Solutions to Laplace’s Equation: V2V =0
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2D Plane Polar:
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3D Cylindrical:
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/iib/ where J,,(kp) — Bessel functions and N, (kp) — Neumann functions.
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where Py(cosf) are Legendre polynomials and Qg(cos ) are Legendre polynomials of the second kind.

Match linear combinations of the forms above to the appropriate boundary conditions
imposed by (e.g.) conducting surfaces (equipotentials) and any requirements that V' =3 0
etc.




