Linear Superposition of Waves

The overall amplitude A(x,t) at a given time and place is just the sum of the amplitudes $A_i(x,t)$ of independently propagating waves.

For two waves,

$$A_1 \exp\left[i\left(k_1 x - \omega_1 t + \varphi_1\right)\right] \quad \text{and} \quad A_2 \exp\left[i\left(k_2 x - \omega_2 t + \varphi_2\right)\right],$$
$$A(x,t) = A_1 e^{i\theta_1} + A_2 e^{i\theta_2}$$

where $\theta_1 = k_1 x - \omega_1 t + \varphi_1$ and $\theta_2 = k_2 x - \omega_2 t + \varphi_2$.

This is boring unless θ_1 differs from θ_2 . There are 2 ways this happens:

- Frequency Differences: beats $(\omega_1 \approx \omega_2)$ or standing waves $(\omega_1 = -\omega_2)$
- Phase Differences: $(\varphi_1 \neq \varphi_2)$ which may have various causes.

 $\Delta \theta \equiv \theta_1 - \theta_2 = 2\pi n \quad \text{gives constructive interference.}$ $\Delta \theta \equiv \pi(2n+1) \quad \text{gives destructive interference.}$

Standing Waves

Sum of two equal-amplitude waves of the same frequency and wavelength traveling in opposite directions ($\omega_1 = -\omega_2$).

Beats

$$\psi(t) = A \left[e^{i\omega_1 t} + e^{i\omega_2 t} \right]$$
$$\omega_1 = \omega + \Omega, \quad \omega_2 = \omega - \Omega$$

$$\psi(t) = [2A\cos\Omega t] e^{i\omega t}$$

Normally we perceive "the intensity" as the time average of the square of the instantaneous amplitude.

Reflection

Note: reflection always occurs at any interface between two media.

Reflection off a denser medium causes a phase reversal: $\Delta \phi = \pi$

Reflection off a less dense medium causes none: $\Delta \varphi = 0$

Refraction

Snell's Law

Consider the case where the wave enters a "denser" medium (one where it propagates slower): define the index of refraction

 $n \equiv c/c' \geq 1.$

The line AB is the hypoteneuse of both right triangles:

 $\lambda = AB \sin \theta$ and $\lambda' = AB \sin \theta'$

so $\lambda/\lambda' = \sin\theta/\sin\theta'$ or,

since $\lambda/\lambda' = c/c' \equiv n$,

 $\sin \theta / \sin \theta' = c / c' \equiv n$.

Thin Film Interference

We always draw the reflected and refracted rays at a small angle to the normal so that the two reflected rays (1 & 2) can be shown separately; but

in reality we are always talking about normal incidence.

To decide if rays 1 & 2 are in phase or out of phase, we add up their phase differences. Upon reflection, if $n_{\rm B} > n_{\rm A}$, ray 1 experiences a phase shift of π ; ray 2 has a similar phase shift if $n_{\rm C} > n_{\rm B}$. Then the path length difference (2d) gives a phase difference of $\Delta \theta_{\rm path} = 2\pi (\Delta \ell / \lambda_{\rm B})$ where $\lambda_{\rm B}$ is the wavelength in medium B. Let's suppose $n_{\rm C} > n_{\rm R} > n_{\rm A}$

so that both reflected rays get the same "phase flip". Then the path length difference of 2d is the only source of $\Delta\theta = 2\pi (2d/\lambda_B)$.

If $d = \lambda_B/4$ (what we call a "quarter-wave plate") then rays 1 & 2 will interfere destructively, giving minimum reflection & maximum transmission. This is used in "anti-glare" coatings on windows, glasses and camera lenses.

HUYGENS' PRINCIPLE:

"All points on a wavefront can be considered as *point sources* for the production of *spherical secondary wavelets*. At a later time, the new position of the wavefront will be the *surface of tangency* to these secondary wavelets."

Waves coming through a small gap in a seawall:

Waves coming through 2 small gaps in a seawall:

Waves coming through 4 small gaps in a seawall:

Waves coming through 8 small gaps in a seawall (not shown):

Waves coming through 16 small gaps in a seawall:

Begins to look more like one big gap....

(This is what we call "diffraction".)

"Central Maximum"

Waves bend around corners!

Two-Slit Interference

