
able to them. The question is whether this
makes sense in the long run. If Microsoft is ad-
dicted to OSes as Apple is to hardware, then

18

they will bet the whole farm on their OSes,
and tie all of their new applications and tech-
nologies to them. Their continued survival
will then depend on these two things: adding
more features to their OSes so that customers
will not switch to the cheaper alternatives, and
maintaining the image that, in some mysteri-
ous way, gives those customers the feeling that
they are getting something for their money.

The latter is a truly strange and interesting
cultural phenomenon.

THE INTERFACE CULTURE

A few years ago I walked into a grocery store
somewhere and was presented with the follow-
ing tableau vivant: near the entrance a young
couple were standing in front of a large cos-
metics display. The man was stolidly holding
a shopping basket between his hands while his
mate raked blister-packs of makeup off the dis-
play and piled them in. Since then I’ve always
thought of that man as the personification of
an interesting human tendency: not only are
we not offended to be dazzled by manufactured
images, but we like it. We practically insist on
it. We are eager to be complicit in our own
dazzlement: to pay money for a theme park
ride, vote for a guy who’s obviously lying to
us, or stand there holding the basket as it’s
filled up with cosmetics.

I was in Disney World recently, specifically the
part of it called the Magic Kingdom, walking
up Main Street USA. This is a perfect ginger-
bready Victorian small town that culminates
in a Disney castle. It was very crowded; we
shuffled rather than walked. Directly in front
of me was a man with a camcorder. It was one
of the new breed of camcorders where instead
of peering through a viewfinder you gaze at a
flat-panel color screen about the size of a play-
ing card, which televises live coverage of what-

ever the camcorder is seeing. He was holding
the appliance close to his face, so that it ob-
structed his view. Rather than go see a real
small town for free, he had paid money to see
a pretend one, and rather than see it with the
naked eye he was watching it on television.

And rather than stay home and read a book,
I was watching him.

Americans’ preference for mediated experi-
ences is obvious enough, and I’m not going
to keep pounding it into the ground. I’m not
even going to make snotty comments about it
— after all, I was at Disney World as a paying
customer. But it clearly relates to the colossal
success of GUIs and so I have to talk about
it some. Disney does mediated experiences
better than anyone. If they understood what
OSes are, and why people use them, they could
crush Microsoft in a year or two.

In the part of Disney World called the Ani-
mal Kingdom there is a new attraction, slated
to open in March 1999, called the Maharajah
Jungle Trek. It was open for sneak previews
when I was there. This is a complete stone-
by-stone reproduction of a hypothetical ruin
in the jungles of India. According to its back-
story, it was built by a local rajah in the 16th
Century as a game reserve. He would go there
with his princely guests to hunt Bengal tigers.
As time went on it fell into disrepair and the
tigers and monkeys took it over; eventually,
around the time of India’s independence, it be-
came a government wildlife reserve, now open
to visitors.

The place looks more like what I have just
described than any actual building you might
find in India. All the stones in the broken walls
are weathered as if monsoon rains had been
trickling down them for centuries, the paint
on the gorgeous murals is flaked and faded
just so, and Bengal tigers loll amid stumps of
broken columns. Where modern repairs have

19

been made to the ancient structure, they’ve
been done, not as Disney’s engineers would do
them, but as thrifty Indian janitors would —
with hunks of bamboo and rust-spotted hunks
of rebar. The rust is painted on, or course, and
protected from real rust by a plastic clear-coat,
but you can’t tell unless you get down on your
knees.

In one place you walk along a stone wall with
a series of old pitted friezes carved into it.
One end of the wall has broken off and settled
into the earth, perhaps because of some long-
forgotten earthquake, and so a broad jagged
crack runs across a panel or two, but the story
is still readable: first, primordial chaos leads
to a flourishing of many animal species. Next,
we see the Tree of Life surrounded by diverse
animals. This is an obvious allusion (or, in
showbiz lingo, a tie-in) to the gigantic Tree
of Life that dominates the center of Disney’s
Animal Kingdom just as the Castle dominates
the Magic Kingdom or the Sphere does Epcot.
But it’s rendered in historically correct style
and could probably fool anyone who didn’t
have a Ph.D. in Indian art history.

The next panel shows a mustachioed H. sapi-
ens chopping down the Tree of Life with a
scimitar, and the animals fleeing every which
way. The one after that shows the misguided
human getting walloped by a tidal wave, part
of a latter-day Deluge presumably brought on
by his stupidity.

The final panel, then, portrays the Sapling of
Life beginning to grow back, but now Man has
ditched the edged weapon and joined the other
animals in standing around to adore and praise
it.

It is, in other words, a prophecy of the Bottle-
neck: the scenario, commonly espoused among
modern-day environmentalists, that the world
faces an upcoming period of grave ecological
tribulations that will last for a few decades or

centuries and end when we find a new harmo-
nious modus vivendi with Nature.

Taken as a whole the frieze is a pretty brilliant
piece of work. Obviously it’s not an ancient
Indian ruin, and some person or people now
living deserve credit for it. But there are no
signatures on the Maharajah’s game reserve at
Disney World. There are no signatures on any-
thing, because it would ruin the whole effect
to have long strings of production credits dan-
gling from every custom-worn brick, as they
do from Hollywood movies.

Among Hollywood writers, Disney has the rep-
utation of being a real wicked stepmother. It’s
not hard to see why. Disney is in the business
of putting out a product of seamless illusion
— a magic mirror that reflects the world back
better than it really is. But a writer is literally
talking to his or her readers, not just creating
an ambience or presenting them with some-
thing to look at; and just as the command-
line interface opens a much more direct and
explicit channel from user to machine than the
GUI, so it is with words, writer, and reader.

The word, in the end, is the only system of en-
coding thoughts — the only medium — that is
not fungible, that refuses to dissolve in the de-
vouring torrent of electronic media (the richer
tourists at Disney World wear t-shirts printed
with the names of famous designers, because
designs themselves can be bootlegged easily
and with impunity. The only way to make
clothing that cannot be legally bootlegged is
to print copyrighted and trademarked words
on it; once you have taken that step, the cloth-
ing itself doesn’t really matter, and so a t-shirt
is as good as anything else. T-shirts with ex-
pensive words on them are now the insignia of
the upper class. T-shirts with cheap words, or
no words at all, are for the commoners).

But this special quality of words and of writ-
ten communication would have the same effect

20

on Disney’s product as spray-painted graffiti
on a magic mirror. So Disney does most of
its communication without resorting to words,
and for the most part, the words aren’t missed.
Some of Disney’s older properties, such as Pe-
ter Pan, Winnie the Pooh, and Alice in Won-
derland, came out of books. But the authors’
names are rarely if ever mentioned, and you
can’t buy the original books at the Disney
store. If you could, they would all seem old
and queer, like very bad knockoffs of the purer,
more authentic Disney versions. Compared to
more recent productions like Beauty and the
Beast and Mulan, the Disney movies based on
these books (particularly Alice in Wonderland
and Peter Pan) seem deeply bizarre, and not
wholly appropriate for children. That stands
to reason, because Lewis Carroll and J.M. Bar-
rie were very strange men, and such is the na-
ture of the written word that their personal
strangeness shines straight through all the lay-
ers of Disneyfication like x-rays through a wall.
Probably for this very reason, Disney seems
to have stopped buying books altogether, and
now finds its themes and characters in folk
tales, which have the lapidary, time-worn qual-
ity of the ancient bricks in the Maharajah’s
ruins.

If I can risk a broad generalization, most of
the people who go to Disney World have zero
interest in absorbing new ideas from books.
Which sounds snide, but listen: they have no
qualms about being presented with ideas in
other forms. Disney World is stuffed with en-
vironmental messages now, and the guides at
Animal Kingdom can talk your ear off about
biology.

If you followed those tourists home, you might
find art, but it would be the sort of un-
signed folk art that’s for sale in Disney World’s
African- and Asian-themed stores. In general
they only seem comfortable with media that
have been ratified by great age, massive pop-

ular acceptance, or both.

In this world, artists are like the anonymous,
illiterate stone carvers who built the great
cathedrals of Europe and then faded away
into unmarked graves in the churchyard. The
cathedral as a whole is awesome and stirring
in spite, and possibly because, of the fact that
we have no idea who built it. When we walk
through it we are communing not with individ-
ual stone carvers but with an entire culture.

Disney World works the same way. If you
are an intellectual type, a reader or writer of
books, the nicest thing you can say about this
is that the execution is superb. But it’s easy to
find the whole environment a little creepy, be-
cause something is missing: the translation of
all its content into clear explicit written words,
the attribution of the ideas to specific people.
You can’t argue with it. It seems as if a hell of
a lot might be being glossed over, as if Disney
World might be putting one over on us, and
possibly getting away with all kinds of buried
assumptions and muddled thinking.

But this is precisely the same as what is lost in
the transition from the command-line interface
to the GUI.

Disney and Apple/Microsoft are in the same
business: short-circuiting laborious, explicit
verbal communication with expensively de-
signed interfaces. Disney is a sort of user inter-
face unto itself — and more than just graph-
ical. Let’s call it a Sensorial Interface. It can
be applied to anything in the world, real or
imagined, albeit at staggering expense.

Why are we rejecting explicit word-based in-
terfaces, and embracing graphical or sensorial
ones — a trend that accounts for the success
of both Microsoft and Disney?

Part of it is simply that the world is very
complicated now — much more complicated
than the hunter-gatherer world that our brains

21

evolved to cope with — and we simply can’t
handle all of the details. We have to delegate.
We have no choice but to trust some nameless
artist at Disney or programmer at Apple or
Microsoft to make a few choices for us, close
off some options, and give us a conveniently
packaged executive summary.

But more importantly, it comes out of the
fact that, during this century, intellectual-
ism failed, and everyone knows it. In places
like Russia and Germany, the common peo-
ple agreed to loosen their grip on traditional
folkways, mores, and religion, and let the in-
tellectuals run with the ball, and they screwed
everything up and turned the century into an
abbatoir. Those wordy intellectuals used to be
merely tedious; now they seem kind of danger-
ous as well.

We Americans are the only ones who didn’t get
creamed at some point during all of this. We
are free and prosperous because we have in-
herited political and values systems fabricated
by a particular set of eighteenth-century intel-
lectuals who happened to get it right. But
we have lost touch with those intellectuals,
and with anything like intellectualism, even
to the point of not reading books any more,
though we are literate. We seem much more
comfortable with propagating those values to
future generations nonverbally, through a pro-
cess of being steeped in media. Apparently
this actually works to some degree, for police
in many lands are now complaining that lo-
cal arrestees are insisting on having their Mi-
randa rights read to them, just like perps in
American TV cop shows. When it’s explained
to them that they are in a different country,
where those rights do not exist, they become
outraged. Starsky and Hutch reruns, dubbed
into diverse languages, may turn out, in the
long run, to be a greater force for human rights
than the Declaration of Independence.

A huge, rich, nuclear-tipped culture that prop-

agates its core values through media steepage
seems like a bad idea. There is an obvious risk
of running astray here. Words are the only im-
mutable medium we have, which is why they
are the vehicle of choice for extremely impor-
tant concepts like the Ten Commandments,
the Koran, and the Bill of Rights. Unless
the messages conveyed by our media are some-
how pegged to a fixed, written set of precepts,
they can wander all over the place and possibly
dump loads of crap into people’s minds.

Orlando used to have a military installation
called McCoy Air Force Base, with long run-
ways from which B-52s could take off and reach
Cuba, or just about anywhere else, with loads
of nukes. But now McCoy has been scrapped
and repurposed. It has been absorbed into Or-
lando’s civilian airport. The long runways are
being used to land 747-loads of tourists from
Brazil, Italy, Russia and Japan, so that they
can come to Disney World and steep in our
media for a while.

To traditional cultures, especially word-based
ones such as Islam, this is infinitely more
threatening than the B-52s ever were. It is ob-
vious, to everyone outside of the United States,
that our arch-buzzwords, multiculturalism and
diversity, are false fronts that are being used
(in many cases unwittingly) to conceal a global
trend to eradicate cultural differences. The
basic tenet of multiculturalism (or “honoring
diversity” or whatever you want to call it) is
that people need to stop judging each other-to
stop asserting (and, eventually, to stop believ-
ing) that this is right and that is wrong, this
true and that false, one thing ugly and another
thing beautiful, that God exists and has this
or that set of qualities.

The lesson most people are taking home from
the Twentieth Century is that, in order for a
large number of different cultures to coexist
peacefully on the globe (or even in a neigh-
borhood) it is necessary for people to suspend

22

judgment in this way. Hence (I would argue)
our suspicion of, and hostility towards, all au-
thority figures in modern culture. As David
Foster Wallace has explained in his essay “E
Unibus Pluram,” this is the fundamental mes-
sage of television; it is the message that people
take home, anyway, after they have steeped in
our media long enough. It’s not expressed in
these highfalutin terms, of course. It comes
through as the presumption that all authority
figures — teachers, generals, cops, ministers,
politicians — are hypocritical buffoons, and
that hip jaded coolness is the only way to be.

The problem is that once you have done away
with the ability to make judgments as to right
and wrong, true and false, etc., there’s no real
culture left. All that remains is clog dancing
and macrame. The ability to make judgments,
to believe things, is the entire it point of hav-
ing a culture. I think this is why guys with
machine guns sometimes pop up in places like
Luxor, and begin pumping bullets into West-
erners. They perfectly understand the lesson
of McCoy Air Force Base. When their sons
come home wearing Chicago Bulls caps with
the bills turned sideways, the dads go out of
their minds.

The global anti-culture that has been conveyed
into every cranny of the world by television
is a culture unto itself, and by the standards
of great and ancient cultures like Islam and
France, it seems grossly inferior, at least at
first. The only good thing you can say about
it is that it makes world wars and Holocausts
less likely — and that is actually a pretty good
thing!

The only real problem is that anyone who has
no culture, other than this global monoculture,
is completely screwed. Anyone who grows up
watching TV, never sees any religion or phi-
losophy, is raised in an atmosphere of moral
relativism, learns about civics from watching
bimbo eruptions on network TV news, and at-

tends a university where postmodernists vie
to outdo each other in demolishing traditional
notions of truth and quality, is going to come
out into the world as one pretty feckless hu-
man being. And — again — perhaps the goal
of all this is to make us feckless so we won’t
nuke each other.

On the other hand, if you are raised within
some specific culture, you end up with a basic
set of tools that you can use to think about and
understand the world. You might use those
tools to reject the culture you were raised in,
but at least you’ve got some tools.

In this country, the people who run things
— who populate major law firms and corpo-
rate boards — understand all of this at some
level. They pay lip service to multicultural-
ism and diversity and non-judgmentalness, but
they don’t raise their own children that way.
I have highly educated, technically sophisti-
cated friends who have moved to small towns
in Iowa to live and raise their children, and
there are Hasidic Jewish enclaves in New York
where large numbers of kids are being brought
up according to traditional beliefs. Any sub-
urban community might be thought of as a
place where people who hold certain (mostly
implicit) beliefs go to live among others who
think the same way.

And not only do these people feel some respon-
sibility to their own children, but to the coun-
try as a whole. Some of the upper class are vile
and cynical, of course, but many spend at least
part of their time fretting about what direction
the country is going in, and what responsibil-
ities they have. And so issues that are im-
portant to book-reading intellectuals, such as
global environmental collapse, eventually per-
colate through the porous buffer of mass cul-
ture and show up as ancient Hindu ruins in
Orlando.

You may be asking: what the hell does all this

23

have to do with operating systems? As I’ve
explained, there is no way to explain the dom-
ination of the OS market by Apple/Microsoft
without looking to cultural explanations, and
so I can’t get anywhere, in this essay, without
first letting you know where I’m coming from
vis-a-vis contemporary culture.

Contemporary culture is a two-tiered system,
like the Morlocks and the Eloi in H.G. Wells’s
The Time Machine, except that it’s been
turned upside down. In The Time Machine
the Eloi were an effete upper class, supported
by lots of subterranean Morlocks who kept
the technological wheels turning. But in our
world it’s the other way round. The Mor-
locks are in the minority, and they are run-
ning the show, because they understand how
everything works. The much more numerous
Eloi learn everything they know from being
steeped from birth in electronic media directed
and controlled by book-reading Morlocks. So
many ignorant people could be dangerous if
they got pointed in the wrong direction, and
so we’ve evolved a popular culture that is (a)
almost unbelievably infectious and (b) neuters
every person who gets infected by it, by ren-
dering them unwilling to make judgments and
incapable of taking stands.

Morlocks, who have the energy and intelli-
gence to comprehend details, go out and mas-
ter complex subjects and produce Disney-like
Sensorial Interfaces so that Eloi can get the
gist without having to strain their minds or
endure boredom. Those Morlocks will go to
India and tediously explore a hundred ruins,
then come home and built sanitary bug-free
versions: highlight films, as it were. This costs
a lot, because Morlocks insist on good cof-
fee and first-class airline tickets, but that’s no
problem because Eloi like to be dazzled and
will gladly pay for it all.

Now I realize that most of this probably
sounds snide and bitter to the point of absur-

dity: your basic snotty intellectual throwing
a tantrum about those unlettered philistines.
As if I were a self-styled Moses, coming down
from the mountain all alone, carrying the
stone tablets bearing the Ten Commandments
carved in immutable stone — the original
command-line interface — and blowing his
stack at the weak, unenlightened Hebrews wor-
shipping images. Not only that, but it sounds
like I’m pumping some sort of conspiracy the-
ory.

But that is not where I’m going with this. The
situation I describe, here, could be bad, but
doesn’t have to be bad and isn’t necessarily
bad now:

It simply is the case that we are way too busy,
nowadays, to comprehend everything in de-
tail. And it’s better to comprehend it dimly,
through an interface, than not at all. Bet-
ter for ten million Eloi to go on the Kiliman-
jaro Safari at Disney World than for a thou-
sand cardiovascular surgeons and mutual fund
managers to go on “real” ones in Kenya. The
boundary between these two classes is more
porous than I’ve made it sound. I’m always
running into regular dudes — construction
workers, auto mechanics, taxi drivers, galoots
in general — who were largely aliterate until
something made it necessary for them to be-
come readers and start actually thinking about
things. Perhaps they had to come to grips with
alcoholism, perhaps they got sent to jail, or
came down with a disease, or suffered a crisis
in religious faith, or simply got bored. Such
people can get up to speed on particular sub-
jects quite rapidly. Sometimes their lack of
a broad education makes them over-apt to go
off on intellectual wild goose chases, but, hey,
at least a wild goose chase gives you some ex-
ercise. The spectre of a polity controlled by
the fads and whims of voters who actually be-
lieve that there are significant differences be-
tween Bud Lite and Miller Lite, and who think

24

that professional wrestling is for real, is natu-
rally alarming to people who don’t. But then
countries controlled via the command-line in-
terface, as it were, by double-domed intellectu-
als, be they religious or secular, are generally
miserable places to live. Sophisticated peo-
ple deride Disneyesque entertainments as pat
and saccharine, but, hey, if the result of that
is to instill basically warm and sympathetic
reflexes, at a preverbal level, into hundreds
of millions of unlettered media-steepers, then
how bad can it be? We killed a lobster in our
kitchen last night and my daughter cried for an
hour. The Japanese, who used to be just about
the fiercest people on earth, have become in-
fatuated with cuddly adorable cartoon charac-
ters. My own family — the people I know best
— is divided about evenly between people who
will probably read this essay and people who
almost certainly won’t, and I can’t say for sure
that one group is necessarily warmer, happier,
or better-adjusted than the other.

MORLOCKS AND ELOI AT THE

KEYBOARD

Back in the days of the command-line inter-
face, users were all Morlocks who had to con-
vert their thoughts into alphanumeric symbols
and type them in, a grindingly tedious pro-
cess that stripped away all ambiguity, laid bare
all hidden assumptions, and cruelly punished
laziness and imprecision. Then the interface-
makers went to work on their GUIs, and intro-
duced a new semiotic layer between people and
machines. People who use such systems have
abdicated the responsibility, and surrendered
the power, of sending bits directly to the chip
that’s doing the arithmetic, and handed that
responsibility and power over to the OS. This
is tempting because giving clear instructions,
to anyone or anything, is difficult. We can-
not do it without thinking, and depending on

the complexity of the situation, we may have
to think hard about abstract things, and con-
sider any number of ramifications, in order to
do a good job of it. For most of us, this is hard
work. We want things to be easier. How badly
we want it can be measured by the size of Bill
Gates’s fortune.

The OS has (therefore) become a sort of intel-
lectual labor-saving device that tries to trans-
late humans’ vaguely expressed intentions into
bits. In effect we are asking our computers
to shoulder responsibilities that have always
been considered the province of human beings
— we want them to understand our desires, to
anticipate our needs, to foresee consequences,
to make connections, to handle routine chores
without being asked, to remind us of what we
ought to be reminded of while filtering out
noise.

At the upper (which is to say, closer to the
user) levels, this is done through a set of
conventions — menus, buttons, and so on.
These work in the sense that analogies work:
they help Eloi understand abstract or unfa-
miliar concepts by likening them to something
known. But the loftier word “metaphor” is
used.

The overarching concept of the MacOS was
the “desktop metaphor” and it subsumed
any number of lesser (and frequently conflict-
ing, or at least mixed) metaphors. Under a
GUI, a file (frequently called “document”) is
metaphrased as a window on the screen (which
is called a “desktop”). The window is al-
most always too small to contain the document
and so you “move around,” or, more preten-
tiously, “navigate” in the document by “click-
ing and dragging” the “thumb” on the “scroll
bar.” When you “type” (using a keyboard)
or “draw” (using a “mouse”) into the “win-
dow” or use pull-down “menus” and “dialog
boxes” to manipulate its contents, the results
of your labors get stored (at least in theory) in

25

a “file,” and later you can pull the same infor-
mation back up into another “window.” When
you don’t want it anymore, you “drag” it into
the “trash.”

There is massively promiscuous metaphor-
mixing going on here, and I could decon-
struct it ’til the cows come home, but I won’t.
Consider only one word: “document.” When
we document something in the real world,
we make fixed, permanent, immutable records
of it. But computer documents are volatile,
ephemeral constellations of data. Sometimes
(as when you’ve just opened or saved them)
the document as portrayed in the window is
identical to what is stored, under the same
name, in a file on the disk, but other times
(as when you have made changes without sav-
ing them) it is completely different. In any
case, every time you hit “Save” you annihi-
late the previous version of the “document”
and replace it with whatever happens to be
in the window at the moment. So even the
word “save” is being used in a sense that is
grotesquely misleading — “destroy one ver-
sion, save another” would be more accurate.

Anyone who uses a word processor for very
long inevitably has the experience of putting
hours of work into a long document and then
losing it because the computer crashes or the
power goes out. Until the moment that it dis-
appears from the screen, the document seems
every bit as solid and real as if it had been
typed out in ink on paper. But in the next mo-
ment, without warning, it is completely and
irretrievably gone, as if it had never existed.
The user is left with a feeling of disorienta-
tion (to say nothing of annoyance) stemming
from a kind of metaphor shear — you realize
that you’ve been living and thinking inside of
a metaphor that is essentially bogus.

So GUIs use metaphors to make computing
easier, but they are bad metaphors. Learning
to use them is essentially a word game, a pro-

cess of learning new definitions of words like
“window” and “document” and “save” that
are different from, and in many cases almost
diametrically opposed to, the old. Somewhat
improbably, this has worked very well, at least
from a commercial standpoint, which is to
say that Apple/Microsoft have made a lot of
money off of it. All of the other modern op-
erating systems have learned that in order to
be accepted by users they must conceal their
underlying gutwork beneath the same sort of
spackle. This has some advantages: if you
know how to use one GUI operating system,
you can probably work out how to use any
other in a few minutes. Everything works a
little differently, like European plumbing —
but with some fiddling around, you can type a
memo or surf the web.

Most people who shop for OSes (if they bother
to shop at all) are comparing not the underly-
ing functions but the superficial look and feel.
The average buyer of an OS is not really pay-
ing for, and is not especially interested in, the
low-level code that allocates memory or writes
bytes onto the disk. What we’re really buy-
ing is a system of metaphors. And — much
more important — what we’re buying into is
the underlying assumption that metaphors are
a good way to deal with the world.

Recently a lot of new hardware has become
available that gives computers numerous inter-
esting ways of affecting the real world: mak-
ing paper spew out of printers, causing words
to appear on screens thousands of miles away,
shooting beams of radiation through cancer
patients, creating realistic moving pictures of
the Titanic. Windows is now used as an OS
for cash registers and bank tellers’ terminals.
My satellite TV system uses a sort of GUI
to change channels and show program guides.
Modern cellular telephones have a crude GUI
built into a tiny LCD screen. Even Legos now
have a GUI: you can buy a Lego set called

26

Mindstorms that enables you to build little
Lego robots and program them through a GUI
on your computer.

So we are now asking the GUI to do a lot more
than serve as a glorified typewriter. Now we
want to become a generalized tool for dealing
with reality. This has become a bonanza for
companies that make a living out of bringing
new technology to the mass market.

Obviously you cannot sell a complicated tech-
nological system to people without some sort
of interface that enables them to use it. The
internal combustion engine was a technolog-
ical marvel in its day, but useless as a con-
sumer good until a clutch, transmission, steer-
ing wheel and throttle were connected to it.
That odd collection of gizmos, which survives
to this day in every car on the road, made up
what we would today call a user interface. But
if cars had been invented after Macintoshes,
carmakers would not have bothered to gin up
all of these arcane devices. We would have a
computer screen instead of a dashboard, and
a mouse (or at best a joystick) instead of a
steering wheel, and we’d shift gears by pulling
down a menu:

PARK — REVERSE — NEUTRAL — — 3 2
1 — Help. . .

A few lines of computer code can thus be made
to substitute for any imaginable mechanical in-
terface. The problem is that in many cases the
substitute is a poor one. Driving a car through
a GUI would be a miserable experience. Even
if the GUI were perfectly bug-free, it would
be incredibly dangerous, because menus and
buttons simply can’t be as responsive as di-
rect mechanical controls. My friend’s dad, the
gentleman who was restoring the MGB, never
would have bothered with it if it had been
equipped with a GUI. It wouldn’t have been
any fun.

The steering wheel and gearshift lever were
invented during an era when the most com-
plicated technology in most homes was a but-
ter churn. Those early carmakers were simply
lucky, in that they could dream up whatever
interface was best suited to the task of driv-
ing an automobile, and people would learn it.
Likewise with the dial telephone and the AM
radio. By the time of the Second World War,
most people knew several interfaces: they
could not only churn butter but also drive a
car, dial a telephone, turn on a radio, sum-
mon flame from a cigarette lighter, and change
a light bulb.

But now every little thing — wristwatches,
VCRs, stoves — is jammed with features, and
every feature is useless without an interface.
If you are like me, and like most other con-
sumers, you have never used ninety percent of
the available features on your microwave oven,
VCR, or cellphone. You don’t even know that
these features exist. The small benefit they
might bring you is outweighed by the sheer
hassle of having to learn about them. This has
got to be a big problem for makers of consumer
goods, because they can’t compete without of-
fering features.

It’s no longer acceptable for engineers to in-
vent a wholly novel user interface for every
new product, as they did in the case of the
automobile, partly because it’s too expensive
and partly because ordinary people can only
learn so much. If the VCR had been invented
a hundred years ago, it would have come with
a thumbwheel to adjust the tracking and a
gearshift to change between forward and re-
verse and a big cast-iron handle to load or to
eject the cassettes. It would have had a big
analog clock on the front of it, and you would
have set the time by moving the hands around
on the dial. But because the VCR was in-
vented when it was — during a sort of awk-
ward transitional period between the era of

27

mechanical interfaces and GUIs — it just had
a bunch of pushbuttons on the front, and in or-
der to set the time you had to push the buttons
in just the right way. This must have seemed
reasonable enough to the engineers responsi-
ble for it, but to many users it was simply im-
possible. Thus the famous blinking 12:00 that
appears on so many VCRs. Computer people
call this “the blinking twelve problem”. When
they talk about it, though, they usually aren’t
talking about VCRs.

Modern VCRs usually have some kind of on-
screen programming, which means that you
can set the time and control other features
through a sort of primitive GUI. GUIs have
virtual pushbuttons too, of course, but they
also have other types of virtual controls, like
radio buttons, checkboxes, text entry boxes,
dials, and scrollbars. Interfaces made out of
these components seem to be a lot easier, for
many people, than pushing those little buttons
on the front of the machine, and so the blink-
ing 12:00 itself is slowly disappearing from
America’s living rooms. The blinking twelve
problem has moved on to plague other tech-
nologies.

So the GUI has gone beyond being an interface
to personal computers, and become a sort of
meta-interface that is pressed into service for
every new piece of consumer technology. It is
rarely an ideal fit, but having an ideal, or even
a good interface is no longer the priority; the
important thing now is having some kind of
interface that customers will actually use, so
that manufacturers can claim, with a straight
face, that they are offering new features.

We want GUIs largely because they are con-
venient and because they are easy — or at
least the GUI makes it seem that way Of
course, nothing is really easy and simple, and
putting a nice interface on top of it does not
change that fact. A car controlled through a
GUI would be easier to drive than one con-

trolled through pedals and steering wheel, but
it would be incredibly dangerous.

By using GUIs all the time we have insen-
sibly bought into a premise that few people
would have accepted if it were presented to
them bluntly: namely, that hard things can
be made easy, and complicated things simple,
by putting the right interface on them. In or-
der to understand how bizarre this is, imag-
ine that book reviews were written according
to the same values system that we apply to
user interfaces: “The writing in this book is
marvelously simple-minded and glib; the au-
thor glosses over complicated subjects and em-
ploys facile generalizations in almost every sen-
tence. Readers rarely have to think, and are
spared all of the difficulty and tedium typi-
cally involved in reading old-fashioned books.”
As long as we stick to simple operations like
setting the clocks on our VCRs, this is not
so bad. But as we try to do more ambitious
things with our technologies, we inevitably run
into the problem of:

METAPHOR SHEAR

I began using Microsoft Word as soon as the
first version was released around 1985. After
some initial hassles I found it to be a better
tool than MacWrite, which was its only com-
petition at the time. I wrote a lot of stuff in
early versions of Word, storing it all on flop-
pies, and transferred the contents of all my
floppies to my first hard drive, which I ac-
quired around 1987. As new versions of Word
came out I faithfully upgraded, reasoning that
as a writer it made sense for me to spend a
certain amount of money on tools.

Sometime in the mid-1980’s I attempted to
open one of my old, circa-1985 Word docu-
ments using the version of Word then current:
6.0 It didn’t work. Word 6.0 did not recognize

28

a document created by an earlier version of it-
self. By opening it as a text file, I was able
to recover the sequences of letters that made
up the text of the document. My words were
still there. But the formatting had been run
through a log chipper — the words I’d written
were interrupted by spates of empty rectangu-
lar boxes and gibberish.

Now, in the context of a business (the chief
market for Word) this sort of thing is only an
annoyance — one of the routine hassles that go
along with using computers. It’s easy to buy
little file converter programs that will take care
of this problem. But if you are a writer whose
career is words, whose professional identity is
a corpus of written documents, this kind of
thing is extremely disquieting. There are very
few fixed assumptions in my line of work, but
one of them is that once you have written a
word, it is written, and cannot be unwritten.
The ink stains the paper, the chisel cuts the
stone, the stylus marks the clay, and some-
thing has irrevocably happened (my brother-
in-law is a theologian who reads 3250-year-
old cuneiform tablets — he can recognize the
handwriting of particular scribes, and identify
them by name). But word-processing software
— particularly the sort that employs special,
complex file formats — has the eldritch power
to unwrite things. A small change in file for-
mats, or a few twiddled bits, and months’ or
years’ literary output can cease to exist.

Now this was technically a fault in the ap-
plication (Word 6.0 for the Macintosh) not
the operating system (MacOS 7 point some-
thing) and so the initial target of my annoy-
ance was the people who were responsible for
Word. But. On the other hand, I could have
chosen the “save as text” option in Word and
saved all of my documents as simple telegrams,
and this problem would not have arisen. In-
stead I had allowed myself to be seduced by all
of those flashy formatting options that hadn’t

even existed until GUIs had come along to
make them practicable. I had gotten into the
habit of using them to make my documents
look pretty (perhaps prettier than they de-
served to look; all of the old documents on
those floppies turned out to be more or less
crap). Now I was paying the price for that
self-indulgence. Technology had moved on and
found ways to make my documents look even
prettier, and the consequence of it was that all
old ugly documents had ceased to exist.

It was — if you’ll pardon me for a moment’s
strange little fantasy — as if I’d gone to stay
at some resort, some exquisitely designed and
art-directed hotel, placing myself in the hands
of past masters of the Sensorial Interface, and
had sat down in my room and written a story
in ballpoint pen on a yellow legal pad, and
when I returned from dinner, discovered that
the maid had taken my work away and left
behind in its place a quill pen and a stack of
fine parchment — explaining that the room
looked ever so much finer this way, and it was
all part of a routine upgrade. But written on
these sheets of paper, in flawless penmanship,
were long sequences of words chosen at ran-
dom from the dictionary. Appalling, sure, but
I couldn’t really lodge a complaint with the
management, because by staying at this resort
I had given my consent to it. I had surrendered
my Morlock credentials and become an Eloi.

LINUX

During the late 1980’s and early 1990’s I spent
a lot of time programming Macintoshes, and
eventually decided for fork over several hun-
dred dollars for an Apple product called the
Macintosh Programmer’s Workshop, or MPW.
MPW had competitors, but it was unquestion-
ably the premier software development system
for the Mac. It was what Apple’s own engi-

29

neers used to write Macintosh code. Given
that MacOS was far more technologically ad-
vanced, at the time, than its competition, and
that Linux did not even exist yet, and given
that this was the actual program used by Ap-
ple’s world-class team of creative engineers, I
had high expectations. It arrived on a stack
of floppy disks about a foot high, and so there
was plenty of time for my excitement to build
during the endless installation process. The
first time I launched MPW, I was probably
expecting some kind of touch-feely multimedia
showcase. Instead it was austere, almost to the
point of being intimidating. It was a scrolling
window into which you could type simple, un-
formatted text. The system would then inter-
pret these lines of text as commands, and try
to execute them.

It was, in other words, a glass teletype run-
ning a command line interface. It came with
all sorts of cryptic but powerful commands,
which could be invoked by typing their names,
and which I learned to use only gradually. It
was not until a few years later, when I began
messing around with Unix, that I understood
that the command line interface embodied in
MPW was a re-creation of Unix.

In other words, the first thing that Apple’s
hackers had done when they’d got the MacOS
up and running — probably even before they’d
gotten it up and running — was to re-create
the Unix interface, so that they would be able
to get some useful work done. At the time, I
simply couldn’t get my mind around this, but:
as far as Apple’s hackers were concerned, the
Mac’s vaunted Graphical User Interface was
an impediment, something to be circumvented
before the little toaster even came out onto the
market.

Even before my Powerbook crashed and oblit-
erated my big file in July 1995, there had been
danger signs. An old college buddy of mine,
who starts and runs high-tech companies in

Boston, had developed a commercial product
using Macintoshes as the front end. Basi-
cally the Macs were high-performance graph-
ics terminals, chosen for their sweet user in-
terface, giving users access to a large database
of graphical information stored on a network
of much more powerful, but less user-friendly,
computers. This fellow was the second person
who turned me on to Macintoshes, by the way,
and through the mid-1980’s we had shared
the thrill of being high-tech cognoscenti, us-
ing superior Apple technology in a world of
DOS-using knuckleheads. Early versions of my
friend’s system had worked well, he told me,
but when several machines joined the network,
mysterious crashes began to occur; sometimes
the whole network would just freeze. It was
one of those bugs that could not be reproduced
easily. Finally they figured out that these net-
work crashes were triggered whenever a user,
scanning the menus for a particular item, held
down the mouse button for more than a couple
of seconds.

Fundamentally, the MacOS could only do one
thing at a time. Drawing a menu on the screen
is one thing. So when a menu was pulled down,
the Macintosh was not capable of doing any-
thing else until that indecisive user released
the button.

This is not such a bad thing in a single-user,
single-process machine (although it’s a fairly
bad thing), but it’s no good in a machine
that is on a network, because being on a net-
work implies some kind of continual low-level
interaction with other machines. By failing
to respond to the network, the Mac caused a
network-wide crash.

In order to work with other computers, and
with networks, and with various different types
of hardware, an OS must be incomparably
more complicated and powerful than either
MS-DOS or the original MacOS. The only way
of connecting to the Internet that’s worth tak-

30

ing seriously is PPP, the Point-to-Point Pro-
tocol, which (never mind the details) makes
your computer — temporarily — a full-fledged
member of the Global Internet, with its own
unique address, and various privileges, pow-
ers, and responsibilities appertaining there-
unto. Technically it means your machine is
running the TCP/IP protocol, which, to make
a long story short, revolves around sending
packets of data back and forth, in no particu-
lar order, and at unpredictable times, accord-
ing to a clever and elegant set of rules. But
sending a packet of data is one thing, and so
an OS that can only do one thing at a time
cannot simultaneously be part of the Internet
and do anything else. When TCP/IP was in-
vented, running it was an honor reserved for
Serious Computers — mainframes and high-
powered minicomputers used in technical and
commercial settings — and so the protocol is
engineered around the assumption that every
computer using it is a serious machine, capa-
ble of doing many things at once. Not to put
too fine a point on it, a Unix machine. Nei-
ther MacOS nor MS-DOS was originally built
with that in mind, and so when the Internet
got hot, radical changes had to be made.

When my Powerbook broke my heart, and
when Word stopped recognizing my old files,
I jumped to Unix. The obvious alternative to
MacOS would have been Windows. I didn’t re-
ally have anything against Microsoft, or Win-
dows. But it was pretty obvious, now, that
old PC operating systems were overreaching,
and showing the strain, and, perhaps, were
best avoided until they had learned to walk
and chew gum at the same time.

The changeover took place on a particular day
in the summer of 1995. I had been San Fran-
cisco for a couple of weeks, using my Power-
Book to work on a document. The document
was too big to fit onto a single floppy, and so I
hadn’t made a backup since leaving home. The

PowerBook crashed and wiped out the entire
file.

It happened just as I was on my way out the
door to visit a company called Electric Com-
munities, which in those days was in Los Altos.
I took my PowerBook with me. My friends at
Electric Communities were Mac users who had
all sorts of utility software for unerasing files
and recovering from disk crashes, and I was
certain I could get most of the file back.

As it turned out, two different Mac crash re-
covery utilities were unable to find any trace
that my file had ever existed. It was com-
pletely and systematically wiped out. We went
through that hard disk block by block and
found disjointed fragments of countless old,
discarded, forgotten files, but none of what I
wanted. The metaphor shear was especially
brutal that day. It was sort of like watching
the girl you’ve been in love with for ten years
get killed in a car wreck, and then attend-
ing her autopsy, and learning that underneath
the clothes and makeup she was just flesh and
blood.

I must have been reeling around the offices of
Electric Communities in some kind of primal
Jungian fugue, because at this moment three
weirdly synchronistic things happened.

(1) Randy Farmer, a co-founder of the com-
pany, came in for a quick visit along with
his family — he was recovering from back
surgery at the time. He had some hot gos-
sip: “Windows 95 mastered today.” What this
meant was that Microsoft’s new operating sys-
tem had, on this day, been placed on a special
compact disk known as a golden master, which
would be used to stamp out a jintillion copies
in preparation for its thunderous release a few
weeks later. This news was received peevishly
by the staff of Electric Communities, includ-
ing one whose office door was plastered with
the usual assortment of cartoons and novelties,

31

e.g.

(2) a copy of a Dilbert cartoon in which Dil-
bert, the long-suffering corporate software en-
gineer, encounters a portly, bearded, hairy
man of a certain age — a bit like Santa Claus,
but darker, with a certain edge about him.
Dilbert recognizes this man, based upon his
appearance and affect, as a Unix hacker, and
reacts with a certain mixture of nervousness,
awe, and hostility. Dilbert jabs weakly at the
disturbing interloper for a couple of frames;
the Unix hacker listens with a kind of infuri-
ating, beatific calm, then, in the last frame,
reaches into his pocket. “Here’s a nickel, kid,”
he says, “go buy yourself a real computer.”

(3) the owner of the door, and the cartoon, was
one Doug Barnes. Barnes was known to har-
bor certain heretical opinions on the subject
of operating systems. Unlike most Bay Area
techies who revered the Macintosh, consider-
ing it to be a true hacker’s machine, Barnes
was fond of pointing out that the Mac, with its
hermetically sealed architecture, was actually
hostile to hackers, who are prone to tinkering
and dogmatic about openness. By contrast,
the IBM-compatible line of machines, which
can easily be taken apart and plugged back
together, was much more hackable.

So when I got home I began messing around
with Linux, which is one of many, many differ-
ent concrete implementations of the abstract,
Platonic ideal called Unix. I was not looking
forward to changing over to a new OS, because
my credit cards were still smoking from all the
money I’d spent on Mac hardware over the
years. But Linux’s great virtue was, and is,
that it would run on exactly the same sort of
hardware as the Microsoft OSes — which is to
say, the cheapest hardware in existence. As if
to demonstrate why this was a great idea, I
was, within a week or two of returning home,
able to get my hand on a then-decent computer
(a 33-MHz 486 box) for free, because I knew a

guy who worked in an office where they were
simply being thrown away. Once I got it home,
I yanked the hood off, stuck my hands in, and
began switching cards around. If something
didn’t work, I went to a used-computer outlet
and pawed through a bin full of components
and bought a new card for a few bucks.

The availability of all this cheap but effective
hardware was an unintended consequence of
decisions that had been made more than a
decade earlier by IBM and Microsoft. When
Windows came out, and brought the GUI to
a much larger market, the hardware regime
changed: the cost of color video cards and
high-resolution monitors began to drop, and
is dropping still. This free-for-all approach to
hardware meant that Windows was unavoid-
ably clunky compared to MacOS. But the GUI
brought computing to such a vast audience
that volume went way up and prices collapsed.
Meanwhile Apple, which so badly wanted a
clean, integrated OS with video neatly inte-
grated into processing hardware, had fallen far
behind in market share, at least partly because
their beautiful hardware cost so much.

But the price that we Mac owners had to pay
for superior aesthetics and engineering was not
merely a financial one. There was a cultural
price too, stemming from the fact that we
couldn’t open up the hood and mess around
with it. Doug Barnes was right. Apple, in
spite of its reputation as the machine of choice
of scruffy, creative hacker types, had actually
created a machine that discouraged hacking,
while Microsoft, viewed as a technological lag-
gard and copycat, had created a vast, disor-
derly parts bazaar — a primordial soup that
eventually self-assembled into Linux.

32

THE HOLE HAWG OF OPERATING

SYSTEMS

Unix has always lurked provocatively in the
background of the operating system wars, like
the Russian Army. Most people know it only
by reputation, and its reputation, as the Dil-
bert cartoon suggests, is mixed. But everyone
seems to agree that if it could only get its act
together and stop surrendering vast tracts of
rich agricultural land and hundreds of thou-
sands of prisoners of war to the onrushing in-
vaders, it could stomp them (and all other op-
position) flat.

It is difficult to explain how Unix has earned
this respect without going into mind-smashing
technical detail. Perhaps the gist of it can be
explained by telling a story about drills.

The Hole Hawg is a drill made by the Mil-
waukee Tool Company. If you look in a typi-
cal hardware store you may find smaller Mil-
waukee drills but not the Hole Hawg, which is
too powerful and too expensive for homeown-
ers. The Hole Hawg does not have the pistol-
like design of a cheap homeowner’s drill. It
is a cube of solid metal with a handle stick-
ing out of one face and a chuck mounted in
another. The cube contains a disconcertingly
potent electric motor. You can hold the handle
and operate the trigger with your index finger,
but unless you are exceptionally strong you
cannot control the weight of the Hole Hawg
with one hand; it is a two-hander all the way.
In order to fight off the counter-torque of the
Hole Hawg you use a separate handle (pro-
vided), which you screw into one side of the
iron cube or the other depending on whether
you are using your left or right hand to op-
erate the trigger. This handle is not a sleek,
ergonomically designed item as it would be in
a homeowner’s drill. It is simply a foot-long
chunk of regular galvanized pipe, threaded on
one end, with a black rubber handle on the

other. If you lose it, you just go to the local
plumbing supply store and buy another chunk
of pipe.

During the Eighties I did some construction
work. One day, another worker leaned a lad-
der against the outside of the building that we
were putting up, climbed up to the second-
story level, and used the Hole Hawg to drill
a hole through the exterior wall. At some
point, the drill bit caught in the wall. The
Hole Hawg, following its one and only imper-
ative, kept going. It spun the worker’s body
around like a rag doll, causing him to knock
his own ladder down. Fortunately he kept his
grip on the Hole Hawg, which remained lodged
in the wall, and he simply dangled from it and
shouted for help until someone came along and
reinstated the ladder.

I myself used a Hole Hawg to drill many holes
through studs, which it did as a blender chops
cabbage. I also used it to cut a few six-inch-
diameter holes through an old lath-and-plaster
ceiling. I chucked in a new hole saw, went up
to the second story, reached down between the
newly installed floor joists, and began to cut
through the first-floor ceiling below. Where
my homeowner’s drill had labored and whined
to spin the huge bit around, and had stalled
at the slightest obstruction, the Hole Hawg ro-
tated with the stupid consistency of a spinning
planet. When the hole saw seized up, the Hole
Hawg spun itself and me around, and crushed
one of my hands between the steel pipe handle
and a joist, producing a few lacerations, each
surrounded by a wide corona of deeply bruised
flesh. It also bent the hole saw itself, though
not so badly that I couldn’t use it. After a few
such run-ins, when I got ready to use the Hole
Hawg my heart actually began to pound with
atavistic terror.

But I never blamed the Hole Hawg; I blamed
myself. The Hole Hawg is dangerous because
it does exactly what you tell it to. It is not

33

bound by the physical limitations that are in-
herent in a cheap drill, and neither is it limited
by safety interlocks that might be built into a
homeowner’s product by a liability-conscious
manufacturer. The danger lies not in the ma-
chine itself but in the user’s failure to envi-
sion the full consequences of the instructions
he gives to it.

A smaller tool is dangerous too, but for a com-
pletely different reason: it tries to do what you
tell it to, and fails in some way that is unpre-
dictable and almost always undesirable. But
the Hole Hawg is like the genie of the ancient
fairy tales, who carries out his master’s in-
structions literally and precisely and with un-
limited power, often with disastrous, unfore-
seen consequences.

Pre-Hole Hawg, I used to examine the drill se-
lection in hardware stores with what I thought
was a judicious eye, scorning the smaller low-
end models and hefting the big expensive ones
appreciatively, wishing I could afford one of
them babies. Now I view them all with such
contempt that I do not even consider them
to be real drills — merely scaled-up toys de-
signed to exploit the self-delusional tendencies
of soft-handed homeowners who want to be-
lieve that they have purchased an actual tool.
Their plastic casings, carefully designed and
focus-group-tested to convey a feeling of solid-
ity and power, seem disgustingly flimsy and
cheap to me, and I am ashamed that I was
ever bamboozled into buying such knicknacks.

It is not hard to imagine what the world would
look like to someone who had been raised
by contractors and who had never used any
drill other than a Hole Hawg. Such a person,
presented with the best and most expensive
hardware-store drill, would not even recognize
it as such. He might instead misidentify it as
a child’s toy, or some kind of motorized screw-
driver. If a salesperson or a deluded home-
owner referred to it as a drill, he would laugh

and tell them that they were mistaken — they
simply had their terminology wrong. His inter-
locutor would go away irritated, and probably
feeling rather defensive about his basement full
of cheap, dangerous, flashy, colorful tools.

Unix is the Hole Hawg of operating systems,
and Unix hackers, like Doug Barnes and the
guy in the Dilbert cartoon and many of the
other people who populate Silicon Valley, are
like contractor’s sons who grew up using only
Hole Hawgs. They might use Apple/Microsoft
OSes to write letters, play video games, or bal-
ance their checkbooks, but they cannot really
bring themselves to take these operating sys-
tems seriously.

THE ORAL TRADITION

Unix is hard to learn. The process of learning
it is one of multiple small epiphanies. Typ-
ically you are just on the verge of inventing
some necessary tool or utility when you realize
that someone else has already invented it, and
built it in, and this explains some odd file or
directory or command that you have noticed
but never really understood before.

For example there is a command (a small pro-
gram, part of the OS) called whoami, which
enables you to ask the computer who it thinks
you are. On a Unix machine, you are always
logged in under some name — possibly even
your own! What files you may work with, and
what software you may use, depends on your
identity. When I started out using Linux, I was
on a non-networked machine in my basement,
with only one user account, and so when I be-
came aware of the whoami command it struck
me as ludicrous. But once you are logged in as
one person, you can temporarily switch over to
a pseudonym in order to access different files.
If your machine is on the Internet, you can
log onto other computers, provided you have a

34

user name and a password. At that point the
distant machine becomes no different in prac-
tice from the one right in front of you. These
changes in identity and location can easily be-
come nested inside each other, many layers
deep, even if you aren’t doing anything nefar-
ious. Once you have forgotten who and where
you are, the whoami command is indispensi-
ble. I use it all the time.

The file systems of Unix machines all have the
same general structure. On your flimsy oper-
ating systems, you can create directories (fold-
ers) and give them names like Frodo or My
Stuff and put them pretty much anywhere you
like. But under Unix the highest level — the
root — of the filesystem is always designated
with the single character “/” and it always
contains the same set of top-level directories:

/usr /etc /var /bin /proc /boot /home /root
/sbin /dev /lib /tmp

and each of these directories typically has its
own distinct structure of subdirectories. Note
the obsessive use of abbreviations and avoid-
ance of capital letters; this is a system invented
by people to whom repetitive stress disorder is
what black lung is to miners. Long names get
worn down to three-letter nubbins, like stones
smoothed by a river.

This is not the place to try to explain why
each of the above directories exists, and what
is contained in it. At first it all seems obscure;
worse, it seems deliberately obscure. When I
started using Linux I was accustomed to being
able to create directories wherever I wanted
and to give them whatever names struck my
fancy. Under Unix you are free to do that,
of course (you are free to do anything) but as
you gain experience with the system you come
to understand that the directories listed above
were created for the best of reasons and that
your life will be much easier if you follow along
(within /home, by the way, you have pretty

much unlimited freedom).

After this kind of thing has happened several
hundred or thousand times, the hacker under-
stands why Unix is the way it is, and agrees
that it wouldn’t be the same any other way.
It is this sort of acculturation that gives Unix
hackers their confidence in the system, and the
attitude of calm, unshakable, annoying supe-
riority captured in the Dilbert cartoon. Win-
dows 95 and MacOS are products, contrived
by engineers in the service of specific compa-
nies. Unix, by contrast, is not so much a prod-
uct as it is a painstakingly compiled oral his-
tory of the hacker subculture. It is our Gil-
gamesh epic.

What made old epics like Gilgamesh so power-
ful and so long-lived was that they were living
bodies of narrative that many people knew by
heart, and told over and over again — making
their own personal embellishments whenever
it struck their fancy. The bad embellishments
were shouted down, the good ones picked up
by others, polished, improved, and, over time,
incorporated into the story. Likewise, Unix
is known, loved, and understood by so many
hackers that it can be re-created from scratch
whenever someone needs it. This is very dif-
ficult to understand for people who are accus-
tomed to thinking of OSes as things that ab-
solutely have to be bought.

Many hackers have launched more or less suc-
cessful re-implementations of the Unix ideal.
Each one brings in new embellishments. Some
of them die out quickly, some are merged with
similar, parallel innovations created by differ-
ent hackers attacking the same problem, oth-
ers still are embraced, and adopted into the
epic. Thus Unix has slowly accreted around a
simple kernel and acquired a kind of complex-
ity and asymmetry about it that is organic,
like the roots of a tree, or the branchings of a
coronary artery. Understanding it is more like
anatomy than physics.

35

For at least a year, prior to my adoption of
Linux, I had been hearing about it. Credi-
ble, well-informed people kept telling me that
a bunch of hackers had got together an implen-
tation of Unix that could be downloaded, free
of charge, from the Internet. For a long time
I could not bring myself to take the notion
seriously. It was like hearing rumors that a
group of model rocket enthusiasts had created
a completely functional Saturn V by exchang-
ing blueprints on the Net and mailing valves
and flanges to each other.

But it’s true. Credit for Linux generally goes
to its human namesake, one Linus Torvalds, a
Finn who got the whole thing rolling in 1991
when he used some of the GNU tools to write
the beginnings of a Unix kernel that could run
on PC-compatible hardware. And indeed Tor-
valds deserves all the credit he has ever gotten,
and a whole lot more. But he could not have
made it happen by himself, any more than
Richard Stallman could have. To write code
at all, Torvalds had to have cheap but power-
ful development tools, and these he got from
Stallman’s GNU project.

And he had to have cheap hardware on which
to write that code. Cheap hardware is a much
harder thing to arrange than cheap software;
a single person (Stallman) can write software
and put it up on the Net for free, but in or-
der to make hardware it’s necessary to have
a whole industrial infrastructure, which is not
cheap by any stretch of the imagination. Re-
ally the only way to make hardware cheap is
to punch out an incredible number of copies
of it, so that the unit cost eventually drops.
For reasons already explained, Apple had no
desire to see the cost of hardware drop. The
only reason Torvalds had cheap hardware was
Microsoft.

Microsoft refused to go into the hardware busi-
ness, insisted on making its software run on
hardware that anyone could build, and thereby

created the market conditions that allowed
hardware prices to plummet. In trying to
understand the Linux phenomenon, then, we
have to look not to a single innovator but
to a sort of bizarre Trinity: Linus Torvalds,
Richard Stallman, and Bill Gates. Take away
any of these three and Linux would not exist.

OS SHOCK

Young Americans who leave their great big ho-
mogeneous country and visit some other part
of the world typically go through several stages
of culture shock: first, dumb wide-eyed aston-
ishment. Then a tentative engagement with
the new country’s manners, cuisine, public
transit systems and toilets, leading to a brief
period of fatuous confidence that they are in-
stant experts on the new country. As the visit
wears on, homesickness begins to set in, and
the traveler begins to appreciate, for the first
time, how much he or she took for granted at
home. At the same time it begins to seem
obvious that many of one’s own cultures and
traditions are essentially arbitrary, and could
have been different; driving on the right side of
the road, for example. When the traveler re-
turns home and takes stock of the experience,
he or she may have learned a good deal more
about America than about the country they
went to visit.

For the same reasons, Linux is worth trying. It
is a strange country indeed, but you don’t have
to live there; a brief sojourn suffices to give
some flavor of the place and — more impor-
tantly — to lay bare everything that is taken
for granted, and all that could have been done
differently, under Windows or MacOS.

You can’t try it unless you install it. With
any other OS, installing it would be a straight-
forward transaction: in exchange for money,
some company would give you a CD-ROM,

36

and you would be on your way. But a lot is
subsumed in that kind of transaction, and has
to be gone through and picked apart.

We like plain dealings and straightforward
transactions in America. If you go to Egypt
and, say, take a taxi somewhere, you become
a part of the taxi driver’s life; he refuses to take
your money because it would demean your
friendship, he follows you around town, and
weeps hot tears when you get in some other
guy’s taxi. You end up meeting his kids at
some point, and have to devote all sort of inge-
nuity to finding some way to compensate him
without insulting his honor. It is exhausting.
Sometimes you just want a simple Manhattan-
style taxi ride.

But in order to have an American-style setup,
where you can just go out and hail a taxi and
be on your way, there must exist a whole hid-
den apparatus of medallions, inspectors, com-
missions, and so forth — which is fine as long
as taxis are cheap and you can always get one.
When the system fails to work in some way,
it is mysterious and infuriating and turns oth-
erwise reasonable people into conspiracy the-
orists. But when the Egyptian system breaks
down, it breaks down transparently. You can’t
get a taxi, but your driver’s nephew will show
up, on foot, to explain the problem and apol-
ogize.

Microsoft and Apple do things the Manhat-
tan way, with vast complexity hidden behind a
wall of interface. Linux does things the Egypt
way, with vast complexity strewn about all
over the landscape. If you’ve just flown in from
Manhattan, your first impulse will be to throw
up your hands and say “For crying out loud!
Will you people get a grip on yourselves!?” But
this does not make friends in Linux-land any
better than it would in Egypt.

You can suck Linux right out of the air, as
it were, by downloading the right files and

putting them in the right places, but there
probably are not more than a few hundred peo-
ple in the world who could create a function-
ing Linux system in that way. What you really
need is a distribution of Linux, which means a
prepackaged set of files. But distributions are
a separate thing from Linux per se.

Linux per se is not a specific set of ones and
zeroes, but a self-organizing Net subculture.
The end result of its collective lucubrations is
a vast body of source code, almost all written
in C (the dominant computer programming
language). “Source code” just means a com-
puter program as typed in and edited by some
hacker. If it’s in C, the file name will proba-
bly have .c or .cpp on the end of it, depend-
ing on which dialect was used; if it’s in some
other language it will have some other suffix.
Frequently these sorts of files can be found in
a directory with the name /src which is the
hacker’s Hebraic abbreviation of “source.”

Source files are useless to your computer, and
of little interest to most users, but they are
of gigantic cultural and political significance,
because Microsoft and Apple keep them se-
cret while Linux makes them public. They are
the family jewels. They are the sort of thing
that in Hollywood thrillers is used as a McGuf-
fin: the plutonium bomb core, the top-secret
blueprints, the suitcase of bearer bonds, the
reel of microfilm. If the source files for Win-
dows or MacOS were made public on the Net,
then those OSes would become free, like Linux
— only not as good, because no one would
be around to fix bugs and answer questions.
Linux is “open source” software meaning, sim-
ply, that anyone can get copies of its source
code files.

Your computer doesn’t want source code any
more than you do; it wants object code. Ob-
ject code files typically have the suffix .o and
are unreadable all but a few, highly strange
humans, because they consist of ones and ze-

37

roes. Accordingly, this sort of file commonly
shows up in a directory with the name /bin,
for “binary.”

Source files are simply ASCII text files. ASCII
denotes a particular way of encoding letters
into bit patterns. In an ASCII file, each char-
acter has eight bits all to itself. This creates
a potential “alphabet” of 256 distinct charac-
ters, in that eight binary digits can form that
many unique patterns. In practice, of course,
we tend to limit ourselves to the familiar let-
ters and digits. The bit-patterns used to rep-
resent those letters and digits are the same
ones that were physically punched into the pa-
per tape by my high school teletype, which
in turn were the same one used by the tele-
graph industry for decades previously. ASCII
text files, in other words, are telegrams, and as
such they have no typographical frills. But for
the same reason they are eternal, because the
code never changes, and universal, because ev-
ery text editing and word processing software
ever written knows about this code.

Therefore just about any software can be used
to create, edit, and read source code files. Ob-
ject code files, then, are created from these
source files by a piece of software called a com-
piler, and forged into a working application by
another piece of software called a linker.

The triad of editor, compiler, and linker, taken
together, form the core of a software develop-
ment system. Now, it is possible to spend a
lot of money on shrink-wrapped development
systems with lovely graphical user interfaces
and various ergonomic enhancements. In some
cases it might even be a good and reason-
able way to spend money. But on this side
of the road, as it were, the very best software
is usually the free stuff. Editor, compiler and
linker are to hackers what ponies, stirrups, and
archery sets were to the Mongols. Hackers live
in the saddle, and hack on their own tools even
while they are using them to create new ap-

plications. It is quite inconceivable that su-
perior hacking tools could have been created
from a blank sheet of paper by product engi-
neers. Even if they are the brightest engineers
in the world they are simply outnumbered.

In the GNU/Linux world there are two ma-
jor text editing programs: the minimalist vi
(known in some implementations as elvis) and
the maximalist emacs. I use emacs, which
might be thought of as a thermonuclear word
processor. It was created by Richard Stallman;
enough said. It is written in Lisp, which is the
only computer language that is beautiful. It is
colossal, and yet it only edits straight ASCII
text files, which is to say, no fonts, no boldface,
no underlining. In other words, the engineer-
hours that, in the case of Microsoft Word, were
devoted to features like mail merge, and the
ability to embed feature-length motion pic-
tures in corporate memoranda, were, in the
case of emacs, focused with maniacal inten-
sity on the deceptively simple-seeming prob-
lem of editing text. If you are a professional
writer — i.e., if someone else is getting paid
to worry about how your words are formatted
and printed — emacs outshines all other edit-
ing software in approximately the same way
that the noonday sun does the stars. It is
not just bigger and brighter; it simply makes
everything else vanish. For page layout and
printing you can use TeX: a vast corpus of
typesetting lore written in C and also avail-
able on the Net for free.

I could say a lot about emacs and TeX, but
right now I am trying to tell a story about how
to actually install Linux on your machine. The
hard-core survivalist approach would be to
download an editor like emacs, and the GNU
Tools — the compiler and linker — which are
polished and excellent to the same degree as
emacs. Equipped with these, one would be
able to start downloading ASCII source code
files (/src) and compiling them into binary ob-

38

ject code files (/bin) that would run on the
machine. But in order to even arrive at this
point — to get emacs running, for example —
you have to have Linux actually up and run-
ning on your machine. And even a minimal
Linux operating system requires thousands of
binary files all acting in concert, and arranged
and linked together just so.

Several entities have therefore taken it upon
themselves to create “distributions” of Linux.
If I may extend the Egypt analogy slightly,
these entities are a bit like tour guides who
meet you at the airport, who speak your lan-
guage, and who help guide you through the
initial culture shock. If you are an Egyptian,
of course, you see it the other way; tour guides
exist to keep brutish outlanders from traips-
ing through your mosques and asking you the
same questions over and over and over again.

Some of these tour guides are commercial or-
ganizations, such as Red Hat Software, which
makes a Linux distribution called Red Hat
that has a relatively commercial sheen to it. In
most cases you put a Red Hat CD-ROM into
your PC and reboot and it handles the rest.
Just as a tour guide in Egypt will expect some
sort of compensation for his services, commer-
cial distributions need to be paid for. In most
cases they cost almost nothing and are well
worth it.

I use a distribution called Debian (the word is
a contraction of “Deborah” and “Ian”) which
is non-commercial. It is organized (or perhaps
I should say “it has organized itself”) along
the same lines as Linux in general, which is to
say that it consists of volunteers who collabo-
rate over the Net, each responsible for looking
after a different chunk of the system. These
people have broken Linux down into a number
of packages, which are compressed files that
can be downloaded to an already functioning
Debian Linux system, then opened up and un-
packed using a free installer application. Of

course, as such, Debian has no commercial arm
— no distribution mechanism. You can down-
load all Debian packages over the Net, but
most people will want to have them on a CD-
ROM. Several different companies have taken
it upon themselves to decoct all of the current
Debian packages onto CD-ROMs and then sell
them. I buy mine from Linux Systems Labs.
The cost for a three-disc set, containing De-
bian in its entirety, is less than three dollars.
But (and this is an important distinction) not
a single penny of that three dollars is going to
any of the coders who created Linux, nor to
the Debian packagers. It goes to Linux Sys-
tems Labs and it pays, not for the software, or
the packages, but for the cost of stamping out
the CD-ROMs.

Every Linux distribution embodies some more
or less clever hack for circumventing the nor-
mal boot process and causing your computer,
when it is turned on, to organize itself, not as a
PC running Windows, but as a “host” running
Unix. This is slightly alarming the first time
you see it, but completely harmless. When a
PC boots up, it goes through a little self-test
routine, taking an inventory of available disks
and memory, and then begins looking around
for a disk to boot up from. In any normal Win-
dows computer that disk will be a hard drive.
But if you have your system configured right,
it will look first for a floppy or CD-ROM disk,
and boot from that if one is available.

Linux exploits this chink in the defenses. Your
computer notices a bootable disk in the floppy
or CD-ROM drive, loads in some object code
from that disk, and blindly begins to execute
it. But this is not Microsoft or Apple code, this
is Linux code, and so at this point your com-
puter begins to behave very differently from
what you are accustomed to. Cryptic mes-
sages began to scroll up the screen. If you had
booted a commercial OS, you would, at this
point, be seeing a “Welcome to MacOS” car-

39

toon, or a screen filled with clouds in a blue
sky, and a Windows logo. But under Linux
you get a long telegram printed in stark white
letters on a black screen. There is no “wel-
come!” message. Most of the telegram has the
semi-inscrutable menace of graffiti tags.

Dec 14 15:04:15 theRev syslogd

1.3-3#17: restart.

Dec 14 15:04:15 theRev kernel: klogd

1.3-3, log source = /proc/kmsg

started.

Dec 14 15:04:15 theRev kernel: Loaded

3535 symbols from /System.map.

Dec 14 15:04:15 theRev kernel:

Symbols match kernel version 2.0.30.

Dec 14 15:04:15 theRev kernel: No

module symbols loaded.

Dec 14 15:04:15 theRev kernel: Intel

MultiProcessor Specification v1.4

Dec 14 15:04:15 theRev kernel:

Virtual Wire compatibility mode.

Dec 14 15:04:15 theRev kernel: OEM

ID: INTEL Product ID: 440FX APIC at:

0xFEE00000

Dec 14 15:04:15 theRev kernel:

Processor #0 Pentium(tm) Pro APIC

version 17

Dec 14 15:04:15 theRev kernel:

Processor #1 Pentium(tm) Pro APIC

version 17

Dec 14 15:04:15 theRev kernel: I/O

APIC #2 Version 17 at 0xFEC00000.

Dec 14 15:04:15 theRev kernel:

Processors: 2

Dec 14 15:04:15 theRev kernel:

Console: 16 point font, 400 scans

Dec 14 15:04:15 theRev kernel:

Console: colour VGA+ 80x25, 1 virtual

console (max 63)

Dec 14 15:04:15 theRev kernel:

pcibios init : BIOS32 Service

Directory structure at 0x000fdb70

Dec 14 15:04:15 theRev kernel:

pcibios init : BIOS32 Service

Directory entry at 0xfdb80

Dec 14 15:04:15 theRev kernel:

pcibios init : PCI BIOS revision 2.10

entry at 0xfdba1

Dec 14 15:04:15 theRev kernel:

Probing PCI hardware.

Dec 14 15:04:15 theRev kernel:

Warning : Unknown PCI device

(10b7:9001). Please read

include/linux/pci.h

Dec 14 15:04:15 theRev kernel:

Calibrating delay loop.. ok - 179.40

BogoMIPS

Dec 14 15:04:15 theRev kernel:

Memory: 64268k/66556k available (700k

kernel code, 384k reserved, 1204k

data)

Dec 14 15:04:15 theRev kernel:

Swansea University Computer Society

NET3.035 for Linux 2.0

Dec 14 15:04:15 theRev kernel: NET3:

Unix domain sockets 0.13 for Linux

NET3.035.

Dec 14 15:04:15 theRev kernel:

Swansea University Computer Society

TCP/IP for NET3.034

Dec 14 15:04:15 theRev kernel: IP

Protocols: ICMP, UDP, TCP

Dec 14 15:04:15 theRev kernel:

Checking 386/387 coupling...Ok, fpu

using exception 16 error reporting.

Dec 14 15:04:15 theRev kernel:

Checking ’hlt’ instruction...Ok.

Dec 14 15:04:15 theRev kernel: Linux

version 2.0.30 (root@theRev) (gcc

version 2.7.2.1) #15 Fri Mar 27

16:37:24 PST 1998

Dec 14 15:04:15 theRev kernel:

Booting processor 1 stack 00002000:

Calibrating delay loop.. ok - 179.40

BogoMIPS

Dec 14 15:04:15 theRev kernel: Total

of 2 processors activated (358.81

BogoMIPS).

Dec 14 15:04:15 theRev kernel: Serial

40

driver version 4.13 with no serial

options enabled

Dec 14 15:04:15 theRev kernel: tty00

at 0x03f8 (irq = 4) is a 16550A

Dec 14 15:04:15 theRev kernel: tty01

at 0x02f8 (irq = 3) is a 16550A

Dec 14 15:04:15 theRev kernel: lp1 at

0x0378, (polling)

Dec 14 15:04:15 theRev kernel: PS/2

auxiliary pointing device detected ---

driver installed.

Dec 14 15:04:15 theRev kernel: Real

Time Clock Driver v1.07

Dec 14 15:04:15 theRev kernel: loop:

registered device at major 7

Dec 14 15:04:15 theRev kernel: ide:

i82371 PIIX (Triton) on PCI bus 0

function 57

Dec 14 15:04:15 theRev kernel: ide0:

BM-DMA at 0xffa0-0xffa7

Dec 14 15:04:15 theRev kernel: ide1:

BM-DMA at 0xffa8-0xffaf

Dec 14 15:04:15 theRev kernel: hda:

Conner Peripherals 1275MB - CFS1275A,

1219MB w/64kB Cache, LBA,

CHS=619/64/63

Dec 14 15:04:15 theRev kernel: hdb:

Maxtor 84320A5, 4119MB w/256kB Cache,

LBA, CHS=8928/15/63, DMA

Dec 14 15:04:15 theRev kernel: hdc:

, ATAPI CDROM drive

Dec 15 11:58:06 theRev kernel: ide0

at 0x1f0-0x1f7,0x3f6 on irq 14

Dec 15 11:58:06 theRev kernel: ide1

at 0x170-0x177,0x376 on irq 15

Dec 15 11:58:06 theRev kernel: Floppy

drive(s): fd0 is 1.44M

Dec 15 11:58:06 theRev kernel:

Started kswapd v 1.4.2.2

Dec 15 11:58:06 theRev kernel: FDC 0

is a National Semiconductor PC87306

Dec 15 11:58:06 theRev kernel: md

driver 0.35 MAX MD DEV=4, MAX REAL=8

Dec 15 11:58:06 theRev kernel: PPP:

version 2.2.0 (dynamic channel

allocation)

Dec 15 11:58:06 theRev kernel: TCP

compression code copyright 1989

Regents of the University of

California

Dec 15 11:58:06 theRev kernel: PPP

Dynamic channel allocation code

copyright 1995 Caldera, Inc.

Dec 15 11:58:06 theRev kernel: PPP

line discipline registered.

Dec 15 11:58:06 theRev kernel: SLIP:

version 0.8.4-NET3.019-NEWTTY (dynamic

channels, max=256).

Dec 15 11:58:06 theRev kernel: eth0:

3Com 3c900 Boomerang 10Mbps/Combo at

0xef00, 00:60:08:a4:3c:db, IRQ 10

Dec 15 11:58:06 theRev kernel: 8K

word-wide RAM 3:5 Rx:Tx split, 10base2

interface.

Dec 15 11:58:06 theRev kernel:

Enabling bus-master transmits and

whole-frame receives.

Dec 15 11:58:06 theRev kernel:

3c59x.c:v0.49 1/2/98 Donald Becker

http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.htm

Dec 15 11:58:06 theRev kernel:

Partition check:

Dec 15 11:58:06 theRev kernel: hda:

hda1 hda2 hda3

Dec 15 11:58:06 theRev kernel: hdb:

hdb1 hdb2

Dec 15 11:58:06 theRev kernel: VFS:

Mounted root (ext2 filesystem)

readonly.

Dec 15 11:58:06 theRev kernel: Adding

Swap: 16124k swap-space (priority -1)

Dec 15 11:58:06 theRev kernel:

EXT2-fs warning: maximal mount count

reached, running e2fsck is recommended

Dec 15 11:58:06 theRev kernel: hdc:

media changed

Dec 15 11:58:06 theRev kernel:

ISO9660 Extensions: RRIP 1991A

Dec 15 11:58:07 theRev syslogd

1.3-3#17: restart.

41

Dec 15 11:58:09 theRev diald[87]:

Unable to open options file

/etc/diald/diald.options: No such

file or directory

Dec 15 11:58:09 theRev diald[87]: No

device specified. You must have at

least one device!

Dec 15 11:58:09 theRev diald[87]: You

must define a connector script (option

’connect’).

Dec 15 11:58:09 theRev diald[87]: You

must define the remote ip address.

Dec 15 11:58:09 theRev diald[87]: You

must define the local ip address.

Dec 15 11:58:09 theRev diald[87]:

Terminating due to damaged

reconfigure.

The only parts of this that are readable, for
normal people, are the error messages and
warnings. And yet it’s noteworthy that Linux
doesn’t stop, or crash, when it encounters an
error; it spits out a pithy complaint, gives
up on whatever processes were damaged, and
keeps on rolling. This was decidedly not true
of the early versions of Apple and Microsoft
OSes, for the simple reason that an OS that is
not capable of walking and chewing gum at the
same time cannot possibly recover from errors.
Looking for, and dealing with, errors requires
a separate process running in parallel with the
one that has erred. A kind of superego, if you
will, that keeps an eye on all of the others, and
jumps in when one goes astray. Now that Ma-
cOS and Windows can do more than one thing
at a time they are much better at dealing with
errors than they used to be, but they are not
even close to Linux or other Unices in this re-
spect; and their greater complexity has made
them vulnerable to new types of errors.

FALLIBILITY, ATONEMENT,

REDEMPTION, TRUST, AND OTHER

ARCANE TECHNICAL CONCEPTS

Linux is not capable of having any centrally
organized policies dictating how to write er-
ror messages and documentation, and so each
programmer writes his own. Usually they are
in English even though tons of Linux pro-
grammers are Europeans. Frequently they are
funny. Always they are honest. If something
bad has happened because the software simply
isn’t finished yet, or because the user screwed
something up, this will be stated forthrightly.
The command line interface makes it easy for
programs to dribble out little comments, warn-
ings, and messages here and there. Even if
the application is imploding like a damaged
submarine, it can still usually eke out a lit-
tle S.O.S. message. Sometimes when you fin-
ish working with a program and shut it down,
you find that it has left behind a series of
mild warnings and low-grade error messages
in the command-line interface window from
which you launched it. As if the software were
chatting to you about how it was doing the
whole time you were working with it.

Documentation, under Linux, comes in the
form of man (short for manual) pages. You
can access these either through a GUI (xman)
or from the command line (man). Here is a
sample from the man page for a program called
rsh:

“Stop signals stop the local rsh process only;
this is arguably wrong, but currently hard
to fix for reasons too complicated to explain
here.”

The man pages contain a lot of such mate-
rial, which reads like the terse mutterings of
pilots wrestling with the controls of damaged
airplanes. The general feel is of a thousand
monumental but obscure struggles seen in the

42

stop-action light of a strobe. Each program-
mer is dealing with his own obstacles and bugs;
he is too busy fixing them, and improving the
software, to explain things at great length or
to maintain elaborate pretensions.

In practice you hardly ever encounter a seri-
ous bug while running Linux. When you do,
it is almost always with commercial software
(several vendors sell software that runs under
Linux). The operating system and its fun-
damental utility programs are too important
to contain serious bugs. I have been running
Linux every day since late 1995 and have seen
many application programs go down in flames,
but I have never seen the operating system
crash. Never. Not once. There are quite a few
Linux systems that have been running contin-
uously and working hard for months or years
without needing to be rebooted.

Commercial OSes have to adopt the same offi-
cial stance towards errors as Communist coun-
tries had towards poverty. For doctrinal rea-
sons it was not possible to admit that poverty
was a serious problem in Communist coun-
tries, because the whole point of Communism
was to eradicate poverty. Likewise, commer-
cial OS companies like Apple and Microsoft
can’t go around admitting that their software
has bugs and that it crashes all the time, any
more than Disney can issue press releases stat-
ing that Mickey Mouse is an actor in a suit.

This is a problem, because errors do exist and
bugs do happen. Every few months Bill Gates
tries to demo a new Microsoft product in front
of a large audience only to have it blow up
in his face. Commercial OS vendors, as a
direct consequence of being commercial, are
forced to adopt the grossly disingenuous po-
sition that bugs are rare aberrations, usually
someone else’s fault, and therefore not really
worth talking about in any detail. This pos-
ture, which everyone knows to be absurd, is
not limited to press releases and ad campaigns.

It informs the whole way these companies do
business and relate to their customers. If the
documentation were properly written, it would
mention bugs, errors, and crashes on every sin-
gle page. If the on-line help systems that come
with these OSes reflected the experiences and
concerns of their users, they would largely be
devoted to instructions on how to cope with
crashes and errors.

But this does not happen. Joint stock corpora-
tions are wonderful inventions that have given
us many excellent goods and services. They
are good at many things. Admitting failure is
not one of them. Hell, they can’t even admit
minor shortcomings.

Of course, this behavior is not as pathologi-
cal in a corporation as it would be in a hu-
man being. Most people, nowadays, under-
stand that corporate press releases are issued
for the benefit of the corporation’s sharehold-
ers and not for the enlightenment of the public.
Sometimes the results of this institutional dis-
honesty can be dreadful, as with tobacco and
asbestos. In the case of commercial OS ven-
dors it is nothing of the kind, of course; it is
merely annoying.

Some might argue that consumer annoyance,
over time, builds up into a kind of hardened
plaque that can conceal serious decay, and that
honesty might therefore be the best policy in
the long run; the jury is still out on this in
the operating system market. The business
is expanding fast enough that it’s still much
better to have billions of chronically annoyed
customers than millions of happy ones.

Most system administrators I know who work
with Windows NT all the time agree that when
it hits a snag, it has to be re-booted, and when
it gets seriously messed up, the only way to
fix it is to re-install the operating system from
scratch. Or at least this is the only way that
they know of to fix it, which amounts to the

43

same thing. It is quite possible that the en-
gineers at Microsoft have all sorts of insider
knowledge on how to fix the system when it
goes awry, but if they do, they do not seem to
be getting the message out to any of the actual
system administrators I know.

Because Linux is not commercial — because
it is, in fact, free, as well as rather difficult to
obtain, install, and operate — it does not have
to maintain any pretensions as to its reliability.
Consequently, it is much more reliable. When
something goes wrong with Linux, the error is
noticed and loudly discussed right away. Any-
one with the requisite technical knowledge can
go straight to the source code and point out
the source of the error, which is then rapidly
fixed by whichever hacker has carved out re-
sponsibility for that particular program.

As far as I know, Debian is the only Linux dis-
tribution that has its own constitution
(http://www.debian.org/devel/constitution),
but what really sold me on it was its phenom-
enal bug database
(http://www.debian.org/Bugs), which is a sort
of interactive Doomsday Book of error, falli-
bility, and redemption. It is simplicity itself.
When had a problem with Debian in early Jan-
uary of 1997, I sent in a message describing
the problem to submit@bugs.debian.org. My
problem was promptly assigned a bug report
number (#6518) and a severity level (the avail-
able choices being critical, grave, important,
normal, fixed, and wishlist) and forwarded to
mailing lists where Debian people hang out.
Within twenty-four hours I had received five
e-mails telling me how to fix the problem: two
from North America, two from Europe, and
one from Australia. All of these e-mails gave
me the same suggestion, which worked, and
made my problem go away. But at the same
time, a transcript of this exchange was posted
to Debian’s bug database, so that if other users
had the same problem later, they would be

able to search through and find the solution
without having to enter a new, redundant bug
report.

Contrast this with the experience that I had
when I tried to install Windows NT 4.0 on
the very same machine about ten months later,
in late 1997. The installation program simply
stopped in the middle with no error messages.
I went to the Microsoft Support website and
tried to perform a search for existing help doc-
uments that would address my problem. The
search engine was completely nonfunctional; it
did nothing at all. It did not even give me a
message telling me that it was not working.

Eventually I decided that my motherboard
must be at fault; it was of a slightly unusual
make and model, and NT did not support
as many different motherboards as Linux. I
am always looking for excuses, no matter how
feeble, to buy new hardware, so I bought a
new motherboard that was Windows NT logo-
compatible, meaning that the Windows NT
logo was printed right on the box. I installed
this into my computer and got Linux running
right away, then attempted to install Windows
NT again. Again, the installation died with-
out any error message or explanation. By this
time a couple of weeks had gone by and I
thought that perhaps the search engine on the
Microsoft Support website might be up and
running. I gave that a try but it still didn’t
work.

So I created a new Microsoft support account,
then logged on to submit the incident. I sup-
plied my product ID number when asked, and
then began to follow the instructions on a se-
ries of help screens. In other words, I was
submitting a bug report just as with the De-
bian bug tracking system. It’s just that the
interface was slicker — I was typing my com-
plaint into little text-editing boxes on Web
forms, doing it all through the GUI, whereas
with Debian you send in an e-mail telegram. I

44

knew that when I was finished submitting the
bug report, it would become proprietary Mi-
crosoft information, and other users wouldn’t
be able to see it. Many Linux users would
refuse to participate in such a scheme on ethi-
cal grounds, but I was willing to give it a shot
as an experiment. In the end, though I was
never able to submit my bug report, because
the series of linked web pages that I was filling
out eventually led me to a completely blank
page: a dead end.

So I went back and clicked on the buttons for
“phone support” and eventually was given a
Microsoft telephone number. When I dialed
this number I got a series of piercing beeps
and a recorded message from the phone com-
pany saying “We’re sorry, your call cannot be
completed as dialed.”

I tried the search page again — it was still
completely nonfunctional. Then I tried PPI
(Pay Per Incident) again. This led me through
another series of Web pages until I dead-ended
at one reading: “Notice-there is no Web page
matching your request.”

I tried it again, and eventually got to a Pay
Per Incident screen reading: “OUT OF INCI-
DENTS. There are no unused incidents left in
your account. If you would like to purchase
a support incident, click OK-you will then be
able to prepay for an incident. . . .” The cost
per incident was $95.

The experiment was beginning to seem rather
expensive, so I gave up on the PPI approach
and decided to have a go at the FAQs posted
on Microsoft’s website. None of the available
FAQs had anything to do with my problem ex-
cept for one entitled “I am having some prob-
lems installing NT” which appeared to have
been written by flacks, not engineers.

So I gave up and still, to this day, have never
gotten Windows NT installed on that partic-

ular machine. For me, the path of least resis-
tance was simply to use Debian Linux.

In the world of open source software, bug re-
ports are useful information. Making them
public is a service to other users, and improves
the OS. Making them public systematically is
so important that highly intelligent people vol-
untarily put time and money into running bug
databases. In the commercial OS world, how-
ever, reporting a bug is a privilege that you
have to pay lots of money for. But if you
pay for it, it follows that the bug report must
be kept confidential — otherwise anyone could
get the benefit of your ninety-five bucks! And
yet nothing prevents NT users from setting up
their own public bug database.

This is, in other words, another feature of the
OS market that simply makes no sense unless
you view it in the context of culture. What Mi-
crosoft is selling through Pay Per Incident isn’t
technical support so much as the continued il-
lusion that its customers are engaging in some
kind of rational business transaction. It is a
sort of routine maintenance fee for the upkeep
of the fantasy. If people really wanted a solid
OS they would use Linux, and if they really
wanted tech support they would find a way to
get it; Microsoft’s customers want something
else.

As of this writing (Jan. 1999), something like
32,000 bugs have been reported to the Debian
Linux bug database. Almost all of them have
been fixed a long time ago. There are twelve
“critical” bugs still outstanding, of which the
oldest was posted 79 days ago. There are 20
outstanding “grave” bugs of which the oldest is
1166 days old. There are 48 “important” bugs
and hundreds of “normal” and less important
ones.

Likewise, BeOS (which I’ll get to in a minute)
has its own bug database
(http://www.be.com/developers/bugs/index.html)

45

with its own classification system, including
such categories as “Not a Bug,” “Acknowl-
edged Feature,” and “Will Not Fix.” Some
of the “bugs” here are nothing more than Be
hackers blowing off steam, and are classified as
“Input Acknowledged.” For example, I found
one that was posted on December 30th, 1998.
It’s in the middle of a long list of bugs, wedged
between one entitled “Mouse working in very
strange fashion” and another called “Change
of BView frame does not affect, if BView not
attached to a BWindow.”

This one is entitled

R4: BeOS missing megalomaniacal figurehead
to harness and focus developer rage

and it goes like this:

— — — — — — — — — — — — — —

Be Status: Input Acknowledged BeOS Ver-
sion: R3.2 Component: unknown

Full Description:

The BeOS needs a megalomaniacal egomaniac
sitting on its throne to give it a human char-
acter which everyone loves to hate. Without
this, the BeOS will languish in the impersonifi-
able realm of OSs that people can never quite
get a handle on. You can judge the success of
an OS not by the quality of its features, but by
how infamous and disliked the leaders behind
them are.

I believe this is a side-effect of developer com-
raderie under miserable conditions. After all,
misery loves company. I believe that making
the BeOS less conceptually accessible and far
less reliable will require developers to band to-
gether, thus developing the kind of commu-
nity where strangers talk to one- another, kind
of like at a grocery store before a huge snow-
storm.

Following this same program, it will likely be

necessary to move the BeOS headquarters to
a far-less-comfortable climate. General envi-
ronmental discomfort will breed this attitude
within and there truly is no greater recipe for
success. I would suggest Seattle, but I think
it’s already taken. You might try Washing-
ton, DC, but definitely not somewhere like San
Diego or Tucson.

— — — — — — — — — — — — — —

Unfortunately, the Be bug reporting system
strips off the names of the people who report
the bugs (to protect them from retribution!?)
and so I don’t know who wrote this.

So it would appear that I’m in the middle of
crowing about the technical and moral superi-
ority of Debian Linux. But as almost always
happens in the OS world, it’s more compli-
cated than that. I have Windows NT running
on another machine, and the other day (Jan.
1999), when I had a problem with it, I de-
cided to have another go at Microsoft Support.
This time the search engine actually worked
(though in order to reach it I had to identify
myself as “advanced”). And instead of cough-
ing up some useless FAQ, it located about two
hundred documents (I was using very vague
search criteria) that were obviously bug re-
ports — though they were called something
else. Microsoft, in other words, has got a sys-
tem up and running that is functionally equiv-
alent to Debian’s bug database. It looks and
feels different, of course, but it contains tech-
nical nitty-gritty and makes no bones about
the existence of errors.

As I’ve explained, selling OSes for money is
a basically untenable position, and the only
way Apple and Microsoft can get away with it
is by pursuing technological advancements as
aggressively as they can, and by getting people
to believe in, and to pay for, a particular im-
age: in the case of Apple, that of the creative
free thinker, and in the case of Microsoft, that

46

of the respectable techno-bourgeois. Just like
Disney, they’re making money from selling an
interface, a magic mirror. It has to be pol-
ished and seamless or else the whole illusion
is ruined and the business plan vanishes like a
mirage.

Accordingly, it was the case until recently
that the people who wrote manuals and cre-
ated customer support websites for commer-
cial OSes seemed to have been barred, by their
employers’ legal or PR departments, from
admitting, even obliquely, that the software
might contain bugs or that the interface might
be suffering from the blinking twelve problem.
They couldn’t address users’ actual difficulties.
The manuals and websites were therefore use-
less, and caused even technically self-assured
users to wonder whether they were going sub-
tly insane.

When Apple engages in this sort of corporate
behavior, one wants to believe that they are
really trying their best. We all want to give
Apple the benefit of the doubt, because mean
old Bill Gates kicked the crap out of them,
and because they have good PR. But when Mi-
crosoft does it, one almost cannot help becom-
ing a paranoid conspiracist. Obviously they
are hiding something from us! And yet they
are so powerful! They are trying to drive us
crazy!

This approach to dealing with one’s customers
was straight out of the Central European to-
talitarianism of the mid-Twentieth Century.
The adjectives “Kafkaesque” and “Orwellian”
come to mind. It couldn’t last, any more than
the Berlin Wall could, and so now Microsoft
has a publicly available bug database. It’s
called something else, and it takes a while to
find it, but it’s there.

They have, in other words, adapted to the two-
tiered Eloi/Morlock structure of technological
society. If you’re an Eloi you install Windows,

follow the instructions, hope for the best, and
dumbly suffer when it breaks. If you’re a Mor-
lock you go to the website, tell it that you are
“advanced,” find the bug database, and get the
truth straight from some anonymous Microsoft
engineer.

But once Microsoft has taken this step, it
raises the question, once again, of whether
there is any point to being in the OS busi-
ness at all. Customers might be willing to pay
$95 to report a problem to Microsoft if, in re-
turn, they get some advice that no other user
is getting. This has the useful side effect of
keeping the users alienated from one another,
which helps maintain the illusion that bugs are
rare aberrations. But once the results of those
bug reports become openly available on the
Microsoft website, everything changes. No one
is going to cough up $95 to report a problem
when chances are good that some other sucker
will do it first, and that instructions on how
to fix the bug will then show up, for free, on
a public website. And as the size of the bug
database grows, it eventually becomes an open
admission, on Microsoft’s part, that their OSes
have just as many bugs as their competitors’.
There is no shame in that; as I mentioned, De-
bian’s bug database has logged 32,000 reports
so far. But it puts Microsoft on an equal foot-
ing with the others and makes it a lot harder
for their customers — who want to believe —
to believe.

MEMENTO MORI

Once the Linux machine has finished spitting
out its jargonic opening telegram, it prompts
me to log in with a user name and a password.
At this point the machine is still running the
command line interface, with white letters on
a black screen. There are no windows, menus,
or buttons. It does not respond to the mouse;

47

it doesn’t even know that the mouse is there.
It is still possible to run a lot of software at
this point. Emacs, for example, exists in both
a CLI and a GUI version (actually there are
two GUI versions, reflecting some sort of doc-
trinal schism between Richard Stallman and
some hackers who got fed up with him). The
same is true of many other Unix programs.
Many don’t have a GUI at all, and many that
do are capable of running from the command
line.

Of course, since my computer only has one
monitor screen, I can only see one command
line, and so you might think that I could only
interact with one program at a time. But if
I hold down the Alt key and then hit the F2
function button at the top of my keyboard, I
am presented with a fresh, blank, black screen
with a login prompt at the top of it. I can log
in here and start some other program, then hit
Alt-F1 and go back to the first screen, which
is still doing whatever it was when I left it. Or
I can do Alt-F3 and log in to a third screen, or
a fourth, or a fifth. On one of these screens I
might be logged in as myself, on another as
root (the system administrator), on yet an-
other I might be logged on to some other com-
puter over the Internet.

Each of these screens is called, in Unix-speak,
a tty, which is an abbreviation for teletype. So
when I use my Linux system in this way I am
going right back to that small room at Ames
High School where I first wrote code twenty-
five years ago, except that a tty is quieter and
faster than a teletype, and capable of running
vastly superior software, such as emacs or the
GNU development tools.

It is easy (easy by Unix, not Apple/Microsoft
standards) to configure a Linux machine so
that it will go directly into a GUI when you
boot it up. This way, you never see a tty screen
at all. I still have mine boot into the white-
on-black teletype screen however, as a compu-

tational memento mori. It used to be fashion-
able for a writer to keep a human skull on his
desk as a reminder that he was mortal, that
all about him was vanity. The tty screen re-
minds me that the same thing is true of slick
user interfaces.

The X Windows System, which is the GUI of
Unix, has to be capable of running on hun-
dreds of different video cards with different
chipsets, amounts of onboard memory, and
motherboard buses. Likewise, there are hun-
dreds of different types of monitors on the new
and used market, each with different specifica-
tions, and so there are probably upwards of a
million different possible combinations of card
and monitor. The only thing they all have in
common is that they all work in VGA mode,
which is the old command-line screen that you
see for a few seconds when you launch Win-
dows. So Linux always starts in VGA, with
a teletype interface, because at first it has
no idea what sort of hardware is attached to
your computer. In order to get beyond the
glass teletype and into the GUI, you have to
tell Linux exactly what kinds of hardware you
have. If you get it wrong, you’ll get a blank
screen at best, and at worst you might actu-
ally destroy your monitor by feeding it signals
it can’t handle.

When I started using Linux this had to be
done by hand. I once spent the better part
of a month trying to get an oddball monitor
to work for me, and filled the better part of a
composition book with increasingly desperate
scrawled notes. Nowadays, most Linux distri-
butions ship with a program that automati-
cally scans the video card and self-configures
the system, so getting X Windows up and run-
ning is nearly as easy as installing an Ap-
ple/Microsoft GUI. The crucial information
goes into a file (an ASCII text file, natu-
rally) called XF86Config, which is worth look-
ing at even if your distribution creates it for

48

you automatically. For most people it looks
like meaningless cryptic incantations, which
is the whole point of looking at it. An Ap-
ple/Microsoft system needs to have the same
information in order to launch its GUI, but it’s
apt to be deeply hidden somewhere, and it’s
probably in a file that can’t even be opened
and read by a text editor. All of the impor-
tant files that make Linux systems work are
right out in the open. They are always ASCII
text files, so you don’t need special tools to
read them. You can look at them any time
you want, which is good, and you can mess
them up and render your system totally dys-
functional, which is not so good.

At any rate, assuming that my XF86Config
file is just so, I enter the command “startx”
to launch the X Windows System. The screen
blanks out for a minute, the monitor makes
strange twitching noises, then reconstitutes it-
self as a blank gray desktop with a mouse
cursor in the middle. At the same time it
is launching a window manager. X Windows
is pretty low-level software; it provides the
infrastructure for a GUI, and it’s a heavy
industrial infrastructure. But it doesn’t do
windows. That’s handled by another cate-
gory of application that sits atop X Windows,
called a window manager. Several of these
are available, all free of course. The classic
is twm (Tom’s Window Manager) but there is
a smaller and supposedly more efficient vari-
ant of it called fvwm, which is what I use. I
have my eye on a completely different window
manager called Enlightenment, which may be
the hippest single technology product I have
ever seen, in that (a) it is for Linux, (b) it is
freeware, (c) it is being developed by a very
small number of obsessed hackers, and (d) it
looks amazingly cool; it is the sort of window
manager that might show up in the backdrop
of an Aliens movie.

Anyway, the window manager acts as an in-

termediary between X Windows and whatever
software you want to use. It draws the win-
dow frames, menus, and so on, while the ap-
plications themselves draw the actual content
in the windows. The applications might be of
any sort: text editors, Web browsers, graphics
packages, or utility programs, such as a clock
or calculator. In other words, from this point
on, you feel as if you have been shunted into
a parallel universe that is quite similar to the
familiar Apple or Microsoft one, but slightly
and pervasively different. The premier graph-
ics program under Apple/Microsoft is Adobe
Photoshop, but under Linux it’s something
called The GIMP. Instead of the Microsoft Of-
fice Suite, you can buy something called Ap-
plixWare. Many commercial software pack-
ages, such as Mathematica, Netscape Commu-
nicator, and Adobe Acrobat, are available in
Linux versions, and depending on how you set
up your window manager you can make them
look and behave just as they would under Ma-
cOS or Windows.

But there is one type of window you’ll see
on Linux GUI that is rare or nonexistent un-
der other OSes. These windows are called
“xterm” and contain nothing but lines of text
— this time, black text on a white background,
though you can make them be different col-
ors if you choose. Each xterm window is a
separate command line interface — a tty in
a window. So even when you are in full GUI
mode, you can still talk to your Linux machine
through a command-line interface.

There are many good pieces of Unix software
that do not have GUIs at all. This might be
because they were developed before X Win-
dows was available, or because the people who
wrote them did not want to suffer through
all the hassle of creating a GUI, or because
they simply do not need one. In any event,
those programs can be invoked by typing their
names into the command line of an xterm win-

49

dow. The whoami command, mentioned ear-
lier, is a good example. There is another called
wc (“word count”) which simply returns the
number of lines, words, and characters in a
text file.

The ability to run these little utility programs
on the command line is a great virtue of Unix,
and one that is unlikely to be duplicated by
pure GUI operating systems. The wc com-
mand, for example, is the sort of thing that is
easy to write with a command line interface.
It probably does not consist of more than a few
lines of code, and a clever programmer could
probably write it in a single line. In compiled
form it takes up just a few bytes of disk space.
But the code required to give the same pro-
gram a graphical user interface would prob-
ably run into hundreds or even thousands of
lines, depending on how fancy the programmer
wanted to make it. Compiled into a runnable
piece of software, it would have a large over-
head of GUI code. It would be slow to launch
and it would use up a lot of memory. This
would simply not be worth the effort, and so
“wc” would never be written as an indepen-
dent program at all. Instead users would have
to wait for a word count feature to appear in
a commercial software package.

GUIs tend to impose a large overhead on ev-
ery single piece of software, even the small-
est, and this overhead completely changes the
programming environment. Small utility pro-
grams are no longer worth writing. Their func-
tions, instead, tend to get swallowed up into
omnibus software packages. As GUIs get more
complex, and impose more and more overhead,
this tendency becomes more pervasive, and
the software packages grow ever more colossal;
after a point they begin to merge with each
other, as Microsoft Word and Excel and Pow-
erPoint have merged into Microsoft Office: a
stupendous software Wal-Mart sitting on the
edge of a town filled with tiny shops that are

all boarded up.

It is an unfair analogy, because when a tiny
shop gets boarded up it means that some small
shopkeeper has lost his business. Of course
nothing of the kind happens when “wc” be-
comes subsumed into one of Microsoft Word’s
countless menu items. The only real drawback
is a loss of flexibility for the user, but it is a
loss that most customers obviously do not no-
tice or care about. The most serious draw-
back to the Wal-Mart approach is that most
users only want or need a tiny fraction of what
is contained in these giant software packages.
The remainder is clutter, dead weight. And
yet the user in the next cubicle over will have
completely different opinions as to what is use-
ful and what isn’t.

The other important thing to mention, here, is
that Microsoft has included a genuinely cool
feature in the Office package: a Basic pro-
gramming package. Basic is the first computer
language that I learned, back when I was us-
ing the paper tape and the teletype. By us-
ing the version of Basic that comes with Office
you can write your own little utility programs
that know how to interact with all of the little
doohickeys, gewgaws, bells, and whistles in Of-
fice. Basic is easier to use than the languages
typically employed in Unix command-line pro-
gramming, and Office has reached many, many
more people than the GNU tools. And so it is
quite possible that this feature of Office will,
in the end, spawn more hacking than GNU.

But now I’m talking about application soft-
ware, not operating systems. And as I’ve said,
Microsoft’s application software tends to be
very good stuff. I don’t use it very much,
because I am nowhere near their target mar-
ket. If Microsoft ever makes a software pack-
age that I use and like, then it really will be
time to dump their stock, because I am a mar-
ket segment of one.

50

GEEK FATIGUE

Over the years that I’ve been working with
Linux I have filled three and a half notebooks
logging my experiences. I only begin writing
things down when I’m doing something com-
plicated, like setting up X Windows or fool-
ing around with my Internet connection, and
so these notebooks contain only the record of
my struggles and frustrations. When things
are going well for me, I’ll work along hap-
pily for many months without jotting down
a single note. So these notebooks make for
pretty bleak reading. Changing anything un-
der Linux is a matter of opening up various
of those little ASCII text files and changing a
word here and a character there, in ways that
are extremely significant to how the system
operates.

Many of the files that control how Linux op-
erates are nothing more than command lines
that became so long and complicated that not
even Linux hackers could type them correctly.
When working with something as powerful as
Linux, you can easily devote a full half-hour
to engineering a single command line. For ex-
ample, the “find” command, which searches
your file system for files that match certain
criteria, is fantastically powerful and general.
Its “man” is eleven pages long, and these are
pithy pages; you could easily expand them into
a whole book. And if that is not complicated
enough in and of itself, you can always pipe
the output of one Unix command to the in-
put of another, equally complicated one. The
“pon” command, which is used to fire up a
PPP connection to the Internet, requires so
much detailed information that it is basically
impossible to launch it entirely from the com-
mand line. Instead you abstract big chunks of
its input into three or four different files. You
need a dialing script, which is effectively a lit-
tle program telling it how to dial the phone

and respond to various events; an options file,
which lists up to about sixty different options
on how the PPP connection is to be set up; and
a secrets file, giving information about your
password.

Presumably there are godlike Unix hackers
somewhere in the world who don’t need to use
these little scripts and options files as crutches,
and who can simply pound out fantastically
complex command lines without making typo-
graphical errors and without having to spend
hours flipping through documentation. But
I’m not one of them. Like almost all Linux
users, I depend on having all of those details
hidden away in thousands of little ASCII text
files, which are in turn wedged into the recesses
of the Unix filesystem. When I want to change
something about the way my system works, I
edit those files. I know that if I don’t keep
track of every little change I’ve made, I won’t
be able to get your system back in working or-
der after I’ve gotten it all messed up. Keeping
hand-written logs is tedious, not to mention
kind of anachronistic. But it’s necessary.

I probably could have saved myself a lot of
headaches by doing business with a company
called Cygnus Support, which exists to pro-
vide assistance to users of free software. But I
didn’t, because I wanted to see if I could do it
myself. The answer turned out to be yes, but
just barely. And there are many tweaks and
optimizations that I could probably make in
my system that I have never gotten around to
attempting, partly because I get tired of be-
ing a Morlock some days, and partly because I
am afraid of fouling up a system that generally
works well.

Though Linux works for me and many other
users, its sheer power and generality is its
Achilles’ heel. If you know what you are do-
ing, you can buy a cheap PC from any com-
puter store, throw away the Windows discs
that come with it, turn it into a Linux system

51

of mind-boggling complexity and power. You
can hook it up to twelve other Linux boxes
and make it into part of a parallel computer.
You can configure it so that a hundred dif-
ferent people can be logged onto it at once
over the Internet, via as many modem lines,
Ethernet cards, TCP/IP sockets, and packet
radio links. You can hang half a dozen dif-
ferent monitors off of it and play DOOM with
someone in Australia while tracking communi-
cations satellites in orbit and controlling your
house’s lights and thermostats and streaming
live video from your web-cam and surfing the
Net and designing circuit boards on the other
screens. But the sheer power and complex-
ity of the system — the qualities that make
it so vastly technically superior to other OSes
— sometimes make it seem too formidable for
routine day-to-day use.

Sometimes, in other words, I just want to go
to Disneyland.

The ideal OS for me would be one that had a
well-designed GUI that was easy to set up and
use, but that included terminal windows where
I could revert to the command line interface,
and run GNU software, when it made sense.
A few years ago, Be Inc. invented exactly that
OS. It is called the BeOS.

ETRE

Many people in the computer business have
had a difficult time grappling with Be, In-
corporated, for the simple reason that noth-
ing about it seems to make any sense what-
soever. It was launched in late 1990, which
makes it roughly contemporary with Linux.
From the beginning it has been devoted to cre-
ating a new operating system that is, by de-
sign, incompatible with all the others (though,
as we shall see, it is compatible with Unix in
some very important ways). If a definition of

“celebrity” is someone who is famous for be-
ing famous, then Be is an anti-celebrity. It is
famous for not being famous; it is famous for
being doomed. But it has been doomed for an
awfully long time.

Be’s mission might make more sense to hackers
than to other people. In order to explain why I
need to explain the concept of cruft, which, to
people who write code, is nearly as abhorrent
as unnecessary repetition.

If you’ve been to San Francisco you may have
seen older buildings that have undergone “seis-
mic upgrades,” which frequently means that
grotesque superstructures of modern steelwork
are erected around buildings made in, say, a
Classical style. When new threats arrive —
if we have an Ice Age, for example — addi-
tional layers of even more high-tech stuff may
be constructed, in turn, around these, until the
original building is like a holy relic in a cathe-
dral — a shard of yellowed bone enshrined in
half a ton of fancy protective junk.

Analogous measures can be taken to keep
creaky old operating systems working. It hap-
pens all the time. Ditching an worn-out old
OS ought to be simplified by the fact that, un-
like old buildings, OSes have no aesthetic or
cultural merit that makes them intrinsically
worth saving. But it doesn’t work that way
in practice. If you work with a computer, you
have probably customized your “desktop,” the
environment in which you sit down to work ev-
ery day, and spent a lot of money on software
that works in that environment, and devoted
much time to familiarizing yourself with how
it all works. This takes a lot of time, and time
is money. As already mentioned, the desire
to have one’s interactions with complex tech-
nologies simplified through the interface, and
to surround yourself with virtual tchotchkes
and lawn ornaments, is natural and perva-
sive — presumably a reaction against the com-
plexity and formidable abstraction of the com-

52

puter world. Computers give us more choices
than we really want. We prefer to make those
choices once, or accept the defaults handed
to us by software companies, and let sleeping
dogs lie. But when an OS gets changed, all
the dogs jump up and start barking.

The average computer user is a technological
antiquarian who doesn’t really like things to
change. He or she is like an urban professional
who has just bought a charming fixer-upper
and is now moving the furniture and knick-
nacks around, and reorganizing the kitchen
cupboards, so that everything’s just right. If it
is necessary for a bunch of engineers to scurry
around in the basement shoring up the foun-
dation so that it can support the new cast-iron
claw-foot bathtub, and snaking new wires and
pipes through the walls to supply modern ap-
pliances, why, so be it — engineers are cheap,
at least when millions of OS users split the cost
of their services.

Likewise, computer users want to have the lat-
est Pentium in their machines, and to be able
to surf the web, without messing up all the
stuff that makes them feel as if they know what
the hell is going on. Sometimes this is actually
possible. Adding more RAM to your system
is a good example of an upgrade that is not
likely to screw anything up.

Alas, very few upgrades are this clean and sim-
ple. Lawrence Lessig, the whilom Special Mas-
ter in the Justice Department’s antitrust suit
against Microsoft, complained that he had in-
stalled Internet Explorer on his computer, and
in so doing, lost all of his bookmarks — his
personal list of signposts that he used to nav-
igate through the maze of the Internet. It
was as if he’d bought a new set of tires for
his car, and then, when pulling away from
the garage, discovered that, owing to some in-
scrutable side-effect, every signpost and road
map in the world had been destroyed. If he’s
like most of us, he had put a lot of work into

compiling that list of bookmarks. This is only
a small taste of the sort of trouble that up-
grades can cause. Crappy old OSes have value
in the basically negative sense that changing
to new ones makes us wish we’d never been
born.

All of the fixing and patching that engineers
must do in order to give us the benefits of new
technology without forcing us to think about
it, or to change our ways, produces a lot of
code that, over time, turns into a giant clot
of bubble gum, spackle, baling wire and duct
tape surrounding every operating system. In
the jargon of hackers, it is called “cruft.” An
operating system that has many, many layers
of it is described as “crufty.” Hackers hate to
do things twice, but when they see something
crufty, their first impulse is to rip it out, throw
it away, and start anew.

If Mark Twain were brought back to San Fran-
cisco today and dropped into one of these
old seismically upgraded buildings, it would
look just the same to him, with all the doors
and windows in the same places — but if he
stepped outside, he wouldn’t recognize it. And
— if he’d been brought back with his wits in-
tact — he might question whether the build-
ing had been worth going to so much trou-
ble to save. At some point, one must ask the
question: is this really worth it, or should we
maybe just tear it down and put up a good
one? Should we throw another human wave of
structural engineers at stabilizing the Leaning
Tower of Pisa, or should we just let the damn
thing fall over and build a tower that doesn’t
suck?

Like an upgrade to an old building, cruft al-
ways seems like a good idea when the first lay-
ers of it go on — just routine maintenance,
sound prudent management. This is especially
true if (as it were) you never look into the cel-
lar, or behind the drywall. But if you are a
hacker who spends all his time looking at it

53

from that point of view, cruft is fundamentally
disgusting, and you can’t avoid wanting to go
after it with a crowbar. Or, better yet, sim-
ply walk out of the building — let the Leaning
Tower of Pisa fall over — and go make a new
one THAT DOESN’T LEAN.

For a long time it was obvious to Apple, Mi-
crosoft, and their customers that the first gen-
eration of GUI operating systems was doomed,
and that they would eventually need to be
ditched and replaced with completely fresh
ones. During the late Eighties and early
Nineties, Apple launched a few abortive efforts
to make fundamentally new post-Mac OSes
such as Pink and Taligent. When those ef-
forts failed they launched a new project called
Copland which also failed. In 1997 they flirted
with the idea of acquiring Be, but instead
they acquired Next, which has an OS called
NextStep that is, in effect, a variant of Unix.
As these efforts went on, and on, and on, and
failed and failed and failed, Apple’s engineers,
who were among the best in the business, kept
layering on the cruft. They were gamely trying
to turn the little toaster into a multi-tasking,
Internet-savvy machine, and did an amazingly
good job of it for a while — sort of like a movie
hero running across a jungle river by hopping
across crocodiles’ backs. But in the real world
you eventually run out of crocodiles, or step
on a really smart one.

Speaking of which, Microsoft tackled the same
problem in a considerably more orderly way by
creating a new OS called Windows NT, which
is explicitly intended to be a direct competi-
tor of Unix. NT stands for “New Technology”
which might be read as an explicit rejection
of cruft. And indeed, NT is reputed to be a
lot less crufty than what MacOS eventually
turned into; at one point the documentation
needed to write code on the Mac filled some-
thing like 24 binders. Windows 95 was, and
Windows 98 is, crufty because they have to

be backward-compatible with older Microsoft
OSes. Linux deals with the cruft problem in
the same way that Eskimos supposedly dealt
with senior citizens: if you insist on using old
versions of Linux software, you will sooner or
later find yourself drifting through the Bering
Straits on a dwindling ice floe. They can get
away with this because most of the software
is free, so it costs nothing to download up-to-
date versions, and because most Linux users
are Morlocks.

The great idea behind BeOS was to start from
a clean sheet of paper and design an OS the
right way. And that is exactly what they did.
This was obviously a good idea from an aes-
thetic standpoint, but does not a sound busi-
ness plan make. Some people I know in the
GNU/Linux world are annoyed with Be for go-
ing off on this quixotic adventure when their
formidable skills could have been put to work
helping to promulgate Linux.

Indeed, none of it makes sense until you re-
member that the founder of the company,
Jean-Louis Gassee, is from France — a country
that for many years maintained its own sepa-
rate and independent version of the English
monarchy at a court in St. Germaines, com-
plete with courtiers, coronation ceremonies, a
state religion and a foreign policy. Now, the
same annoying yet admirable stiff-neckedness
that gave us the Jacobites, the force de frappe,
Airbus, and ARRET signs in Quebec, has
brought us a really cool operating system. I
fart in your general direction, Anglo-Saxon
pig-dogs!

To create an entirely new OS from scratch,
just because none of the existing ones was ex-
actly right, struck me as an act of such colos-
sal nerve that I felt compelled to support it. I
bought a BeBox as soon as I could. The Be-
Box was a dual-processor machine, powered by
Motorola chips, made specifically to run the
BeOS; it could not run any other operating

54

system. That’s why I bought it. I felt it was a
way to burn my bridges. Its most distinctive
feature is two columns of LEDs on the front
panel that zip up and down like tachometers
to convey a sense of how hard each processor is
working. I thought it looked cool, and besides,
I reckoned that when the company went out of
business in a few months, my BeBox would be
a valuable collector’s item.

Now it is about two years later and I am typing
this on my BeBox. The LEDs (Das Blinken-
lights, as they are called in the Be commu-
nity) flash merrily next to my right elbow as
I hit the keys. Be, Inc. is still in business,
though they stopped making BeBoxes almost
immediately after I bought mine. They made
the sad, but probably quite wise decision that
hardware was a sucker’s game, and ported the
BeOS to Macintoshes and Mac clones. Since
these used the same sort of Motorola chips
that powered the BeBox, this wasn’t especially
hard.

Very soon afterwards, Apple strangled the
Mac-clone makers and restored its hardware
monopoly. So, for a while, the only new ma-
chines that could run BeOS were made by Ap-
ple.

By this point Be, like Spiderman with his
Spider-sense, had developed a keen sense of
when they were about to get crushed like a
bug. Even if they hadn’t, the notion of being
dependent on Apple — so frail and yet so vi-
cious — for their continued existence should
have put a fright into anyone. Now engaged in
their own crocodile-hopping adventure, they
ported the BeOS to Intel chips — the same
chips used in Windows machines. And not a
moment too soon, for when Apple came out
with its new top-of-the-line hardware, based
on the Motorola G3 chip, they withheld the
technical data that Be’s engineers would need
to make the BeOS run on those machines.
This would have killed Be, just like a slug be-

tween the eyes, if they hadn’t made the jump
to Intel.

So now BeOS runs on an assortment of hard-
ware that is almost incredibly motley: Be-
Boxes, aging Macs and Mac orphan-clones,
and Intel machines that are intended to be
used for Windows. Of course the latter type
are ubiquitous and shockingly cheap nowa-
days, so it would appear that Be’s hardware
troubles are finally over. Some German hack-
ers have even come up with a Das Blinken-
lights replacement: it’s a circuit board kit that
you can plug into PC-compatible machines
running BeOS. It gives you the zooming LED
tachometers that were such a popular feature
of the BeBox.

My BeBox is already showing its age, as all
computers do after a couple of years, and
sooner or later I’ll probably have to replace
it with an Intel machine. Even after that,
though, I will still be able to use it. Because,
inevitably, someone has now ported Linux to
the BeBox.

At any rate, BeOS has an extremely well-
thought-out GUI built on a technological
framework that is solid. It is based from the
ground up on modern object-oriented software
principles. BeOS software consists of quasi-
independent software entities called objects,
which communicate by sending messages to
each other. The OS itself is made up of such
objects, and serves as a kind of post office or
Internet that routes messages to and fro, from
object to object. The OS is multi-threaded,
which means that like all other modern OSes
it can walk and chew gum at the same time;
but it gives programmers a lot of power over
spawning and terminating threads, or inde-
pendent sub-processes. It is also a multi-
processing OS, which means that it is inher-
ently good at running on computers that have
more than one CPU (Linux and Windows NT
can also do this proficiently).

55

For this user, a big selling point of BeOS is
the built-in Terminal application, which en-
ables you to open up windows that are equiv-
alent to the xterm windows in Linux. In other
words, the command line interface is available
if you want it. And because BeOS hews to a
certain standard called POSIX, it is capable of
running most of the GNU software. That is to
say that the vast array of command-line soft-
ware developed by the GNU crowd will work
in BeOS terminal windows without complaint.
This includes the GNU development tools-the
compiler and linker. And it includes all of the
handy little utility programs. I’m writing this
using a modern sort of user-friendly text edi-
tor called Pe, written by a Dutchman named
Maarten Hekkelman, but when I want to find
out how long it is, I jump to a terminal window
and run “wc.”

As is suggested by the sample bug report I
quoted earlier, people who work for Be, and
developers who write code for BeOS, seem to
be enjoying themselves more than their coun-
terparts in other OSes. They also seem to be a
more diverse lot in general. A couple of years
ago I went to an auditorium at a local univer-
sity to see some representatives of Be put on a
dog-and-pony show. I went because I assumed
that the place would be empty and echoing,
and I felt that they deserved an audience of
at least one. In fact, I ended up standing in
an aisle, for hundreds of students had packed
the place. It was like a rock concert. One of
the two Be engineers on the stage was a black
man, which unfortunately is a very odd thing
in the high-tech world. The other made a ring-
ing denunciation of cruft, and extolled BeOS
for its cruft-free qualities, and actually came
out and said that in ten or fifteen years, when
BeOS had become all crufty like MacOS and
Windows 95, it would be time to simply throw
it away and create a new OS from scratch. I
doubt that this is an official Be, Inc. policy,
but it sure made a big impression on every-

one in the room! During the late Eighties, the
MacOS was, for a time, the OS of cool people-
artists and creative-minded hackers-and BeOS
seems to have the potential to attract the same
crowd now. Be mailing lists are crowded with
hackers with names like Vladimir and Olaf and
Pierre, sending flames to each other in frac-
tured techno-English.

The only real question about BeOS is whether
or not it is doomed.

Of late, Be has responded to the tiresome ac-
cusation that they are doomed with the asser-
tion that BeOS is “a media operating system”
made for media content creators, and hence
is not really in competition with Windows at
all. This is a little bit disingenuous. To go
back to the car dealership analogy, it is like
the Batmobile dealer claiming that he is not
really in competition with the others because
his car can go three times as fast as theirs and
is also capable of flying.

Be has an office in Paris, and, as mentioned,
the conversation on Be mailing lists has a
strongly European flavor. At the same time
they have made strenuous efforts to find a
niche in Japan, and Hitachi has recently be-
gun bundling BeOS with their PCs. So if I had
to make wild guess I’d say that they are play-
ing Go while Microsoft is playing chess. They
are staying clear, for now, of Microsoft’s over-
whelmingly strong position in North America.
They are trying to get themselves established
around the edges of the board, as it were, in
Europe and Japan, where people may be more
open to alternative OSes, or at least more hos-
tile to Microsoft, than they are in the United
States.

What holds Be back in this country is that
the smart people are afraid to look like suckers.
You run the risk of looking naive when you say
“I’ve tried the BeOS and here’s what I think of
it.” It seems much more sophisticated to say

56

“Be’s chances of carving out a new niche in
the highly competitive OS market are close to
nil.”

It is, in techno-speak, a problem of mindshare.
And in the OS business, mindshare is more
than just a PR issue; it has direct effects on the
technology itself. All of the peripheral gizmos
that can be hung off of a personal computer
— the printers, scanners, PalmPilot interfaces,
and Lego Mindstorms — require pieces of soft-
ware called drivers. Likewise, video cards
and (to a lesser extent) monitors need drivers.
Even the different types of motherboards on
the market relate to the OS in different ways,
and separate code is required for each one.
All of this hardware-specific code must not
only written but also tested, debugged, up-
graded, maintained, and supported. Because
the hardware market has become so vast and
complicated, what really determines an OS’s
fate is not how good the OS is technically, or
how much it costs, but rather the availabil-
ity of hardware-specific code. Linux hackers
have to write that code themselves, and they
have done an amazingly good job of keeping
up to speed. Be, Inc. has to write all their
own drivers, though as BeOS has begun gath-
ering momentum, third-party developers have
begun to contribute drivers, which are avail-
able on Be’s web site.

But Microsoft owns the high ground at the
moment, because it doesn’t have to write its
own drivers. Any hardware maker bringing a
new video card or peripheral device to mar-
ket today knows that it will be unsalable un-
less it comes with the hardware-specific code
that will make it work under Windows, and so
each hardware maker has accepted the burden
of creating and maintaining its own library of
drivers.

MINDSHARE

The U.S. Government’s assertion that Mi-
crosoft has a monopoly in the OS market
might be the most patently absurd claim ever
advanced by the legal mind. Linux, a techni-
cally superior operating system, is being given
away for free, and BeOS is available at a nom-
inal price. This is simply a fact, which has to
be accepted whether or not you like Microsoft.

Microsoft is really big and rich, and if some of
the government’s witnesses are to be believed,
they are not nice guys. But the accusation of
a monopoly simply does not make any sense.

What is really going on is that Microsoft has
seized, for the time being, a certain type of
high ground: they dominate in the competi-
tion for mindshare, and so any hardware or
software maker who wants to be taken seri-
ously feels compelled to make a product that
is compatible with their operating systems.
Since Windows-compatible drivers get writ-
ten by the hardware makers, Microsoft doesn’t
have to write them; in effect, the hardware
makers are adding new components to Win-
dows, making it a more capable OS, with-
out charging Microsoft for the service. It is
a very good position to be in. The only way
to fight such an opponent is to have an army
of highly competetent coders who write equiv-
alent drivers for free, which Linux does.

But possession of this psychological high
ground is different from a monopoly in any
normal sense of that word, because here the
dominance has nothing to do with techni-
cal performance or price. The old robber-
baron monopolies were monopolies because
they physically controlled means of production
and/or distribution. But in the software busi-
ness, the means of production is hackers typing
code, and the means of distribution is the In-
ternet, and no one is claiming that Microsoft

57

controls those.

Here, instead, the dominance is inside the
minds of people who buy software. Microsoft
has power because people believe it does. This
power is very real. It makes lots of money.
Judging from recent legal proceedings in both
Washingtons, it would appear that this power
and this money have inspired some very pecu-
liar executives to come out and work for Mi-
crosoft, and that Bill Gates should have ad-
ministered saliva tests to some of them before
issuing them Microsoft ID cards.

But this is not the sort of power that fits
any normal definition of the word “monopoly,”
and it’s not amenable to a legal fix. The
courts may order Microsoft to do things dif-
ferently. They might even split the company
up. But they can’t really do anything about
a mindshare monopoly, short of taking every
man, woman, and child in the developed world
and subjecting them to a lengthy brainwash-
ing procedure.

Mindshare dominance is, in other words, a
really odd sort of beast, something that the
framers of our antitrust laws couldn’t possibly
have imagined. It looks like one of these mod-
ern, wacky chaos-theory phenomena, a com-
plexity thing, in which a whole lot of indepen-
dent but connected entities (the world’s com-
puter users), making decisions on their own,
according to a few simple rules of thumb, gen-
erate a large phenomenon (total domination
of the market by one company) that cannot
be made sense of through any kind of rational
analysis. Such phenomena are fraught with
concealed tipping-points and all a-tangle with
bizarre feedback loops, and cannot be under-
stood; people who try, end up (a) going crazy,
(b) giving up, (c) forming crackpot theories,
or (d) becoming high-paid chaos theory con-
sultants.

Now, there might be one or two people at Mi-

crosoft who are dense enough to believe that
mindshare dominance is some kind of stable
and enduring position. Maybe that even ac-
counts for some of the weirdos they’ve hired
in the pure-business end of the operation, the
zealots who keep getting hauled into court
by enraged judges. But most of them must
have the wit to understand that phenomena
like these are maddeningly unstable, and that
there’s no telling what weird, seemingly in-
consequential event might cause the system to
shift into a radically different configuration.

To put it another way, Microsoft can be con-
fident that Thomas Penfield Jackson will not
hand down an order that the brains of every-
one in the developed world are to be sum-
marily re-programmed. But there’s no way
to predict when people will decide, en masse,
to re-program their own brains. This might
explain some of Microsoft’s behavior, such as
their policy of keeping eerily large reserves of
cash sitting around, and the extreme anxi-
ety that they display whenever something like
Java comes along.

I have never seen the inside of the building at
Microsoft where the top executives hang out,
but I have this fantasy that in the hallways,
at regular intervals, big red alarm boxes are
bolted to the wall. Each contains a large red
button protected by a windowpane. A metal
hammer dangles on a chain next to it. Above
is a big sign reading: IN THE EVENT OF
A CRASH IN MARKET SHARE, BREAK
GLASS.

What happens when someone shatters the
glass and hits the button, I don’t know, but
it sure would be interesting to find out. One
imagines banks collapsing all over the world
as Microsoft withdraws its cash reserves, and
shrink-wrapped pallet-loads of hundred-dollar
bills dropping from the skies. No doubt, Mi-
crosoft has a plan. But what I would really
like to know is whether, at some level, their

58

programmers might heave a big sigh of relief if
the burden of writing the One Universal Inter-
face to Everything were suddenly lifted from
their shoulders.

THE RIGHT PINKY OF GOD

In his book The Life of the Cosmos, which ev-
eryone should read, Lee Smolin gives the best
description I’ve ever read of how our universe
emerged from an uncannily precise balancing
of different fundamental constants. The mass
of the proton, the strength of gravity, the range
of the weak nuclear force, and a few dozen
other fundamental constants completely deter-
mine what sort of universe will emerge from
a Big Bang. If these values had been even
slightly different, the universe would have been
a vast ocean of tepid gas or a hot knot of
plasma or some other basically uninteresting
thing — a dud, in other words. The only way
to get a universe that’s not a dud — that has
stars, heavy elements, planets, and life — is
to get the basic numbers just right. If there
were some machine, somewhere, that could
spit out universes with randomly chosen val-
ues for their fundamental constants, then for
every universe like ours it would produce 10229
duds.

Though I haven’t sat down and run the num-
bers on it, to me this seems comparable to
the probability of making a Unix computer do
something useful by logging into a tty and typ-
ing in command lines when you have forgotten
all of the little options and keywords. Every
time your right pinky slams that ENTER key,
you are making another try. In some cases the
operating system does nothing. In other cases
it wipes out all of your files. In most cases
it just gives you an error message. In other
words, you get many duds. But sometimes, if
you have it all just right, the computer grinds

away for a while and then produces something
like emacs. It actually generates complexity,
which is Smolin’s criterion for interestingness.

Not only that, but it’s beginning to look as if,
once you get below a certain size — way be-
low the level of quarks, down into the realm
of string theory — the universe can’t be de-
scribed very well by physics as it has been
practiced since the days of Newton. If you
look at a small enough scale, you see processes
that look almost computational in nature.

I think that the message is very clear here:
somewhere outside of and beyond our universe
is an operating system, coded up over incal-
culable spans of time by some kind of hacker-
demiurge. The cosmic operating system uses a
command-line interface. It runs on something
like a teletype, with lots of noise and heat;
punched-out bits flutter down into its hopper
like drifting stars. The demiurge sits at his
teletype, pounding out one command line after
another, specifying the values of fundamental
constants of physics:

universe -G 6.672e-11 -e 1.602e-19 -h 6.626e-34
-protonmass 1.673e-27. . . .

and when he’s finished typing out the com-
mand line, his right pinky hesitates above the
ENTER key for an aeon or two, wondering
what’s going to happen; then down it comes
— and the WHACK you hear is another Big
Bang.

Now THAT is a cool operating system, and if
such a thing were actually made available on
the Internet (for free, of course) every hacker
in the world would download it right away and
then stay up all night long messing with it,
spitting out universes right and left. Most of
them would be pretty dull universes but some
of them would be simply amazing. Because
what those hackers would be aiming for would
be much more ambitious than a universe that

59

had a few stars and galaxies in it. Any run-of-
the-mill hacker would be able to do that. No,
the way to gain a towering reputation on the
Internet would be to get so good at tweaking
your command line that your universes would
spontaneously develop life. And once the way
to do that became common knowledge, those
hackers would move on, trying to make their
universes develop the right kind of life, trying
to find the one change in the Nth decimal place
of some physical constant that would give us
an Earth in which, say, Hitler had been ac-
cepted into art school after all, and had ended
up his days as a street artist with cranky po-
litical opinions.

Even if that fantasy came true, though,
most users (including myself, on certain days)
wouldn’t want to bother learning to use all
of those arcane commands, and struggling
with all of the failures; a few dud universes
can really clutter up your basement. After
we’d spent a while pounding out command
lines and hitting that ENTER key and spawn-
ing dull, failed universes, we would start to
long for an OS that would go all the way to
the opposite extreme: an OS that had the
power to do everything — to live our life
for us. In this OS, all of the possible de-
cisions we could ever want to make would
have been anticipated by clever programmers,
and condensed into a series of dialog boxes.
By clicking on radio buttons we could choose
from among mutually exclusive choices (HET-
EROSEXUAL/HOMOSEXUAL). Columns of
check boxes would enable us to select the
things that we wanted in our life (GET
MARRIED/WRITE GREAT AMERICAN
NOVEL) and for more complicated options we
could fill in little text boxes (NUMBER OF
DAUGHTERS: NUMBER OF SONS:).

Even this user interface would begin to look
awfully complicated after a while, with so
many choices, and so many hidden interactions

between choices. It could become damn near
unmanageable — the blinking twelve problem
all over again. The people who brought us
this operating system would have to provide
templates and wizards, giving us a few default
lives that we could use as starting places for
designing our own. Chances are that these
default lives would actually look pretty damn
good to most people, good enough, anyway,
that they’d be reluctant to tear them open
and mess around with them for fear of making
them worse. So after a few releases the soft-
ware would begin to look even simpler: you
would boot it up and it would present you with
a dialog box with a single large button in the
middle labeled: LIVE. Once you had clicked
that button, your life would begin. If any-
thing got out of whack, or failed to meet your
expectations, you could complain about it to
Microsoft’s Customer Support Department. If
you got a flack on the line, he or she would
tell you that your life was actually fine, that
there was not a thing wrong with it, and in any
event it would be a lot better after the next up-
grade was rolled out. But if you persisted, and
identified yourself as Advanced, you might get
through to an actual engineer.

What would the engineer say, after you had
explained your problem, and enumerated all
of the dissatisfactions in your life? He would
probably tell you that life is a very hard
and complicated thing; that no interface can
change that; that anyone who believes oth-
erwise is a sucker; and that if you don’t like
having choices made for you, you should start
making your own.

