THE UNIVERSITY OF BRITISH COLUMBIA

Physics 401 Assignment # 9:

LOOSE ENDS
& COAX CABLES

SOLUTIONS:

Wed. 8 Mar. 2006 — finish by Wed. 15 Mar.

Cutoff Frequencies: FExplain in words why
there is a lower limit on the frequencies of EM
waves that will propagate freely either through
a tenuous plasma or down a rectangular waveg-
uide. Why is there no cutoff frequency (neither
upper nor lower) for wave propagation down an
ideal coaxial cable?

ANSWER: This question can be challenging if
you seriously attempt to avoid formulae and
explain in words. In fact, unless you really
understand what the formulae mean, it's virtually
impossible! Hence it is a perfect test of
comprehension. Those who simply write down the
relevant formulae get no more than half credit
even if they are the “right” formulae. On the
other hand, there are many ways of explaining in
words; you get full credit for any that are not
actually wrong.

First let's talk about a plasma, e.g. the
ionosphere. lons in a plasma are free to move,
and so a constant electric field would produce a
steady current. For “almost constant” electric
fields (i.e. low frequency waves) the ionosphere
might as well be a sheet of copper around the
Earth, and like any good conductor it reflects
electromagnetic waves — i.e. they do not
propagate through it. However, as you turn up
the frequency the ions can't move very far before
the field has reversed, so the maximum amplitude
of their motion gets smaller and smaller until all
they do is jiggle a little as the wave propagates
past them without difficulty. Also, for a given
number of charged particles per unit volume, the
distance between idividual charges is fixed. If the
wavelength becomes short compared with that
distance, one particle may go “left” while the next
one goes ‘“right” and they can no longer act “in
concert” as a current density. So short
wavelengths (high frequencies) “see” the plasma
as a bunch of uncorrelated charges rather than a
“conductor” and can propagate freely through it.

A hollow waveguide won't support TEM
modes, so the “nice” propagation of a simple

plane wave down the tube isn't allowed; we must
have a wave reflecting off the sides of the tube
and interfering with itself to produce standing
waves with nodes at the surfaces. This imposes a
constraint on the wavelength — it can’t be
longer than twice the width of the tube. And
since the wave (viewed this way, as a plane wave
“bouncing around”) always propagates at ¢ = \v,
an upper limit on wavelength implies a Iower limit
on frequency. QED

The coaxial cable (or any other transmission
line with two separate conductors that can be
oppositely charged and carry opposite currents
locally) will support TEM waves, which are
basically localized plane waves propagating down
the line without dispersion. They all travel at the
same speed regardless of frequency and there are
no restrictions on wavelength. “Anything goes.”

Rectangular Waveguide with Dielectric:
Show that if a hollow rectangular waveguide of
the type shown in Griffiths Figure 9.24 is
completely filled with a dielectric of
permeability e, its cut-off frequency is lower
than if it were empty, by a factor of /eq/e:

dielectric
Winn _ €0

vacuum
wmn

So, for a given operating frequency, a dielectric
filled waveguide can be smaller than an empty
one.

ANSWER: Going back to the simple model of
a plane wave reflecting off the walls of the
waveguide to form standing waves, nothing has
changed when the guide is filled with dielectric
except that the original plane wave has a lower
phase velocity v = 1/,/€fig instead of
c=1/,/éopo. The transverse wavevector
components must still satisfy k, = mn/a and
ky = nw/b, so w?/v? = kI + k2 + k2 where

k., =k, or vk = \/w? — w2, where

Wmn = muy/(m/a)? + (n/b)2. This differs from

Wmn for an empty waveguide only by the factor

v/e=/eo/e | QED




3. (p. 412, Problem 9.31) — Coax Cable: For the current we use AMPERE’S LAW (in
integral form) for a circular loop between the

(a)  Show directly that Egs. (9.197) conductors to give the familiar result

B B = 1ol /(27ms), which we invert to get
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Now for the B.C.: E” = 0 by inspection,

since E is strictly radial in direction. v/

Similarly, since B = B¢ (strictly parallel to ,
both surfaces), B = 0 as well. ¥ 4. Coax Impedance: In class, we derived the

electric and magnetic fields in a coaxial
transmission line. From those we deduced the

(6) Find the net charge per unit length characteristic impedance of a coaxial cable:

A(z,t), and the net current, I(z,t), on the

inner conductor. Z = ‘;((j’;)) = 1n(2b7{a) \/g =60 -1In(b/a)
ANSWER: For the charge we do GAUSS’ ’

LAW (in integral form) on a short cylindrical where a is the radius of the inner coax line and
surface between the conductors, getting the b is the radius of the outer coax cylinder, as
familiar result £ = \/(2megs). Thus shown above.

A = 2megsE or ‘ A = 2megAcos(kz — wt) ‘

— continued on nexrt page —



In general, the characteristic impedance of a
transmission line is given by

Z =/ g , where £ and C are the inductance

and capacitance per unit length, respectively.

Show that the characteristic impedance of this
coax line satisfies this definition by calculating
L and C explicitly, and then Z.

ANSWER: The magnetic field between the
conductors is B = 1igl¢/(27s) and there is no
magnetic field elsewhere. The magnetic flux
between the conductors in a short section of
length ¢ is thus ®,,, = [ B(s)¢ds

= (Lol /2m)In(b/a) and so the inductance per
unit length is‘ L=d,,/I = poln(b/a)/27 ‘

Similarly, a short length ¢ of the cable with equal
and opposite charges (Q = A\l on the inner and
outer conductors has an electric field strength
E(s) = \/2meps at radius s and thus a resultant
voltage difference V = — f;E(s)ds

= (Q/2mepl) In(b/a). Thus the capacitance per

unit length is | C = Q/V( = 27eo/In(b/a) |
Putting the two together gives
L [poln(b/a)/2n _ In(b/a) [po

C \/ 2meo/In(b/a) 2w €’
in agreement with the previous result for Z. v/




