
Solutions to Laplace’s Equation: ∇2
V = 0

2D Cartesian:
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+ permutations (x ↔ y).

3D Cartesian:
∇2V ≡
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+ all permutations {x, y, z}.

2D Plane Polar:
∇2V ≡
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3D Cylindrical:
∇2V ≡
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where Jn(kρ) → Bessel functions and Nn(kρ) → Neumann functions.

3D Spherical:
∇2V ≡
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V (r, θ, φ) =
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where Pm
ℓ (cos θ) are associated Legendre polynomials

and Qm
ℓ (cos θ) are associated Legendre polynomials of the second kind.

If axial symmetry then V (r, θ, φ) =
rℓ

r−(ℓ+1)

}

Pℓ(cos θ)

Qℓ(cos θ)

}

where Pℓ(cos θ) are Legendre polynomials and Qℓ(cos θ) are Legendre polynomials of the second kind.

Match linear combinations of the forms above to the appropriate boundary conditions

imposed by (e.g.) conducting surfaces (equipotentials) and any requirements that V −→
r→∞

0
etc.


