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Centre-Driven Linear Antenna

~A(~r, t) =
µ0

4π

∫∫∫ ~J(~r′, tr)
R

dτ ′ here −→ ~A(~r, t) =
µ0

4π
ẑ
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Standing Wave of Current

Unlike the Electric Dipole antenna, where the charge flows onto spheres at the
ends which can hold significant ±Q, here we have simple wires with negligible
capacitance, so there is nowhere for the charge to go. Moreover, we run the antenna
at such a high ω that the instinct we cultivated for DC Circuits (i.e. that I is the
same throughout a circuit) is blatantly incorrect. By the time the ends of the wire
“know” there is an increasing current, the driving voltage at the centre is already
“trying” to reduce it.

This results in a “current wave” in the antenna with the same wavelength as the
EM radiation it will generate, namely λ = 2πc/ω. This wave is reflected from the
ends, where of necessity I = 0 at all times (i.e. the ends are nodes).

It is easiest to drive the resulting standing wave if the total length ` of the antenna
is some multiple of half a wavelength:

` = m
λ

2
so that k ≡ ω

c
= m

π

`
. (1)

That is, the antenna is driven in resonance.
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Side View of ~z × ~r Plane
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~A(~r, t) ≈ µ0I0

4π
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where I ≡
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Note:

ω

c
≡ k =

1
k

∫ +k`
2

−k`
2

dα cos α sin (γα− β)

if α ≡ kz′, β ≡ kr − ωt and γ ≡ cos θ.
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We have ~A(~r, t) ≈ µ0I0

4π

ẑ

r
I (2)

where I ≡ 1
k

∫ +k`
2

−k`
2

dα cos α sin (γα− β) (3)

with α ≡ kz′ , β ≡ kr − ωt and γ ≡ cos θ . (4)

Expanding sin (γα− β) = sin(γα) cos β − cos(γα) sin β (5)

and noting that neither cos β nor sinβ depends on α (and so can be taken outside
the integral), we can eliminate the first term because the integral of an odd function
over a symmetric region about zero always vanishes. This leave the integral

I = −sin(kr − ωt)
k

· 2
∫ +k`

2

0

dα cos α cos(γα) (6)

which we can look up (e.g. at http://integrals.wolfram.com/index.jsp ). . .
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Half-Wave Antenna

. . . to get I = −sin(kr − ωt)
k

· 2
[
γ cos α sin(γα)− cos(γα) sin α

γ2 − 1

]α=k`
2

α=0

. (7)

Now we impose the resonant condition (1): ` = m
λ

2
so that k ≡ ω

c
= m

π

`
or

k`

2
=

mπ

2
. The simplest case is the Half-Wave Antenna (m = 1) which gives

cos
(

k`

2

)
= cos(π/2) = 0 and sin

(
k`

2

)
= sin(π/2) = 1 so that the quantity in

square brackets in Eq. (7) is equal to −
[
cos(γα)
γ2 − 1

]
; since γ ≡ cos θ, γ2− 1 = sin2 θ

and (2) becomes

~A(~r, t) ≈ −µ0I0`

2π2

(
ẑ

r

) [
cos
(

π
2 cos θ

)
sin2 θ

]
sin(kr − ωt) . (8)
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The Radiation Fields

Taking the curl of Eq. (8) we get the magnetic field

~B(~r, t) = ~∇× ~A ≈ −µ0I0`

2π2
~∇×

{(
ẑ

r

) [
cos
(

π
2 cos θ

)
sin2 θ

]
sin(kr − ωt)

}
. (9)

To evaluate this we express the oscillatory term as sin(kr − ωt) = −i ei(kr−ωt)

and refer to an argument developed in detail by Marion or Jackson that basically
boils down to this: in the far field region, ei(kr−ωt) changes so much more rapidly
with position than the amplitude factors to its left that we may treat the outgoing
wave as a plane wave, for which we know ~∇ × ~A can be replaced by ikk̂ × ~A,
where in this case ~k = r̂ π/`. Since r̂ × ẑ = −φ̂ sin θ, we have

~B(~r, t) ≈ µ0I0

2π

(
φ̂

r

) [
cos
(

π
2 cos θ

)
sin θ

]
ei(kr−ωt) . (10)

and, as for any plane wave in free space, ~E = c~B × k̂ = cB θ̂.
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Radiated Power

For the half-wave antenna, Eq. (10) and the corresponding ~E field give

〈~S〉 = 〈~E × ~B/µ0〉 ≈
µ0I

2
0c

8π2

(
r̂

r2

) [
cos
(

π
2 cos θ

)
sin θ

]2

, (11)

which has the angular distribution
depicted at right. If we integrate†

∫ π

0

[
cos
(

π
2 cos θ

)
sin θ

]2

sin θ dθ = 1.22

we get the total radiated power: 〈P 〉 ≈ 1.22
µ0I

2
0c

4π
. (12)

† You’re right, this is not an easy integral! But it can be found. OUTLINE
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There are, of course, different radiation patterns for other resonances. The full-
wave antenna (m = 2), for instance, produces a double-lobed angular distribution
of the radiated power, with a node at θ = π/2. Since most radio stations wish to
broadcast more or less horizontally from a vertical tower, the half-wave antenna is
a better choice.

More exotic angular patterns can be achieved using a phased array of (e.g.) half-
wave transmitters. You have seen one example in your First Year Optics course: a
linear array of equally spaced radiators, all in phase: this is essentially the same as
the (misnamed) diffraction grating.

Today cell phone companies use other geometrical arrangements of transmitters
whose phase can be adjusted as desired to send narrow beams to several clients in
the same cell, thereby “multiplexing” each available frequency and increasing the
number of clients that can be served simultaneously.

Remember also that a receiver is just an “antenna in reverse”. . . .
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