

Principle of Continuity: example		
	Total Area	Flow speed
Aorta	200 mm ²	200 mm s ⁻¹
Capillaries	5.7 x 10 ⁴ mm ²	1 mm s ⁻¹

Life at low Reynolds numbers

 $D = C_d S \frac{1}{2} \rho U^2$

- Viscous
- · Difficult to produce vortices
- Efficiency of locomotion decreases
- Many organisms resort to dragging themselves through the medium
- High C_d

