ELEMENTARY PARTICLES

The Dreams that Stuff is Made Of

An historical introduction ca. 1975
by Jess H. Brewer

Spin

Orbital angular momentum \boldsymbol{L} (left) of a charged electron implies a magnetic moment $\boldsymbol{\mu}$ in the opposite direction.

The same electron at rest (right) has intrinsic angular momentum (spin) $|\boldsymbol{S}|=1 / 2 \hbar$ and $\boldsymbol{\mu}$: imagine (incorrectly) charged bits of mass collapsing down to a point particle.

Leptons:

spin ½ point particles
 (fermions)

with only Electroweak Interactions

PARTICLE(s)		Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Charge \mathcal{Q} / e	Lifetime (s)	Principle Decay Modes
electron	e	0.511	-1	$>6 \times 10^{29}$	none
eneutrino	ν_{e}	$<1.7 \times 10^{-5}$	0	∞	none

Feynman Diagrams: Rigourous Cartoons

QED Rules: (1) electron lines are unbroken; (2) one photon meets one electron at each vertex; (3) each new vertex adds a factor $\alpha \approx 1 / 137$.

Perturbation Theory: the "second-order" diagram (right) is "weaker" than the "first-order" diagram (left) by a factor of $\alpha^{2} \approx 1 / 19,000$. "Third order" is even weaker. So you get it about right in one try!

Crossing Symmetry
 \& Time-Reversed Antiparticles

The diagram on the left (two electrons exchanging a photon) is in some sense the same as that on the right (an electron-positron pair annihilating into a photon which then spontaneously turns into another pair).

An antiparticle is always shown propagating backward in time. This is (probably) just a math convention.

Virtual Particles:

Embezzling the Energy Bank

Energy is conserved. However... Heisenberg's Uncertainty Principle ($\Delta E \Delta t \geq 1 / 2 \hbar$) says that the "uncertainty" ΔE in your "energy bank balance" won't be noticed as long as you only withdraw it for a very short time Δt.

The photon in the QED diagram (left) has no mass, so it doesn't get missed for a long time. Electromagnetism is therefore long-range. The pion mediating the nuclear force between two protons has an $m c^{2}$ of 135 MeV , so it has to be "re-deposited" immediately! Hence the short range of the nuclear force. (Lucky us!) - Hideki Yukawa, 1935

Intermediaries

Particle		Mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	Interaction mediated	Lifetime (s)
graviton	$(?)$	0	gravity	stable
photon	γ	0	electromagnetism	stable
vector boson	$W^{ \pm}$	80.6	weak	2.93×10^{-25}
vector boson	Z^{0}	91.2	$\prime \prime$	2.60×10^{-25}
pion (mainly)	π	0.139	strong	$\pi^{ \pm}: 2.6 \times 10^{-8}$ $\pi^{0}: 8.3 \times 10^{-17}$ Higon
Higgs boson	$H^{ \pm}$	>35	$0 ?$	superstrong

Crossing Symmetry revisited

Left: proton-proton scattering by single pion exchange.
Right: proton-antiproton annihilation into a virtual pion $\rightarrow p+\bar{p}$

Strong Interactions: Perturbation Theory "Fails"

Each strong vertex has a strength of ≈ 1, so single pion exchange (left) has \approx the same amplitude as the complicated diagram on the right.

This stalled calculations for years and spawned Chew's S-matrix theory (which inspired Capra) until QCD resurrected Perturbation Theory. [later....]

Interactions

PARTIC	LE(s)	Gravity	Superweak	Weak	Electromagnetic	Strong	Superstrong	Ultrastrong
gravitons		***						
photons	γ	yes	?	no	***	no	no	no
neutrinos	$\nu_{e}, \nu_{\mu}, \nu_{\tau}$	yes	?	yes	no	no	no	no
leptons	e, μ, τ	yes	?	yes	yes	no	no	no
mesons	π, K, \ldots	yes	?	yes	yes	yes	no	no
baryons	p, n, Λ, \ldots	yes	?	yes	yes	yes	no	no
neutral kaons	K^{0}, \bar{K}^{0}	yes	yes	yes	yes	yes	no	no
vector bosons	W, Z	yes	?	***	yes	no	no	no
quarks	u, d, s, c, b, t	yes	?	yes	yes	no	yes	no
gluons	g	yes					* * *	
(hypothetical)	T, V	yes					1	yes
Higgs bosons	H	yes	?					***
Relative strength		10^{-40}	?	10^{-4}	$\frac{1}{137}$	1	10-100	$>10^{10}$?

Hadrons:

strongly interacting particles

MESONS

Name		Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Lifetime (s)	$\left.\begin{array}{c}\text { Spin } \\ \mathcal{J}^{\mathcal{P}}\end{array} \hbar\right]$	Charge \mathcal{Q} / e	Isospin \mathcal{I}	Strangeness \mathcal{S}
MESONS:							
pion	π	139	$\pi^{ \pm}: 2.6 \times 10^{8}$ $\pi^{0}: 8.3 \times 10^{-17}$	0^{-}	$-1,0,+1$	1	0
kaon	K	495	$K^{ \pm}: 1.2 \times 10^{-8}$ $K^{0}:$ ambiguous	0^{-}	$-1,0,+1$	$\frac{1}{2}$	$K^{0}, K^{+}:+1$
eta	η	549	8.9×10^{-15}	0^{-}	0	0	0
rho	ρ	770	4.3×10^{-24}	1^{-}	$-1,0,+1$	1	0
omega	ω	783	6.58×10^{23}	1	0	0	0
phi	ϕ	1020	1.6×10^{-22}	0^{-}	0	0	0
	K^{*}	892	1.33×10^{-23}	1^{-}	$-1,0,+1$	$\frac{1}{2}$	$K^{* 0}, K^{*+}:+1$
	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	$K^{* 0}, K^{*-}:-1$

Strangeness

As accelerators reached higher energies, they could create heavier (and more exotic) particles, like the K^{0} meson, or kaon, which was thought at first to be just an excited state of the pion. But there was a problem: with $m c^{2}$ of over 400 MeV , the neutral kaon should decay almost instantly to two pions. Instead it is remarkably stable. Usually such behaviour is indicative of a conserved quantity that the decay would violate. What could this strange quantity be? In wry frustration, people decided to call it strangeness (S). Whatever it is, kaons have it; pions don't - and while the strong interaction conserves \boldsymbol{S}, the weak interaction (which governs K^{0} decay) does not.

More Hadrons

BARYONS

Name	Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Lifetime (s)	$\left.\begin{array}{c}\text { Spin } \\ \mathcal{J}^{\mathcal{P}}\end{array} \hbar\right]$	Charge \mathcal{Q} / e	Isospin \mathcal{I}	Strangeness \mathcal{S}	
BARYONS:							
nucleon	N	938	proton $(p): \infty$ neutron $(n): 920$	$\frac{1}{2}^{+}$	$0,+1$	$\frac{1}{2}$	0
lambda	Λ	1116	2.6×10^{-10}	$\frac{1}{2}^{+}$	0	0	-1
sigma	Σ	1190	$\Sigma^{ \pm}: \approx 10^{10}$	$\frac{1}{2}^{+}$	$-1,0,+1$	1	-1
cascade	Ξ	1320	$\approx 2 \times 10^{-10}$	$\frac{1}{2}^{+}$	$-1,0$	$\frac{1}{2}$	-2
	\vdots	\vdots	\vdots	$\Sigma^{0}:<10^{-14}$	\vdots	\vdots	\vdots
delta	Δ	1232	5×10^{-24}	$\frac{3}{2}^{+}$	$-1,0,+1,+2$	$\frac{3}{2}$	\vdots
	Σ^{*}	1383	1.6×10^{-23}	$\frac{3}{2}^{+}$	$-1,0,+1$	1	0
Omega	Ω	1672	1.3×10^{10}	$\frac{3}{2}^{+}$	-1	-1	
	Ξ^{*}	1530	6.6×10^{-23}	$\frac{3}{2}^{+}$	$-1,0$	$\frac{1}{2}$	-2
	\vdots	\vdots	\vdots	\vdots	\vdots	0	-3

SU(3), the Eightfold Way \& Quarks

I spin, U spin, V spin: they're all spins... but why "spin"?

The Omega-minus

The Ω^{-}(strangeness -3) was predicted before it was seen.
This convinced everyone that $\operatorname{SU}(3)$ was "real".

Deep Inelastic Electron Scattering

These 3 quarks must recombine.

Very high energy electrons (at SLAC) scatter off individual "partons" in a proton. This convinces everyone(?) that "quarks" are "real" particles.

Confinement: No "bare" quarks!

Interactions between quarks are mediated by massless(?) "gluons", which (unlike photons) can "branch" to two gluons.

As a result, the quark-quark binding force does not drop off with distance. The work done in separating a single quark grows until it stores enough energy to make other masses.

All the Quarks

"Top" \& "Bottom" were originally called Truth \& Beauty, but particle physicists got tired of all the wisecracks. There is now solid evidence that there are no more "generations".

Name		Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Lifetime (s)	$\left.\begin{array}{c}\text { Spin } \\ \mathcal{J}^{\mathcal{P}}\end{array} \hbar\right]$	Charge \mathcal{Q} / e	Isospin \mathcal{I}	Strangeness \mathcal{S}
"up"	u	$411 ?$	$\infty ?$	$\frac{1}{2}$	$+\frac{2}{3}$	$\frac{1}{2}$	0
"down"	d	$411 ?$	$\infty ?$	$\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{2}$	0
"strange"	s	$558 ?$	$\infty ?$	$\frac{1}{2}$	$-\frac{1}{3}$	0	-1
"charm"	c	$\geq 1500 ?$	$\infty ?$	$\frac{1}{2}$	$+\frac{2}{3}$	0	10
"bottom"	b	$?$	$\infty ?$	$\frac{1}{2}$	$-\frac{1}{3}$	0	0
"top"	t	$?$	$\infty ?$	$\frac{1}{2}$	$+\frac{2}{3}$	0	0

Quantum ChromoDynamics

Each quark (or antiquark) comes in 3 "colours" (not really colour - that's just a mnemonic metaphor to remind us that they "add up" to a "colourless" total).

The Standard Model

6 quarks, 6 leptons \& all their antiparticles, plus the various force-carrying intermediaries = all there is!

