Linear Superposition of Waves

The overall amplitude $A(x, t)$ at a given time and place is just the sum of the amplitudes $A_{i}(x, t)$ of independently propagating waves.

For two waves,

$$
\begin{gathered}
A_{1} \exp \left[\mathrm{i}\left(k_{1} x-\omega_{1} t+\varphi_{1}\right)\right] \text { and } A_{2} \exp \left[\mathrm{i}\left(k_{2} x-\omega_{2} t+\varphi_{2}\right)\right], \\
A(x, t)=A_{1} \mathrm{e}^{\mathrm{i} \theta_{1}}+A_{2} \mathrm{e}^{\mathrm{i} \theta_{2}}
\end{gathered}
$$

where

$$
\theta_{1}=k_{1} x-\omega_{1} t+\varphi_{1} \quad \text { and } \quad \theta_{2}=k_{2} x-\omega_{2} t+\varphi_{2} .
$$

This is boring unless θ_{1} differs from θ_{2}. There are 2 ways this happens:

- Frequency Differences: beats $\left(\omega_{1} \approx \omega_{2}\right)$ or standing waves $\left(\omega_{1}=-\omega_{2}\right)$
- Phase Differences: $\left(\varphi_{1} \neq \varphi_{2}\right)$ which may have various causes.

$$
\begin{array}{cl}
\Delta \theta \equiv \theta_{1}-\theta_{2}=2 \pi n & \text { gives constructive interference. } \\
\Delta \theta=\pi(2 n+1) & \text { gives destructive interference. }
\end{array}
$$

Standing Waves

Sum of two equal-amplitude waves of the same frequency and wavelength traveling in opposite directions $\left(\omega_{1}=-\omega_{2}\right)$.

Beats

$$
\begin{gathered}
\psi(t)=A\left[e^{i \omega_{1} t}+e^{i \omega_{2} t}\right] \\
\omega_{1}=\omega+\Omega, \quad \omega_{2}=\omega-\Omega
\end{gathered}
$$

$$
\psi(t)=[2 A \cos \Omega t] \mathrm{e}^{\mathrm{i} \omega t}
$$

Normally we perceive "the intensity" as the time average of the square of the instantaneous amplitude.

Reflection

Note: reflection always occurs at any interface between two media.
Reflection off a denser medium causes a phase reversal: $\Delta \varphi=\pi$
Reflection off a less dense medium causes none: $\Delta \varphi=0$

Refraction

Snell's Law

Consider the case where the wave enters a "denser" medium (one where it propagates slower): define the index of refraction

$$
n \equiv c / c^{\prime} \geq 1
$$

The line $A B$ is the hypoteneuse of both right triangles:
$\lambda=A B \sin \theta$ and $\lambda^{\prime}=A B \sin \theta^{\prime}$
so $\lambda / \lambda^{\prime}=\sin \theta / \sin \theta^{\prime}$ or,
since $\lambda / \lambda^{\prime}=c / c^{\prime} \equiv n$,

$$
\sin \theta / \sin \theta^{\prime}=c / c^{\prime} \equiv n
$$

Thin Film Interference

We always draw the reflected and refracted rays at a small angle to the normal so that the two reflected rays (1 \& 2) can be shown separately; but in reality we are always talking about normal incidence.

To decide if rays $1 \& 2$ are in phase or out of phase, we add up their phase differences. Upon reflection, if $n_{B}>n_{A}$, ray 1 experiences a phase shift of π; ray 2 has a similar phase shift if $n_{C}>n_{B}$. Then the path length difference (2d) gives a phase difference of $\Delta \theta_{\text {path }}=2 \pi\left(\Delta l / \lambda_{B}\right)$ where λ_{B} is the wavelength in medium B. Let's suppose $n_{C}>n_{B}>n_{A}$ so that both reflected rays get the same "phase flip". Then the path length difference of $2 d$ is the only source of $\Delta \theta=2 \pi\left(2 d / \lambda_{B}\right)$.
If $d=\lambda_{B} / 4$ (what we call a "quarter-wave plate") then rays $1 \& 2$ will interfere destructively, giving minimum reflection \& maximum transmission. This is used in "anti-glare" coatings on windows, glasses and camera lenses.

Huygens' Principle:

"All points on a wavefront can be considered as point sources for the production of spherical secondary wavelets. At a later time, the new position of the wavefront will be the surface of tangency to these secondary wavelets."

Waves coming through a small gap in a seawall:

Waves coming through 2 small gaps in a seawall:

Waves coming through 4 small gaps in a seawall:

Waves coming through 8 small gaps in a seawall (not shown):

Waves coming through 16 small gaps in a seawall:

Begins to look more like one big gap....

(This is what we call "diffraction".)

- "Central Maximum"

Two-Slit Interference

"Ray" formulation

