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FALLING BODIES

Now that we have mastered all sorts of Alge-
bra and Calculus skills, it is time to get on
with Newtonian Mechanics, Gravitation, Cos-
mology and all that, right?

Gee, I sure wish it were true.

Although (I hope you will agree) there are
some interesting historical and perceptual
lessons to be learned from Newton’s Mechan-
ics, it is generally rated as one of the more bor-
ing topics in Physics;1 worse yet, we are not yet
ready for Newton — “You have to creep before
you can crawl,” as it were. And in this busi-
ness “creeping” is the business of Kinematics

— the study of motion per se.

Besides, before we go on to expound Newton’s
“Laws” in their modern form we will need to
have a chapter on vectors, since forces are clas-
sic examples of vectors — i.e. they have both
magnitude and direction.2

6.1 Galileo

As I warned the reader in several places earlier,
I am no historian. However, I do have many

1This is partly because everyone is so anxious to “get
on to the good stuff” that they are predisposed to give
a rather superficial treatment to Mechanics; and partly
because most beginning Physics courses are expected to
produce graduates who can actually calculate tensions in
wires, whether boxes will slide off trucks and other prac-
tical things like that. Fortunately, I don’t care whether
you can do that stuff or not, except for a few simple exam-
ples for the sake of illustration and familiarization. This
book may help you build a bridge in your back yard, but
honestly I think there are much more useful study aids for
developing such skills. What I am after is just to get you
familiar enough with the paradigms of Mechanics to allow
bootstrapping on to the next stage.

2This is also true of distance, velocity and acceleration,
which are the topics of this Chapter; but we have to start
somewhere.

traits in common with real Historians; in par-
ticular, I like to construct theories of “what
probably really happened” to fit my own inter-
pretation of the historical “data.” Physicists
also like this sort of revisionism, but I think
we are mercifully more shameless and direct
about it. [“Yeah, OK, I lied; but it was a good

lie — doesn’t it make everything easier to un-
derstand?”] With this caveat, I will relate a bit
of Brewer’s History of Classical Mechanics.

Galileo Galilei (1564-1642) was a clever Ital-
ian megalomaniac who took pleasure in pub-
licly ridiculing his intellectual opponents and
regarded the authorities as annoying buffoons
to be manipulated by any means available in
order to obtain funding for his pet projects.
He thus epitomized a fine tradition which con-
tinues to this day. Galileo is widely cred-
ited with being “the Father of Modern Sci-
ence” because of the experimental æsthetics
he championed3 and because of the impact of
his major work, Two New Sciences [mechan-
ics and the strength of materials], published
in 1636 — the same year that Harvard Uni-
versity was founded. I am inclined to think
that his distinctive personality and style had
just as much to do with his deserving this ti-
tle; today these traits are still apt to improve
the bearer’s chances for distinction by various
prizes and accolades.

6.1.1 Harvard?

Rather than reproduce the list of Galileo’s
adventures available in any textbook with
even a pretense of historical perspective, I
will mention one amusing claim that I heard
somewhere:4 when Galileo got into trouble
with the Church over his heretical views5 he
was offered a faculty position at a new Uni-
versity in another country where the Roman

3Often referred to as the “Scientific Method,” about
which I will have more to say later on.

4You real Historians go check this out!
5Actually they would probably have left him alone if

he hadn’t been so obnoxious about publicly rubbing their
noses in it.
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Church was not all that popular — the school
in question was Harvard.6

6.1.2 Weapons Research: Telescopes

and Trajectories

Ever the Modern Physicist, Galileo recognized
clearly that the big money and prestige were in
military applications of science. In those days
the new weapons technology was cannons and
how to aim them more accurately at targets.
His contributions to this art took two main
forms: the first was his invention of the mag-

nifying telescope, with which it was possible to
identify targets at great range and assess the
damage done to them by one’s cannonballs.
To be fair, I should point out that this in-
vention was warmly received by seafarers and
astronomers as well as generals; in fact, with
it Galileo himself made famous and wonder-
ful observations of the Moon, the “Galilean”
moons (named after guess whom) of Jupiter
and numerous other objects in our Solar Sys-
tem, thereby initiating the modern pastime of
Planetology that recently culminated in the
fantastic close-up views of the outer planets
and their satellites by Terran space probes.
One can easily imagine how ridiculous the
Church’s Ptolemaic ergocentric model of the
Heavens must have seemed to Galileo after
watching so many other planets execute their
orbits as clearly visible globes lit on the Sun
side.7 There are two sides to every coin.

Galileo’s second contribution to the art of ar-
tilliery was his formal explication of the be-

6One imagines Galileo’s response was, “I’m not that

desperate.” In those days Harvard had presumably not yet
acquired much of a reputation. It is amusing to speculate
on how much more classic an example of the Modern Physi-
cist he would have made had Galileo accepted this offer of
a New World professorship.

7The astronomical observations of Tycho Brahe and Jo-
hannes Kepler empirically obliterated the Ptolemaic sys-
tem in favour of a correct heliocentric model of the So-
lar system at about the same time as Galileo took on the
Church in Italy; I am not certain how much interaction
there was between these apparently separate battles. More
on this later.

haviour of falling bodies, of which cannon
and musket balls were oft-mentioned exam-
ples. Galileo “showed”8 that the velocity of a
falling body increases by equal increments in
equal times (in the absence of friction), which
is the definition of a state of constant acceler-
ation.

Constant Acceleration

In terms of our newly-acquired left hemisphere
skills, if we use y to designate height [say,
above sea level] and t to designate time, then
the upward velocity vy [where the subscript
tells us explicitly that this is the upward veloc-
ity as opposed to the horizontal velocity which
would probably be written vx]

9 is given by

vy = vy0
− gt (1)

where vy0
is the initial10 upward velocity (i.e.

the upward velocity at t = 0), if any,11 and g
8There is room for argument over whether he really

“showed” this, both from a Popperian purist’s point of view
[you can never verify a conjecture, only refute it] and from
the point of view of the very æsthetic he helped to popu-
larize — namely, that you shouldn’t “fudge” your results
and that other people should be able to reproduce them. It
is, however, certainly true that he made a very persuasive

case for the economy and utility of this confessed overide-
alization; and this is, after all, the true measure of any
theory!

9Why not just call it v, if I am not going to be talking
about any of the horizontal stuff? Well, this is a pretty
simple equation, so I am going to “stack” it with lessons in
notation which will serve to make its meaning absolutely
unambiguous (subject to all these explanations) and to in-
troduce fine points I will be needing shortly anyway.

10Note: generally any symbol with a subscript 0 (read
“nought” as in x0 = “x nought”) designates an initial value

of the subscripted symbol — i.e. the value at t = 0. (We
stop short of writing t0 for the initial time, in most cases,
because we usually don’t need any further redundancy to
make the the description completely general.) Thus x may
be a variable, a function of time x(t), but its initial value
x0 ≡ x(0) is a constant, a parameter of its evolution in
time. Since we will often talk about the final value of some
variable (e.g. xf ) at time tf (at the end of some process),
using the subscript f to designate “final,” it is equally logi-
cal to use a subscript i for “initial,” so that the value of x(t)
at t = 0 would be written xi — this notation is perfectly

synonymous with the “nought” notation: x0 ≡ xi and the
two may be used interchangably according to taste.

11Lots of people leave out the vy0
in order to keep it sim-

pler, but of course that would be tantamount to assuming
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is the downward12 acceleration of gravity, g ≈
9.81 m/s2 on average at the Earth’s surface.13

Another way of writing the same equation is
in terms of the derivative of the velocity with
respect to time,

ay ≡
dvy

dt
≡ v̇y = −g, (2)

where I have introduced yet another nota-
tional convention used by Physicists: a little
dot above a symbol means the time deriva-

tive of that symbol — i.e. the rate of change
(per unit time) of the quantity represented by
that symbol.14 And since vy is itself the time
derivative of the height y [i.e. vy ≡ dy/dt ≡ ẏ],
if we like we can write the original equation as

ẏ = vy0
− gt. (3)

All these notational gymnastics have several
purposes, one of which is to make you ap-
preciate the simple clarity of the declaration,
“The vertical speed increases by equal incre-
ments in equal times,” as originally stated by
Galileo himself. But I also want you to see
how Physicists like to condense their notation
until a very compact equation “says it all.”

that we were starting from rest, which ain’t necesarily so!
Why oversimplify an already simple equation?

12Note that the conventional choice of “up” as being the
positive y direction forces us to put the acceleration of
gravity into the equation with a minus sign, since it is in
the “down” direction. Sometimes people try to make this
look simpler for beginners by defining down as the +y di-
rection, but I like to get across as early as possible that a
negative acceleration simply means an acceleration in the
direction opposite to the one we arbitrarily defined to be
positive. The same is true of any quantity (e.g. the velocity
or the position) that has a direction as well as a magnitude;
this idea is vital to an understanding of vectors, which are
coming up soon!

13What?! How come I don’t give g to a huge number of
significant figures, with an uncertainty specified, as one is
supposed to do for fundamental constants? Because g is
neither fundamental nor constant! Far from it. More on
this later.

14I will soon need the analogous notation ẍ ≡ d2x/dt2

to signify the second time derivative of x, so that ay ≡

dvy/dt ≡ d2y/dt2 ≡ ÿ. The “double-dot” form is the pre-
ferred Physics notation for acceleration, mainly for reasons
of economy (it takes so few strokes to write).

The Principles of Inertia and Superposi-

tion

Galileo was actually the first to write down
“Newton’s” celebrated First Law, in a form
slightly different from Newton’s but just as
good:15

Galileo’s Principle of Inertia:

A body moving on a level surface

will continue in the same direction

at constant speed unless disturbed.

Note the term “body” employed in order to be
deliberately vague about what sort of entities
the Principle is meant to apply to. This term is
retained in the language of modern Mechanics.
It means, more or less, “a massive thing that
hangs together.” Note also the other ringers,
“level surface” and “unless disturbed.” Per-

fectly level surfaces are mighty hard to come
by, but Galileo means, of course, a hypotheti-

cal perfectly level surface. More serious is the
vagueness of “unless disturbed.” This can eas-
ily be used to make the argument circular: if
the body’s velocity changes direction or mag-
nitude, it is because it is “disturbed.” Well. . . .
Newton invented a new concept to make “dis-
turbance” a little more specific.

The other important insight Galileo saw fit to
enshrine as a Principle was

Galileo’s Principle of Superposition:

If a body is subjected to two sep-

arate influences, each producing a

characteristic type of motion, it re-

sponds to each without modifying

its response to the other.

15This is translated from the Italian by someone else; I
can’t vouch for the translation but I am confident that it
gets the right idea across and I am not much interested
in quibbles over the exact wording or what it might have
meant about Galileo’s “authentic originality.”
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This, like the other Principle, seems transpar-
ently obvious to Modern eyes,16 but without it
one would never know how to start applying
Galileo’s simplified kinematics to the practical
problem of trajectories. Again there is a lit-
tle sloppiness to the Principle that allows for
counterexamples; no doubt Galileo had to rely
regularly on the most honest of all appeals:
“You know what I mean.”

Calculating Trajectories

Applied to the case of trajectories close to the
Earth’s surface,17 the equations governing con-
stant horizontal velocity superimposed upon
constant downward acceleration take the form

ẍ = 0 (4)

ẋ = vx0
(constant) (5)

x = x0 + vx0
t (6)

and (7)

ÿ = −g (8)

ẏ = vy0
− g t (9)

y = y0 + vy0
t −

1

2
g t2(10)

where

ẍ ≡
d2x

dt2
≡

dvx

dt
≡ v̇x ≡ ax, (11)

ẋ ≡
dx

dt
≡ vx, (12)

ÿ ≡
d2y

dt2
≡

dvy

dt
≡ v̇y ≡ ay (13)

and ẏ ≡
dy

dt
≡ vy (14)

Hold it! Before you bolt for the door, take
a moment to casually read through all these
horrible-looking equations. I have made them
look long and hirsute on purpose, for two rea-
sons: first, because this way they are in their

16This may well be a good measure of the brilliance of
an insight.

17E.g., cannonballs! This sort of “techno doubletalk” is
not always used for obfuscation [I, for instance, am simply
trying to be general!] but Pentagon aides trying to be
Generals are very fond of it too.

most general form — i.e. we can be confident
that these equations will correctly describe any

trajectory problem, but for any actual problem
the equations will usually simplify ; and sec-
ond, because this is a sort of practical joke —
if you look carefully you will see that the equa-
tions are really pretty simple! All those “≡”
symbols just mean, “. . . another way of putting
it, which amounts to exactly the same thing,
is. . . .” That is, they just indicate equivalent

notations — or, in the language of linguistics,
synonyms. So the latter batch of equations is
just reminding you of the convention Physi-
cists use for writing time derivatives: “dot”
and “double-dot” notation. The first batch
of equations tells you (in this notation) every-

thing there is to know about the motion: the
horizontal [x] motion is not under any accel-
eration [ax ≡ ẍ = 0] so the horizontal velocity
[vx ≡ ẋ] is constant [ẋ = vx0

] and the distance
travelled horizontally [x(t)] is just increasing
linearly with time t relative to its initial value
x0 — i.e. x = x0 + vx0

t. The vertical mo-
tion differs only in that it includes a constant
downward acceleration [ay ≡ ÿ = −g] which
adds a term [−gt] to ẏ and another familiar
term [−1

2
gt2] to y(t). Note that in every case

the whole idea is to get the quantity on the
left-hand side [lhs] of the equation equal to an
explicit function of t on the right-hand side
[rhs].
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Let’s do a problem to illustrate how these equations work: Suppose we fire a cannon horizontally
from the top of a 19.62 m high bluff, imparting an initial velocity vx0

= 10 m/s to the cannonball.
[By the definition of “horizontal,” vy0

= 0.] Where does the ball hit? [We neglect air friction and
assume level (horizontal) ground at the bottom of the bluff.] For simplicity we can take x = 0

Figure 6.1 (a) Sketch of a trajectory problem in which the initial height [y0 = 19.62 m] and the
initial (horizontal) velocity [vx0

= 10 m/s] are given and we want to calculate the horizontal
distance [xf ] at which the cannonball hits the ground [yf = 0]. (b) Corresponding plot of y(x),
the trajectory followed by the cannonball.

at the muzzle of the cannon;18 similarly, we (naturally enough) take t = 0 to be the instant at
which the ball leaves the muzzle of the cannon. Our general equations now “reduce” to a more
particular set of equations for this specific example:

x = vx0
t and y = y0 −

1

2
g t2

or, since vx0
= 10 m/s and y0 = 19.62 m,

x = (10m/s) t and y = (19.62m) −
1

2
(9.81m/s2) t2

We now have a choice between working out the algebra in the first pair of equations or working
out the arithmetic in the second pair. The former is preferable partly because we don’t have
to “juggle units” while we work out the equations (a clumsy process which is usually neglected,
leading to equations with numbers but no units, which in turn can lead to considerable confusion)
and because solving for xf in terms of the two “parameters” y0 and vx0

[g is also a parameter,
although we usually treat it as if it were a constant of Nature] gives an “answer” to any such

problem with qualitatively similar conditions. Here’s the algebra:

x = vx0
t =⇒ t =

x

vx0

which can be substituted for t in the second equation, giving

y = y0 −
1

2
g

[

x

vx0

]2

.

18(This is typical — we always make as many simplifications as the arbitrariness of the notation allows!)
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We are interested in the value of xf at the end of the trajectory — i.e. when yf = 0:

yf = 0 = y0 −
1

2
g

[

xf

vx0

]2

=⇒ y0 =
1

2
g

x2

f

v2
x0

=⇒
2y0

g
=

x2

f

v2
x0

=⇒
2y0 v2

x0

g
= x2

f =⇒ xf =

√

2y0 v2
x0

g
.

Now we “plug in” y0 = 19.62 m, vx0
= 10 m/s and g = 9.81 m/s2, giving

xf =

√

√

√

√

2 × 19.62m × [10m/s]2

9.81m/s2
=

√

√

√

√

2 × 2 × 9.81 × 100m3/s2

9.81m/s2
=

√
400m2 = 20m.

And that’s the answer: xf = 20 m. Simple, huh?

6.2 The Scientific Method

One often hears that “the modern Scientific Method” can be traced back to Galileo, who first
prescribed the panacea of “Observe, Hypothesize, Experiment and Confirm.” This is complete
nonsense.19

First of all, people have been doing more or less the same thing since before the Dawn of Recorded
History;20 Galileo just grabbed the headlines when there was first Good Press to get! He was a
hero, true, in that he championed the arrogance of thinking for oneself against formidable odds
and outlined a procedure for doing it successfully (i.e. getting away with it) for which we all
are in his debt. But he could hardly claim a patent on the idea.

Second, Galileo’s Scientific Method, like his Mechanics, was an idealization of an imperfect
experimental reality. As discussed earlier, we cannot Observe without relying upon our repertoire

of models through which we interpret our sense data; the phrase, “Seeing is believing,” betrays
a profound naiveté if we consider carefully what we know about the retina, the optic nerve and
the visual cortex. We may Hypothesize freely, but only the most righteous scientists are actually
honest about when their hypotheses were formed — before or after the experiment!21 The one
part of Galileo’s prescription that we truly took to heart was the exhortation to Experiment —
i.e. to go directly to Nature with our questions about “what will happen if we. . . ?” Asking such
questions in a form that Nature will deign to answer unambiguously is a profound art indeed;
a lifetime is too short to learn it in. Finally, Galileo can be considered charmingly naive in
his expectation that Experimentation will be able to Confirm any Hypothesis. As Karl Popper
has pointed out, there is no logical basis upon which any “general explanatory theory” can be
proven correct by any finite number of experiments; the best we can hope for is a Conjecture
which is “not yet Refuted” by the evidence, and this is impressive only if there is a lot of
non-contradictory evidence!

19By now, you no longer need to be reminded that such comments are “in my humble opinion.”
20Why not the Sunset of Recorded History, I sometimes wonder?
21Newton, whom we often picture as the gardener who brought Galileo’s seeds to flower, is also famous for his arrogant

statement [a blatant lie], “Hypotheses non fingo,” or “I do not make conjectures.” (What a jerk!)
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So the revised version of the “Scientific
Method” should read something like this:

1. Based on a lifetime of experience, form
a Hunch.

2. Using a trained analytical mind, re-
fine the Hunch into a well-posed
Hypothesis.22

3. Think of a few Consequences of the Hy-
pothesis that lead to Predictions that
can be tested by Experiment.23

4. Perform a Gedankenexperiment24 to vi-
sualize the results you should expect to
get under different circumstances.

5. Design a real Experiment, if possible, to
produce the most clear and unambiguous
results25 possible.

6. Descend to the level of grubby so-
ciopoliticoeconomic reality to seek fund-
ing, recruit personnel, fight battles for
priority, coordinate with engineers, con-
struct several versions of the apparatus
(all but the last of which do not work),
tinker with balky equipment, coax plau-
sible results out of partially recorded
data, argue with collaborators about
procedure and interpretation, etc., for as
long as it takes to get the Experiment
done [which may exceed your lifespan in
certain disciplines].

22This is not as easy as it sounds. Most Hunches do not
survive close examination; they usually contain irreducible
internal inconsistencies or self-contradictions that may, at
best, lead the Scientist back to a completely new Hunch.

23This is also harder than it sounds. Many Hypothe-
ses have no testable Consequences at all; most of the rest
could be tested in principle but might require manipulation
of galaxies or reenactments of the Big Bang to produce un-
ambiguous experimental results.

24I.e., a “thought experiment.” This term was invented
by Albert Einstein, I believe, but the technique is as old as
Humanity — this was the approved methodology of Aris-
totelian science, and is still a great boon to research funding
agencies!

25I.e., those most commensurate with conventional mod-
els and paradigms, either pro or con the Predictions of the
Hypothesis.

7. Publish a Result (or Results) — often
determined by “consensus” [i.e. poli-
tics] among Collaborators — and let the
Community decide what it means.

8. Go back to Step 1, if you did not already
do so earlier.

Of course, these are the rules for a Professional
Scientist; if you are content to remain an Am-
ateur, the Scientific Method is a little simpler:

Think for yourself.

In all the above arguments, there is an implicit
assumption that we usually do not discuss:
namely, that there is an “external” Real World
independent of our perceptions and models
that behaves the way it does regardless of
our expectations or observations — that we
can, at least in spirit, set ourselves apart from
The World as mere observers of its behaviour.
Even in Classical Mechanics this is an obvious
idealization, but perhaps a conscionable one.
In Quantum Mechanics (as we shall see) this
basic view of the Experimenter as Observer is
challenged at its roots! Nevertheless there are
things we can do which seem like Observations
and which we will have to use to “pull our-
selves up by the bootstraps” if we are to even
grasp what Quantum Mechanics has to tell us.
So, for the time being, I encourage you to steep
yourself in the traditional æsthetic of Exper-
imental Science and try to be as “objective”
and “non-interfering” as possible in making (or
imagining) your Experimental Observations.

6.3 The Perturbation Paradigm

Galileo “demonstrated” the phenomenon of
constant acceleration using a water clock and
a ball rolling down an inclined groove. In my
experience, even with modern equipment it is
difficult to obtain decent data on this sort of



8

phenomenon; and even these data are typically
not consistent with a true state of constant ac-
celeration! There is no doubt that Galileo was
quite aware of these flaws in his description; he
was also quite happy to consign them to the
realm of the “non-ideal” — i.e. the deviations
from his predictions were due to imperfections

in the ramp and the disturbance of the motion
by the presence of air. Galileo argued that
the results of a falling-body experiment per-
formed underwater would be a lot worse than
those of his experiments in air, so that one
merely needed to extrapolate to no medium at

all (i.e. perfect vacuum) to obtain results in
perfect agreement with his predictions!

This overtly Platonic idealism was not new;
but Galileo had hit upon a “good” approxi-
mation — one which actually did work better
and better as the circumstances got closer and
closer to a well-defined ideal case. The correc-
tions could be regarded as negligible pertur-

bations upon an “essentially correct” idealiza-
tion, to be beaten into submission either by
improvement of the apparatus or by laborious
calculations.

Thus began what I call the “Perturbation
Paradigm” of Physics. This simple prescrip-
tion — find a nice simple model that does
“pretty well” and then “fix up” its inadequa-
cies with a series of corrections or “perturba-
tions” — is so powerful that we Physicists use
it on almost everything. The recent history
of elementary particle physics gives a particu-
larly poignant example of how a problem that
was seemingly intractable by this perturbative
method (and which promised for a while to
lead us into genuinely new ways of thinking,
which might have been nice for a change) was
finally recast into a form that allowed applica-
tion of the Perturbation Paradigm after all. I
will suppress the urge to tell you about it now.
But just wait!


