"Theory of Everything"

VS.

EMERGENCE

Is the whole really greater than the sum of its parts?

- Jess Brewer

What is Reductionism?

Wikipedia:

"Reductionism ... does not preclude the existence of what might be termed emergent phenomena, but it does imply the ability to understand those phenomena completely in terms of the processes from which they are composed.
"This reductionist understanding is very different from emergentism, which intends that what emerges in 'emergence' is more than the sum of the processes from which it emerges."

Mathematically,

$$
X>\sum_{\forall i} \Delta X_{i} \quad \text { makes no sense and is patently wrong. }
$$

(the sum of the parts do not imply the whole).

Or maybe Mathematics (the preferred language of Physics) is intrinsically Reductionist, which inclines physicists toward that outlook. ??

Let's look at some examples...

"just mathematics": Julia Sets

\longrightarrow Plot a complex number \boldsymbol{z}, then square it and subtract a constant \boldsymbol{c} to get a new \boldsymbol{z} value.

Repeat.

I could have predicted the Fractional Quantum Hall Effect from Quantum ElectroDynamics...

Emergence vs. Temperature

Nuclei

Atoms

Biology

Solids
Freeman Dyson, "Time without end: Physics \& biology in an open universe",

FQHE

Standard Model of Elementary Particles

The Physical World
The Aesthetic World

just as

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk Ll Mm Nn Oo Pp Qq Rr Ss Tt Uu VvWw Xx Yy Zz
$+$
$\mathrm{A} \alpha \mathrm{B} \boldsymbol{\beta} \boldsymbol{\Gamma} \boldsymbol{\gamma} \boldsymbol{\Delta} \boldsymbol{\delta} \mathbf{E \varepsilon} \mathbf{Z} \zeta \mathbf{H \eta} \boldsymbol{\Theta} \boldsymbol{\theta} \mathbf{I t}$ Кк $\Lambda \lambda \mathrm{M} \mu \mathrm{Nv} \boldsymbol{\Xi} \xi \mathrm{Oo} \Pi \pi \operatorname{P\rho } \boldsymbol{\Sigma \sigma} \mathbf{T} \tau \mathrm{v}$ $\Phi \varphi \mathbf{X} \boldsymbol{\chi} \Psi \psi \Omega \omega$

ULYSSES

HARRY POTTER AND THE METHODS OF RATIONALITY
by Eliezer Yudkowsky
$+$

"Magical Thinking"

- Clarke's Third Law: "Any sufficiently advanced technology is indistinguishable from magic."
- Critics complain that this encourages an attitude of, "If it's too complicated to understand, we might as well treat it as magic - i.e. intrinsically incomprehensible."
- Obviously many phenomena that once appeared "magical" are now at least partially explained.
- But what's wrong with "magical thinking" as a provisional outlook? (What is the alternative?)

Brewer's Conclusion:

Even when the emergent entity is composed of known subunits and their known interactions, and could be predicted to appear spontaneously if only we understood those subunits and their interactions well enough to see all their potentialities - and even if we are able to "explain" the emergent entity "after the fact" in terms of said subunits and interactions - until then it is sensible to treat the whole as greater than the sum of its parts.

This implies that

* Emergence is often temporary.
* Emergence is usually personal.

Further Reading

- https://en.wikipedia.org/wiki/Emergence
- https://en.wikipedia.org/wiki/Mereology
- Robert W. Batterman, "The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emergence"
- ... and references therein.

Further

Duck of Vaucansen \& Descartes' automata
from Wikipedia page on Reductionism

Image Created by Hiroki Sayama, D.Sc., Collective Dynamics of Complex Systems (CoCo) Research Group at Binghamton University, State University of New York, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12191267

