
21.1. THE DIFFERENTIAL EQUATION 1

AC RC CIRCUITS

The term “AC” stands for “Alternating Current”, typ-
ically the 60 Hz power available from any North Ameri-
can electrical outlet.1 A complete discussion of AC cir-
cuits must involve the “inertial” effect of inductance,
but a useful introduction can be developed using only
capacitance C and resistance R.

We begin by picturing a generic series-RC circuit
driven by a sinusoidal voltage E(t) = E0 cos(ωt) =
< eiωt. It is convenient to use the complex form2 for
calculations; just remember that none of the actual
physical quantities like current or voltage will actu-
ally have a measurable imaginary part.3 The voltage
amplitude E0 is taken to be pure real.

Figure 21.1 An RC circuit driven by an AC voltage.

21.1 The Differential Equation

Applying Kirchhoff’s rule of single-valued potential
around this loop, we have

E − 1

C
Q−RQ̇ = 0 . (1)

When the AC power supply is first turned on, we might
expect to see some complicated behaviour that even-
tually fades away, so that the circuit can settle down
to the only plausible “steady-state” motion, namely
for Q to oscillate at the same frequency as the driv-
ing voltage. We express this expectation as a trial
solution:

Q(t) = Q0e
iωt . (2)

Bearing in mind that the constant amplitude Q0 may
not be entirely real, let’s see if this trial solution (2)
“works” — i.e. satisfies the differential equation.

1In Europe and much of Asia the standard is 50 Hz.
2Here < signifies “the real part of” a complex quantity

like eiθ = cos θ + i sin θ. The imaginary part is written
(e.g.) = eiθ = sin θ.

3Let me know if you invent an imaginary voltmeter!

One motive for using the complex exponential form is
that it is so easy to take derivatives: each time deriva-
tive of Q(t) just “pulls down” another factor of iω.
Thus

E0eiωt −
1

C
Q0e

iωt − iωRQ0e
iωt = 0 , (3)

from which we can remove the common factor eiωt and
do a little algebra to obtain

Q0 =
E0/R

1/RC + iω
=
E0/R
λ+ iω

(4)

where

λ ≡ 1

RC
≡ 1

τ
. (5)

Now, the charge on a capacitor cannot be measured
directly; what we usually want to know is the current
I ≡ Q̇. Since the entire time dependence of Q is in the
factor eiωt, we have trivially

I(t) = iωQ(t) = I0e
iωt (6)

where

I0 = iωQ0 =
iωE0/R
λ+ iω

=
E0/R

1− iλ/ω . (7)

Since everything we might want to know (E , Q and I)
has the same time dependence except for differences of
phase encoded in the complex amplitudes Q0 and I0,
we can think in terms of an effective resistance Reff

such that

E = IReff or Reff =
E0
I0

. (8)

With a little more algebra we can write the effective
resistance in the form

Reff = R− iXC (9)

where

XC ≡
1

ωC
(10)

is the capacitive reactance of the circuit. This is a
quantity that “act like” (and has the units of) a resis-
tance — just like R, the first term in Reff .

The current through the circuit cannot be different
in different places (due to charge conservation) and
follows the time dependence of the driving voltage but
(because Reff is generally complex) is not generally in
phase with it, nor with the voltage drop across C:

−∆ER = IR , but
−∆EC = −iIXC . (11)
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From Eqs. (9) and (11) one can easily deduce the phase
differences between these voltages at any time (for ex-
ample, t = π/ω) when E has its maximum negative
real value: the voltage drop across R will be real and
positive (it is always exactly out of phase with the driv-
ing voltage) but the voltage drop across the capacitor
will be in the negative imaginary direction — i.e. its
real part will be zero at that instant.

Figure 21.2 The “Phase Circle”.

A convenient way of looking at this is with the “Phase
Circle” shown in Fig. 21.2, where the “directions” of
the voltage drops in “complex phase space” are shown
as vectors. Both voltage drops “rotate” in this “phase
space” at a constant frequency ω but their phase re-
lationship is always preserved: namely, the voltage
across the capacitor lags that across the resistor by

an angle of π/2.4 At any instant the actual, measur-
able value of any voltage is just its real part, i.e. the
projection of its complex vector onto the real axis.

4There are many ways of remembering this phase rela-
tionship; I prefer to think of it this way: when the current
starts flowing there is immediately a voltage drop across
the resistor, but it takes a while to charge up the capaci-
tor, so it lags behind. Use whatever works for you.

21.2 Power

From the point of view of the power supply,5 the circuit
is a “black box” that “resists” the applied voltage with
a rather weird “back EMF” Eback given by Reff times
the current I; Eback is given by the sum of both terms
in Eq. (11) or the sum of the two vectors in Fig. 21.2.
The power dissipated in the circuit is the product of
the real part of the applied voltage6 and the real part
of the resultant current7

P (t) = <E × <I = <
(
E0eiωt

)
<
(
I0e

iωt
)

= E2
0<
(

1

Reff

)
cos2(ωt) . (12)

which oscillates at a frequency 2ω between zero and
its maximum value

Pmax = E2
0<
(

1

Reff

)
(13)

so that the average power drain is8

〈P 〉 =
1

2
E2

0

[
R

R2 +X2
C

]
. (14)

A little more algebra will yield the practical formula

〈P 〉 = ErmsIrms cosφ (15)

where Erms = E0/
√

2, Irms is the root-mean-square cur-
rent in the circuit,

cosφ =
R

Z
(16)

is the “power factor” of the RC circuit and

Z ≡
√
R2 +X2

C (17)

is the impedance of the circuit.9

This gets a lot more interesting when we add the “iner-
tial” effects of inductance to our circuit. Stay tuned.

5Please forgive my anthropomorphization of circuit el-
ements; these metaphors help me remember their “be-
haviour”.

6The imaginary voltage component doesn’t generate
any power.

7Neither does the imaginary part of the current.
8I have used

1

x+ iy
=

x− iy
x2 + y2

to obtain the real part

of 1/Reff .
9Expressing the average power dissipation in this form

allows one to think of an AC RC circuit the same way as
a DC RC circuit with the power factor as a sort of “fudge
factor”.


