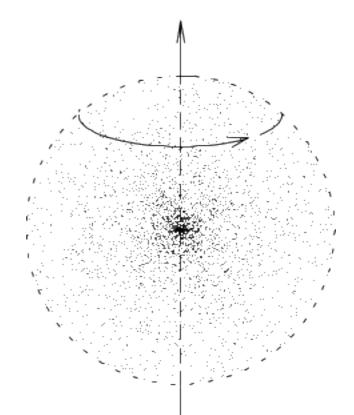

ELEMENTARY PARTICLES


The Dreams that Stuff is Made Of

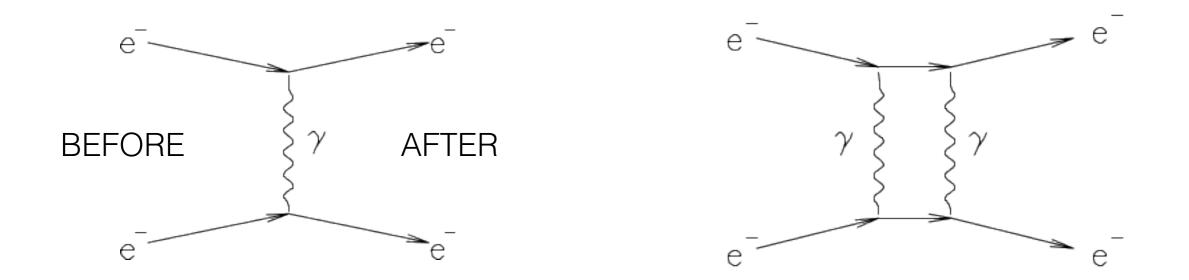
An historical introduction *ca*. 1975 by *Jess H. Brewer*

Spin

Orbital angular momentum L (left) of a charged electron implies a magnetic moment μ in the opposite direction.

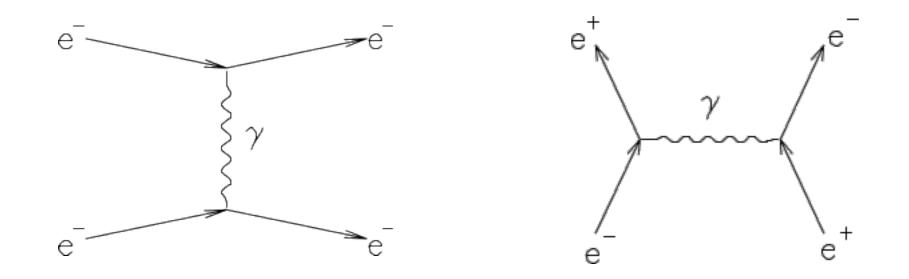
The same electron *at rest* (right) has **intrinsic** angular momentum (spin) $|S| = \frac{1}{2}\hbar$ and μ : imagine (incorrectly) charged bits of mass collapsing down to a *point particle*.

Leptons:


spin ½ point particles (fermions)

with only Electroweak Interactions

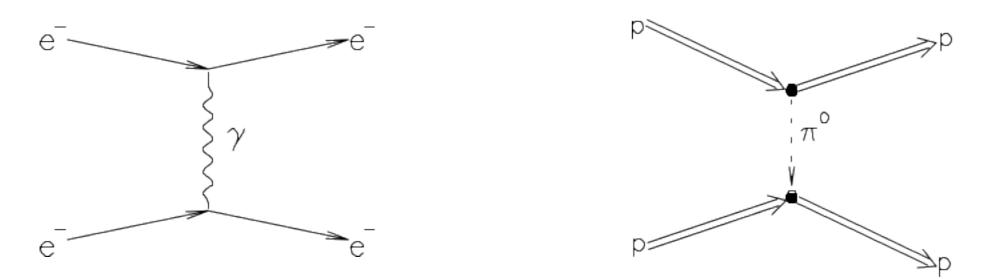
		Mass	Charge	Lifetime	Principle
PARTICLE(s)		(MeV/c^2)	Q/e	(s)	Decay Modes
electron	е	0.511	$^{-1}$	$>6 imes10^{29}$	none
e neutrino	ν_e	$< 1.7 \times 10^{-5}$	0	∞	none
muon	μ	105.66	$^{-1}$	2.2×10^{-6}	$\begin{array}{ll} \mu & \rightarrow e & + \bar{\nu}_e + \nu_\mu \\ \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu \end{array}$
μ neutrino	$ u_{\mu}$	< 0.27	0	∞	none
tau	τ	1784	$^{-1}$	3.03×10^{-13}	$\tau^- \to (\mu, e)^- + \nu_{(\mu, e)} + \nu_{\tau}$ $\tau^- \to (\text{hadron})^- + (\text{neutrals}) + \nu_{\tau}$
τ neutrino	ν_{τ}	< 35	0	∞	none


Feynman Diagrams: *Rigourous Cartoons*

QED Rules: (1) electron lines are unbroken; (2) one photon meets one electron at each vertex; (3) each new vertex adds a factor $\alpha \approx 1/137$.

Perturbation Theory: the "*second-order*" diagram (*right*) is "weaker" than the "*first-order*" diagram (*left*) by a factor of $\alpha^2 \approx 1/19,000$. "Third order" is even weaker. So you get it *about right* in one try!

Crossing Symmetry & Time-Reversed Antiparticles


The diagram on the left (two electrons exchanging a photon) is in some sense the *same* as that on the right (an electron-positron *pair* annihilating into a photon which then spontaneously turns into another pair).

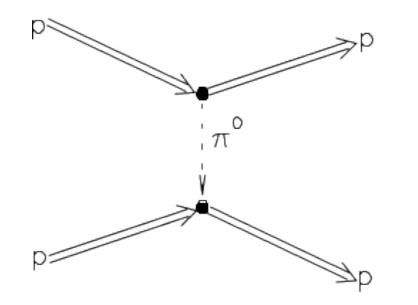
An *antiparticle* is always shown *propagating backward in time*. This is (probably) just a math convention.

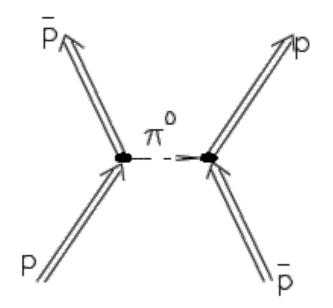
Virtual Particles: Embezzling the Energy Bank

Energy is conserved. However... Heisenberg's Uncertainty Principle $(\Delta E \Delta t \ge \frac{1}{2}\hbar)$ says that the "*uncertainty*" ΔE in your "energy bank balance"

won't be noticed as long as you only *withdraw* it for a very short time Δt .

The *photon* in the QED diagram (left) has no mass, so it doesn't get missed for a long time. Electromagnetism is therefore *long-range*. The *pion* mediating the nuclear force between two protons has an mc^2 of 135 MeV, so it has to be "re-deposited" immediately! Hence the *short range* of the nuclear force. (Lucky us!) — Hideki Yukawa, 1935


Intermediaries


Particle		Mass (GeV/c ²)	Interaction mediated	Lifetime (s)
graviton	graviton (?)		gravity	stable
photon	γ	0	electromagnetism	stable
vector boson	W^{\pm}	80.6	weak	2.93×10^{-25}
vector boson	Z^0	91.2	"	2.60×10^{-25}
pion (mainly)	(mainly) π 0.139		strong	$\pi^{\pm}: 2.6 \times 10^{-8}$ $\pi^{0}: 8.3 \times 10^{-17}$
gluon	g	0?	superstrong	?
Higgs boson	H^0	> 24	ultrastrong	?
Higgs boson	H^{\pm}	> 35	"	?

Crossing Symmetry revisited

Left: proton-proton scattering by *single pion exchange*.

Right: proton-antiproton annihilation into a *virtual* pion $\rightarrow p + \bar{p}$

Strong Interactions: *Perturbation Theory "Fails"*

Each strong *vertex* has a strength of \approx 1, so single pion exchange (left) has \approx the *same* amplitude as the complicated diagram on the right.

This stalled calculations for years and spawned Chew's *S*-matrix theory (which inspired Capra) until *QCD* resurrected Perturbation Theory. [later....]

Interactions

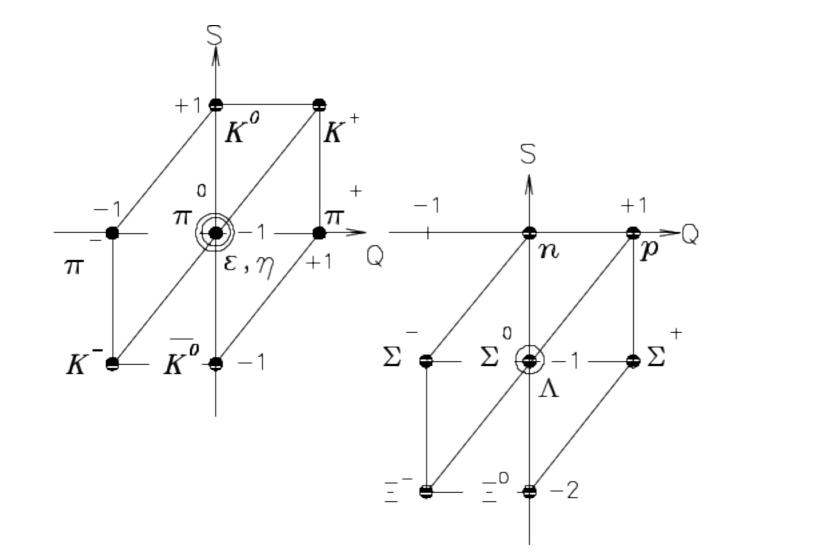
	Gravity	Super-	Weak	Electro-	Strong	Super-	Ultra-	
PARTIC		weak		magnetic		strong	strong	
gravitons		* * *						
photons	γ	yes	?	no	* * *	no	no	no
neutrinos	$ u_e, u_\mu, u_ au$	yes	?	yes	no	no	no	no
leptons	e, μ, τ	yes	?	yes	yes	no	no	no
mesons	π, K, \ldots	yes	?	yes	yes	yes	no	nö
baryons	p, n, Λ, \ldots	yes	?	yes	yes	yes	no	no
neutral kaons	K^0, \bar{K}^0	yes	yes	yes	yes	yes	no	no
vector bosons	W, Z	yes	?	* * *	yes	no	no	no
quarks	u,d,s,c,b,t	yes	?	yes	yes	no	yes	no
gluons	g	yes					* * *	
(hypothetical)	T, V	yes					₽	yes
Higgs bosons	H	yes	?					* * *
Relative s	Relative strength		?	10^{-4}	$\frac{1}{137}$	1	10-100	$> 10^{10}$?

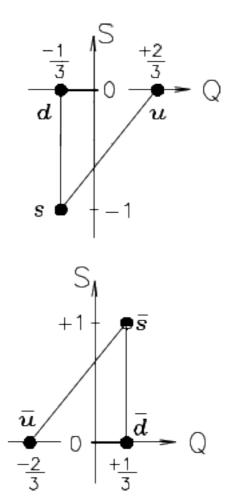
Hadrons:

strongly interacting particles MESONS

		Mass	Lifetime	Spin	Charge	Isospin	Strangeness
Name		$({\rm MeV/c^2})$	(s)	$\mathcal{J}^{\mathcal{P}}\left[\hbar ight]$	\mathcal{Q}/e	\mathcal{I}	S
MESONS:							
pion	π	139	$\pi^{\pm}: 2.6 \times 10^{-8}$ $\pi^{0}: 8.3 \times 10^{-17}$	0-	-1, 0, +1	1	0
kaon	K	495	K^{\pm} : 1.2×10^{-8} K^{0} : ambiguous	0-	-1, 0, +1	$\frac{1}{2}$	$K^0, K^+ : +1$ $\bar{K}^0, K : -1$
eta	η	549	8.9×10^{-15}	0-	0	0	0
rho	ρ	770	4.3×10^{-24}	1-	-1, 0, +1	h 1	0
omega	ω	783	$6.58 imes 10^{-23}$	1	0	0	0
phi	ϕ	1020	1.6×10^{-22}	0-	0	0	0
	K^*	892	$1.33 imes 10^{-23}$	1-	-1, 0, +1	$\frac{1}{2}$	$K^{*0}, K^{*+}: +1$ $\bar{K}^{*0}, K^{*-}: -1$
	÷	÷	E	÷	÷	÷	÷

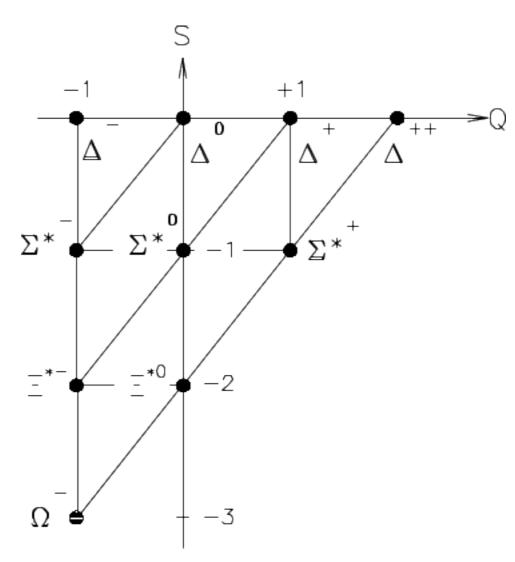
Strangeness

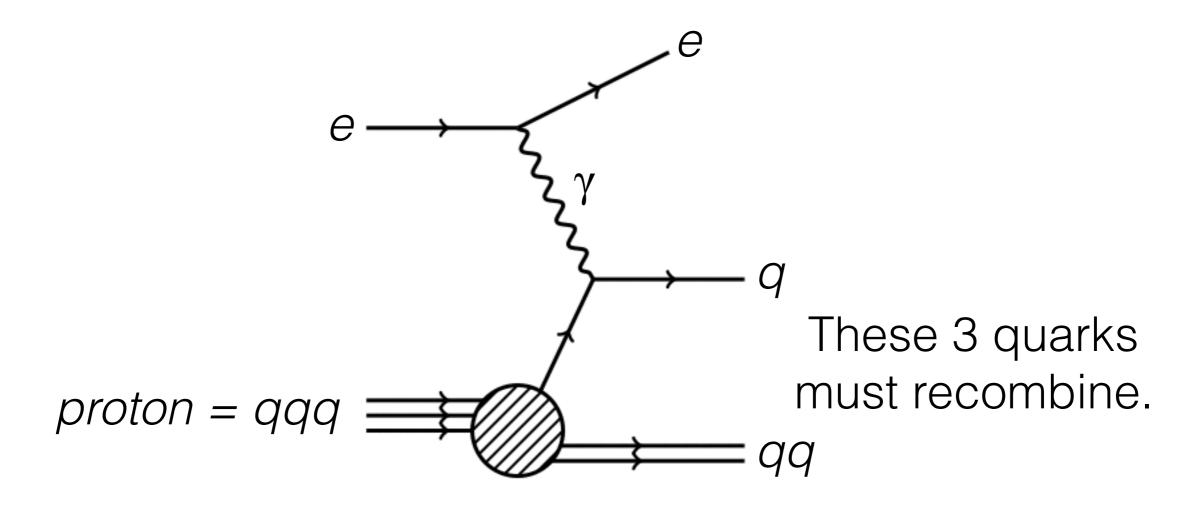

As accelerators reached higher energies, they could create heavier (and more exotic) particles, like the K^0 meson, or *kaon*, which was thought at first to be just an excited state of the pion. But there was a problem: with mc² of over 400 MeV, the neutral kaon should decay almost instantly to two pions. Instead it is remarkably stable. Usually such behaviour is indicative of a *conserved* quantity that the decay would violate. What could this strange quantity be? In wry frustration, people decided to call it **strangeness** (S). Whatever it is, kaons have it; pions don't — and while the *strong* interaction *conserves*, the weak interaction (which governs K^0 decay) does not.


More Hadrons

BARYONS

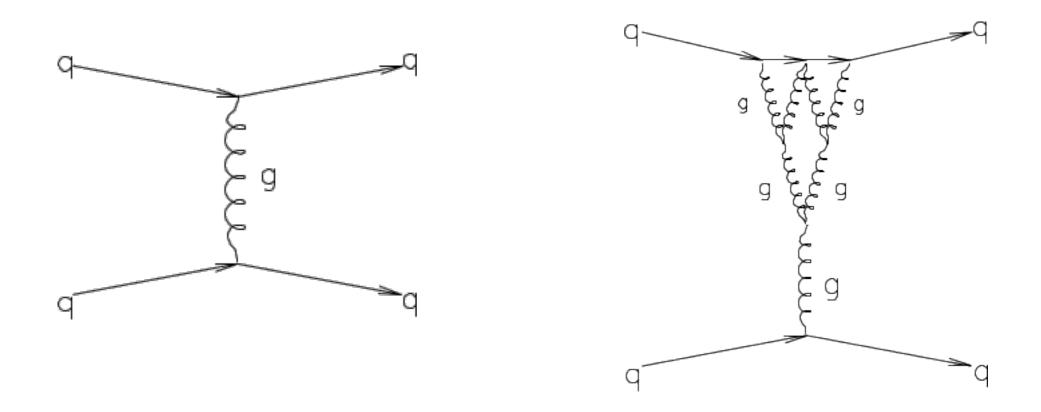
		Mass	Lifetime	Spin	Charge	Isospin	Strangeness
Name		(MeV/c^2)	(s)	$\mathcal{J}^{\mathcal{P}}\left[\hbar ight]$	\mathcal{Q}/e	I	S
BARYONS:			-				
nucleon	N	938	proton $(p) : \infty$ neutron $(n) : 920$	$\frac{1}{2}^{+}$	0, +1	$\frac{1}{2}$	0
lambda	Λ	1116	2.6×10^{-10}	$\frac{1}{2}^{+}$	0	0	$^{-1}$
sigma	Σ	1190	$\Sigma^{\pm} :\approx 10^{-10}$ $\Sigma^{0} :< 10^{-14}$	$\frac{1}{2}^{+}$	-1, 0, +1	1	-1
cascade	Ξ	1320	$\approx 2 \times 10^{-10}$	$\frac{1}{2}^{+}$	-1, 0	$\frac{1}{2}$	-2
	÷	÷	:	:	÷	÷	÷
delta	Δ	1232	$5 imes 10^{-24}$	$\frac{3}{2}^{+}$	-1, 0, +1, +2	$\frac{3}{2}$	0
	Σ^*	1383	1.6×10^{-23}	$\frac{3}{2}^{+}$	-1, 0, +1	1	-1
	Ξ*	1530	6.6×10^{-23}	$\frac{3}{2}^{+}$	-1, 0	$\frac{1}{2}$	-2
Omega	Ω	1672	$1.3 imes10^{-10}$	$\frac{3}{2}^{+}$	$^{-1}$	0	-3
	÷	:	:	:	:	÷	÷


SU(3), the Eightfold Way & Quarks


spin, U spin, V spin: they're all spins... but why "spin"?

The Omega-minus

The Ω^- (strangeness -3) was *predicted* **before** it was *seen*. This convinced everyone that SU(3) was "real".

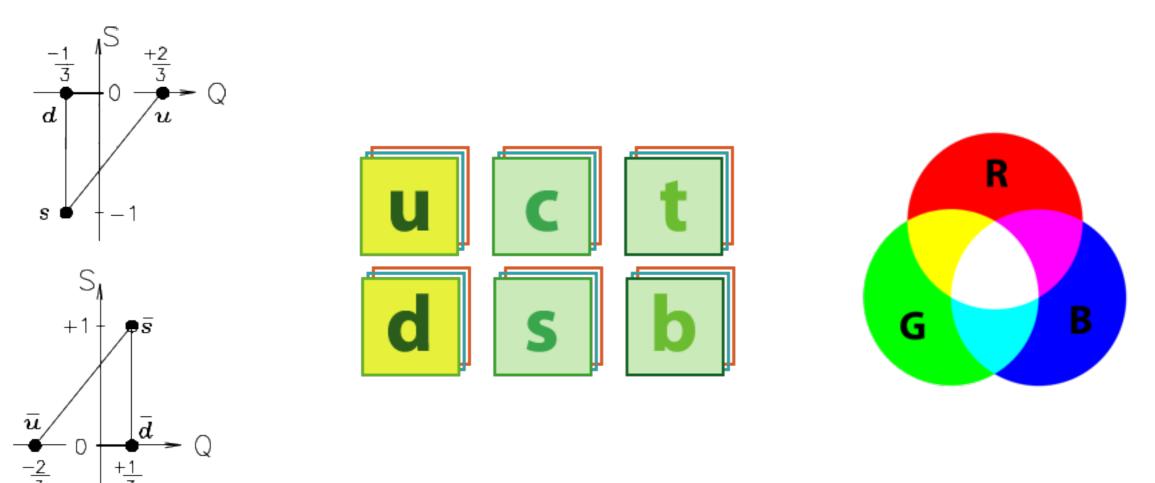

Deep Inelastic Electron Scattering

Very high energy electrons (at SLAC) scatter off individual "*partons*" in a proton. This convinces everyone(?) that "*quarks*" are "real" particles.

Confinement: No "bare" quarks!

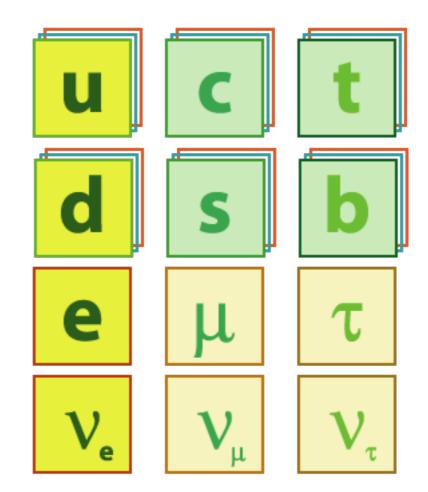
Interactions between quarks are mediated by massless(?) "*gluons*", which (unlike photons) can "branch" to *two* gluons.

As a result, the quark-quark binding force *does not drop off with distance*. The *work* done in separating a single quark *grows* until it stores enough energy to make other masses.


All the Quarks

"*Top*" & "*Bottom*" were originally called *Truth* & *Beauty*, but particle physicists got tired of all the wisecracks. There is now solid evidence that *there are no more* "*generations*".

Name		$Mass$ (MeV/c^2)	Lifetime (s)	$\begin{array}{c} \mathbf{Spin} \\ \mathcal{J}^{\mathcal{P}} \left[\hbar \right] \end{array}$	$\frac{\mathbf{Charge}}{\mathcal{Q}/e}$	$\frac{\mathbf{Isospin}}{\mathcal{I}}$	$\begin{array}{c} \mathbf{Strangeness}\\ \mathcal{S} \end{array}$
"up"	u	411?	∞ ?	$\frac{1}{2}$	$+\frac{2}{3}$	$\frac{1}{2}$	0
"down"	d	411?	∞ ?	$\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{2}$	0
"strange"	s	558?	∞ ?	$\frac{1}{2}$	$-\frac{1}{3}$	0	-1
"charm"	c	$\geq 1500?$	∞ ?	$\frac{1}{2}$	$+\frac{2}{3}$	0	b 0
"bottom"	b	?	∞ ?	$\frac{1}{2}$	$-\frac{1}{3}$	0	0
"top"	t	?	∞ ?	$\frac{1}{2}$	$+\frac{2}{3}$	0	0


Quantum ChromoDynamics

Each quark (or antiquark) comes in 3 "*colours*" (not really colour — that's just a mnemonic *metaphor* to remind us that they "add up" to a "colourless" total).

The Standard Model

6 quarks, 6 leptons & all their antiparticles, plus the various force-carrying intermediaries = *all there is!* (?)

