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Maxwell’s Equations for the Potential

In the Lorentz gauge

(
~∇ · ~A = − 1

c2

∂ V

∂t

)
, Maxwell’s equations read

(
∇2 − 1

c2

∂ 2

∂t2

)
Aµ = −µ0J

µ where A0 ≡ V

c
and J0 ≡ cρ . (1)

We have seen that for static potentials this equation is satisfied by

Aµ(~r) =
µ0

4π

∫∫∫
Jµ(~r′)dτ ′

R
where ~R ≡ ~r − ~r′ . (2)

(Since LATEX lacks a nice lowercase script “r”, I use ~R ≡ ~r − ~r′ in its place.)

Remember, ~r is the position (relative to the origin of coordinates) where we are
calculating the EM fields (the “field point”) and ~r′ is the position (relative to the
same origin) of an infinitesimal volume element dτ ′ in the source region (the “source
point”).

OUTLINE
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Retarded Time

We can’t just use the same formula (2) for the potential when the 4-current is
changing with time, because that would imply instantaneous action at a distance —
the field point would have to “know” what the source point is doing without any
delay due to the finite propagation speed of EM “news”.

Instead, we must calculate Aµ from the charge and current distributions at an earlier
time — earlier by the time it took the “news” to get from the source point to the
field point at the speed of light:

Aµ(~r, t) =
µ0

4π

∫∫∫
Jµ(~r′, tr)dτ ′

R
(3)

where tr ≡ t− R

c
is the retarded time.1

OUTLINE

1 Maxwell’s equations (1) are invariant under both parity (inversion of all spatial coordinates) and time

reversal. Thus an acausal version of Eq. (3) using the advanced time ta ≡ t + R
c would satisfy (1) just as well.

For more details see the Feynman-Wheeler model.
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Spatial Derivatives

Combinations of ~∇ ≡ x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
govern spatial derivatives with respect

to the field point ~r = xx̂ + yŷ + zẑ: make sure you remember the derivations of

~∇r = r̂ ~∇R = R̂ ~∇
(

1
r

)
= − r̂

r2
~∇
(

1
R

)
= − R̂

R2
(4)

~∇ · ~r = 3 = ~∇ · ~R ~∇·
(

r̂

r2

)
= 4πδ3(~r) ~∇·

(
R̂

R2

)
= 4πδ3(~R) (5)

~∇·
(

R̂

R

)
=

1
R2

∇2

(
1
r

)
= −4πδ3(~r) ∇2

(
1
R

)
= −4πδ3(~R) . (6)

Combinations of ~∇
′
≡ x̂′

∂

∂x′
+ ŷ′

∂

∂y′
+ ẑ′

∂

∂z′
govern spatial derivatives with re-

spect to the source point ~r′ = x′x̂′ + y′ŷ′ + z′ẑ′: these are analogous except that

each operation of ~∇
′
on R picks up an extra minus sign.

OUTLINE
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Just to remind you that these simple relations (4-6) are straightforward but not
trivial to derive, let me show the algebra for what seems a very simple example (see
Problem 1.62 on p. 57):

Using the identity
~∇ · (f~v) = f

(
~∇ · ~v

)
+ ~v · ~∇f , (7)

we get ~∇·
(

R̂

R

)
=
(

1
R

)
~∇ · R̂ + R̂ · ~∇

(
1
R

)

where ~∇
(

1
R

)
= − R̂

R2
from Eqs. (4) and

~∇ · R̂ = ~∇ ·
(

~R

R

)
=

1
R

~∇ · ~R + ~R · ~∇
(

1
R

)
=

3
R
− ~R ·

(
R̂

R2

)
=

3
R
− 1
R

=
2
R

giving ~∇·
(

R̂

R

)
=

2
R2
− 1
R2

=
1
R2

as in Eqs. (6).
√
QED

OUTLINE
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Implicit Time Derivatives

Because we are now evaluating Aµ in terms of the current density Jµ(~r′, tr) at
the retarded time tr ≡ t − R/c, derivatives of the latter with respect to ~r (upon
which it does not depend explicitly) mix in the time derivative through the implicit
dependence of tr on ~r = ~R + ~r′. That is,

~∇Jµ(~r′, tr) =
(

∂ Jµ

∂tr

)
~∇tr = −J̇µR̂

c
(8)

because, for a given R,
∂ Jµ

∂tr
=

∂ Jµ

∂t
= J̇µ, and ~∇tr = −1

c
~∇R = −R̂

c
.

Thus, for example, if we take the gradient ~∇Aµ, the operator comes inside the
integral in Eq. (3) (which is over ~r′) leaving us to evaluate

~∇
[
Jµ(~r′, tr)

R

]
= Jµ ~∇

(
1
R

)
− R̂

c
J̇µ

(
1
R

)
= −Jµ

(
R̂

R2

)
− 1

c
J̇µ

(
R̂

R

)
(9)

where Jµ is to be understood to mean Jµ(~r′, tr) in each case.
OUTLINE
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Checking the Retarded Potential

If we now take the divergence of Eq. (9) we can check whether the retarded
potential (3) really satisfies Maxwell’s equations (1). For this we need the
identity (7) and several of Eqs. (4-6).

∇2

[
Jµ

R

]
= ~∇ ·

[
−Jµ

(
R̂

R2

)
− 1

c
J̇µ

(
R̂

R

)]

= −Jµ ~∇ ·
(

R̂

R2

)
−
(

R̂

R2

)
· ~∇Jµ − 1

c
J̇µ ~∇ ·

(
R̂

R

)
− 1

c

(
~∇J̇µ

)
·
(

R̂

R

)

= 4πJµδ3(~R) +
1
c
J̇µ

(
R̂

R2

)
· R̂− 1

c

J̇µ

R2
+

1
c2

J̈µR̂ ·
(

R̂

R

)

or ∇2

[
Jµ

R

]
= 4πJµδ3(~R) +

1
c2

J̈µ

R
(10)

Now to put this integrand back into the Laplacian of Eq. (3) . . .
OUTLINE
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∇2Aµ =
µ0

4π

∫∫∫
dτ ′
{
∇2

[
Jµ

R

]}
=

µ0

4π

∫∫∫
dτ ′

{
4πJµδ3(~R) +

1
c2

J̈µ

R

}

= µ0J
µ +

1
c2

∂ 2

∂t2

(
µ0

4π

∫∫∫
Jµdτ ′

R

)

or
(
∇2 − 1

c2

∂ 2

∂t2

)
Aµ = µ0J

µ
√
QED

The retarded potential does indeed satisfy Maxwell’s equations (1) in
the Lorentz gauge.

We can therefore use it to find the EM fields generated by any sort of time-dependent
charge and current distribution.

OUTLINE
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Using the Retarded Potential
You should be personally convinced of
the rigourous validity of the general for-
mula (3) for the retarded poten-
tial, but (apart from computer soft-
ware) one rarely attempts to apply it
directly to the solution of real-life prob-
lems.

Usually we have some idealized geom-
etry like an infinite straight wire and a
simplified time dependence like turning
on a steady current I0 abruptly at t = 0
(Example 10.2 in Griffiths). 2

The result looks like this:

OUTLINE

2 One should be cautious about using “infinite” objects, since the derivation of Eq. (2) involved an assumption that
~J → 0 at infinity (see p. 235 in Griffiths).

It would also be difficult to arrange such an instantaneous onset of current everywhere in an infinite straight wire. While
the charges that go into the wire at one end are not the same charges that start coming out at the other end, it takes
time for the “EM News” (about whatever is driving the current) to reach the charges down the line.
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Jefimenko’s Equations

It was stated earlier that only the potential Aµ can be expressed simply in terms of
the retarded time; the fields, being local derivatives of the potential, are even more
intricate to describe explicitly. But it can be done, by simply taking the required
derivatives of the general expression (3):

~E = − ~∇V ≡ −c ~∇A0 and ~B = − ~∇× ~A , (11)

giving (after a bit of algebra, see pp. 427-8)

~E =
1

4πε0

∫∫∫
dτ ′

[
ρ(~r′, tr)
R2

R̂ +
ρ̇(~r′, tr)

cR
R̂− J̇(~r′, tr)

c2R

]
(12)

and ~B =
µ0

4π

∫∫∫
dτ ′

[
~J(~r′, tr)
R2

+
J̇(~r′, tr)

cR

]
. (13)

As Griffiths points out, it is almost always earier to calculate Aµ from (3) first and
take the derivatives (11) as needed.

OUTLINE
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Liénard-Wiechert Potentials

Suppose Jµ consists of a single point charge q in motion, following a trajectory
~w(t). Then ~R(t) = ~r − ~w(t) and Jµ must be expressed in terms of a rather exotic
δ-function. I have attempted to find a more intuitive explanation for the result
than you find in the various textbooks, and failed. Griffiths is actually one of the
less formal derivations; for a truly deep understanding you should read them all, for
this is probably the most conceptually challenging topic in E&M. I must reluctantly
resort to expressing the result in compact form:

Aµ(~r, t) =
µ0q

4π

[
βµ

R(1− ~β · R̂)

]
ret

where βµ =
{

1,
ẇ

c

}
(14)

is the “4-velocity”(/c) and [· · ·]ret means that the quantities in the square brackets
(including βµ) are to be evaluated at the retarded time tr = t− R/c.

This is not as simple as it sounds, of course, since (for instance) we have to evaluate
R at a time that depends on R.

OUTLINE
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Fields of a Moving Point Charge

What we usually want is ~E and ~B due to the moving point charge. In principle all
we have to do is take the requisite derivatives of Aµ:

~E = − ~∇V − ∂ ~A

∂t
and ~B = ~∇× ~A

However, as Griffiths notes, taking these derivatives under the [· · ·]ret evaluation in
Eq. (14) is “rough going . . . but the answer is worth the effort.”

Here (sorry, I can’t do better than Griffiths!) is the answer:

~E(~r, t) =
q

4πε0

R

(~R · ~u)3
[
(c2 − v2)~u + ~R× (~u× ~a)

]
(15)

where ~u ≡ cR̂− ~v and ~v ≡ ẇ (16)

We can always get ~B from ~E because ~B = 1
cR̂× ~E, which tells us that ~B ⊥ ~E!

OUTLINE
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Equation (15) can be written

~E = ~Ev + ~Ea where (17)

~Ev ≡
q

4πε0

R

(~R · ~ß)3
(1− β2)~ß (18)

~Ea ≡
q

4πε0

1
c

R

(~R · ~ß)3

[
~R× (~ß× ~α)

]
(19)

~β ≡ ẇ

c
, ~ß ≡ R̂− ~β and ~α ≡ ẅ

c
. (20)

(I have “compacted” the notation a little more than Griffiths. Does it help?) Note:
everything still must be evaluated at the retarded time!

Note that the velocity field ~Ev depends only on the velocity of the charge and
drops off as R−2 (like the static field), while the acceleration field ~Ea depends on
both the velocity and the acceleration of the charge and drops off as R−1 (like an
outgoing spherical wave). The latter dominates at large distances from the source,
and is (not surprisingly) also called the radiation field.

OUTLINE
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Point Charge with Constant Velocity

For a point charge with constant velocity ~v, we have3 ~a = 0 so ~α = 0 and if we take
the origin to be at the position of the particle at t = 0, ~w = ~vt. This implies ~R(tr) =
~r− (t−R/c)~v, which is still a transcendental equation, since ~R(tr) is a function of

itself. However, we can rearrange tr = t−R/c to get R = c(t− tr). Thus R~ß =
~R−R~β = (~r−~vtr)−(t−tr)~v = ~r − ~vt, liberating one term from “retardedness”!

Meanwhile4 ~R · ~ß = R− ~R · ~β =
√

(ct− ~r · ~β)2 + (1− β2)(r2 − c2t2), which can

be written5 as ~R · ~ß = R
√

1− β2 sin2 θ where ~R ≡ ~r − ~vt is the
vector from the present location of q to the field point. This is an “extraordinary
coincidence” and a happy one!

Note that we now have completely eliminated all reference to retarded time. Yay!
This positions us to write down (at last) a “simple” expression (21) for the fields
produced by a moving charge. . . .

OUTLINE

3 This is Griffiths’ Ex. 10.4 on pp. 439-440.
4See Griffiths’ Ex. 10.3 on pp. 433-434.
5See Griffiths’ Prob. 10.14 on p. 434.
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~E(~r, t) =
(

q

4πε0

)
1− β2(

1− β2 sin2 θ
)3/2

(
R̂

R2

)
(21)

where again ~R = ~r − ~vt is the position of the charge q at time t.

As usual ~B = 1
c

(
R̂× ~E

)
, but in this case R̂× ~E = ~β × ~E, so

~B(~r, t) =
1
c

(
q

4πε0

)
1− β2(

1− β2 sin2 θ
)3/2

(
~β × R̂

R2

)
. (22)

These results reduce to the familiar quasistatic approximations in the limit of β � 1,
but for highly relativistic charges the ~E and ~B fields are strongly “flattened” in the
direction of ~v.

On to Chapter 11: Radiation.

OUTLINE
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