
21.1. THE DIFFERENTIAL EQUATION 1

AC CIRCUITS

The term “AC” stands for “Alternating Current”, typ-
ically the 60 Hz power available from any North Amer-
ican electrical outlet.1

21.1 The Differential Equation

We begin by picturing a generic series-LCR circuit
driven by a sinusoidal voltage E(t) = E0 cos(ωt) =
< eiωt. It is convenient to use the complex form2 for
calculations; just remember that none of the actual
physical quantities like current or voltage will actu-
ally have a measurable imaginary part.3 The voltage
amplitude E0 is taken to be pure real.

Figure 21.1 An LCR circuit driven by an AC voltage.

Applying Kirchhoff’s rule of single-valued potential
around this loop, we have

E − LQ̈− 1

C
Q−RQ̇ = 0 . (1)

When the AC power supply is first turned on, we gen-
erally have a very complicated behaviour involving the
resonant (or “natural”) frequency

ω0 ≡
1√
LC

(2)

and the damping rate

γ ≡ R

2L
=

1

2τ
RL

, (3)

just like the damped mass on a spring when an oscil-
latory driving mechanism is applied. If there were no
resistor in the circuit, this “ringing” would go on in-
definitely; but with the damping caused by R it even-
tually dies away and the circuit settles down to the

1In Europe the standard is 50 Hz.
2Here < signifies “the real part of” a complex quantity

like eiθ = cos θ + i sin θ. The imaginary part is written
(e.g.) = eiθ = sin θ.

3Let me know if you invent an imaginary voltmeter!

only plausible “steady-state” motion, namely for Q to
oscillate at the same frequency as the driving voltage:

Q(t) = Q0e
iωt . (4)

Bearing in mind that the constant amplitude Q0 may
not be entirely real, let’s see if this trial solution (4)
“works” — i.e. satisfies the differential equation. One
motive for using the complex exponential form is that
it is so easy to take derivatives: each time derivative
of Q(t) just “pulls down” another factor of iω. Thus

E0eiωt+ω2LQ0e
iωt− 1

C
Q0e

iωt− iωRQ0e
iωt = 0 , (5)

from which we can remove the common factor eiωt and
do a little algebra to obtain

Q0 =
E0/L

1
LC − ω2 + iRLω

(6)

or [recalling the definitions (2) and (3)]

Q0 =
E0/L

ω2
0 − ω2 + 2iγω

. (7)

Now, the charge on a capacitor cannot be measured
directly; what we usually want to know is the current
I ≡ Q̇. Since the entire time dependence of Q is in the
factor eiωt, we have trivially

I(t) = iωQ(t) = I0e
iωt (8)

where

I0 = iωQ0 =
iωE0/L

ω2
0 − ω2 + 2iγω

. (9)

Since everything we might want to know (E , Q and I)
has the same time dependence except for differences of
phase encoded in the complex amplitudes Q0 and I0,
we can think in terms of an effective resistance Reff

such that

E = IReff or Reff =
E0
I0

. (10)

With a little more algebra we can write the effective
resistance in the form

Reff = R− iXC + iXL (11)

where

XC ≡
1

ωC
and XL ≡ ωL (12)

are respectively the capacitive reactance and the in-
ductive reactance of the circuit. These are quantities
that “act like” (and have the units of) resistances —
just like R, the first term in Reff .

The current through the circuit cannot be different
in different places (due to charge conservation) and
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follows the time dependence of the driving voltage but
(because Reff is generally complex) is not generally in
phase with it, nor with voltage drops across C and L:

−∆ER = IR , but
−∆EC = −iIXC and
−∆EL = +iIXL . (13)

From Eqs. (11) and (13) one can easily deduce the
phase differences between these voltages at any time
(for example, t = π/ω) when E has its maximum neg-
ative real value: the voltage drop across R will be real
and positive (it is always exactly out of phase with the
driving voltage) but the voltage drop across the induc-
tance will be in the positive imaginary direction — i.e.
its real part will be zero at that instant, as will that of
the voltage drop across the capacitor, which is then in
the negative imaginary direction.

Figure 21.2 The “Phase Circle”.

A convenient way of looking at this is with the “Phase
Circle” shown in Fig. 21.2, where the “directions” of
the voltage drops in “complex phase space” are shown
as vectors. All three voltage drops “rotate” in this
“phase space” at a constant frequency ω but their
phase relationship is always preserved: namely, the
voltage across the capacitor lags that across the re-
sistor by an angle of π/2 and the voltage across the
inductance leads that across the resistor by an angle
of π/2.4 At any other instant the real, measurable

4There are many ways of remembering this phase re-
lationship; I am not particularly fond of “ELI the ICE
Man” because it refers only to the current and voltage in
individual circuit elements and it has no explanatory as-
pect whatsoever. I prefer to think of it this way: when the
current starts flowing there is immediately a voltage drop
across the resistor, but it takes a while to charge up the
capacitor, so it lags behind; the inductance, on the other
hand, “fights” the establishment of a current in the first
place, so it is ahead of the current. Use whatever works
for you.

value of any of these voltages is just its real part, i.e.
the projection of its complex vector onto the real axis.

21.2 Power

From the point of view of the power supply,5 the circuit
is a “black box” that “resists” the applied voltage with
a rather weird “back EMF” Eback given by Reff times
the current I; Eback is given by the sum of all three
terms in Eq. (13) or the sum of the three vectors in
Fig. 21.2. The power dissipated in the circuit is the
product of the real part of the applied voltage6 and
the real part of the resultant current7

P (t) = <E × <I = <
(
E0eiωt

)
<
(
I0e

iωt
)

= E2
0<
(

1

Reff

)
cos2(ωt) . (14)

which oscillates at a frequency 2ω between zero and
its maximum value

Pmax = E2
0<
(

1

Reff

)
(15)

so that the average power drain is8

〈P 〉 =
1

2
E2

0

[
R

R2 + (XL −XC)2

]
. (16)

A little more algebra will yield the practical formula

〈P 〉 = ErmsIrms cosφ (17)

where Erms = E0/
√

2, Irms is the root-mean-square cur-
rent in the circuit,

cosφ =
R

Z
(18)

is the “power factor” of the RC circuit and

Z ≡
√
R2 + (XL −XC)2 (19)

is the impedance of the circuit.9

5Please forgive my anthropomorphization of circuit el-
ements; these metaphors help me remember their “be-
haviour”.

6The imaginary voltage component doesn’t generate
any power.

7Neither does the imaginary part of the current.
8I have used

1

x+ iy
=

x− iy
x2 + y2

to obtain the real part

of 1/Reff .
9Expressing the average power dissipation in this form

allows one to think of an AC circuit the same way as a DC
circuit with the power factor as a sort of “fudge factor”.


