
12.1. \SOLVING" THE MOTION 1
Equations of MotionIn the previous chapter we explored the processof emergence of new paradigms in Mechanics,using various mathematical identities to trans-form Newton's Second Law into new equa-tions whose left- and right-hand sides were givennames of their own, like impulse, momentum,work, energy, torque and angular momentum.Eighteenth-Century physicists then learned tomanipulate these \new" concepts in ways thatgreatly clari�ed the behaviour of objects in thematerial universe. As a result, previously mys-terious or counterintuitive phenomena began tomake sense in terms of simple, easy-to-use mod-els, rather than long involved calculations. Thisis the essence of what Physics is all about. Wework hard to make todays's di�cult tasks easier,so that we will have more free time and energytomorrow to work hard to make tomorrow's dif-�cult tasks easier, so that. . . .Meanwhile, these new words made their wayinto day-to-day language and introduced newparadigms into society, whose evolution in \TheAge of Reason" might have followed other pathswere it not for Newton's work.1 The e�ects of amore versatile and e�ective science of Mechanicswere also felt in blunt practical terms: combinedwith the new science of Thermodynamics (to bediscussed in a later chapter), Mechanics madepossible an unprecedented growth of Mankind'sability to push Nature around by brute force,a pro�table enterprise (in the short term) thatled to the Industrial Revolution. Suddenly peo-ple no longer had to accept what Nature dealt,which enhanced their health and wealth consid-erably | but in taking new cards they found1Then again, maybe subtle sociological evolution had al-ready made these changes inevitable and Newton was just thevehicle through which the emergent paradigms of the day in-�ltrated the world of science. Let's do the Seventeenth andEighteenth Centuries over again without Newton and see howit comes out!

they also had a new dealer who was more mer-ciless than Nature had ever been: Greed.Here arises a perennial question: are the evils of\technology abuse," from pollution to exploita-tion to weapons of war, the \fault" of scientistswho create the conceptual tools that make tech-nology possible?2 My own opinion is that wescientists have a responsibility for our creationsin much the same way that parents have a re-sponsibility for their children: we try to pro-vide a wholesome and enlightened atmospherein which they can grow and ful�ll all their po-tential, o�ering our guidance and advice when-ever it will be accepted, and setting the bestexample we can; but in the end ideas are likepeople | they will determine their own destiny.The best scientists can do to guide the impact oftheir ideas on society is to make sure the individ-ual members of society have the opportunity tolearn about those ideas. Whether anyone takesadvantage of that opportunity or not is out ofour control. Whether irresponsible or malign in-dividuals make evil use of our ideas is also outof our control, though we can do our best todissuade them.312.1 \Solving" the MotionGetting back to the subject of Mechanics. . .One of the reasons the paradigms in the pre-vious chapter emerged was that physicists werealways trying to \solve" certain types of \prob-lems" using Newton's Second Law,4F = m �x2I presume that I do not need to point out the distinctionbetween Science and Technology. Even though politiciansseem to be fond of the word \scienceandtechnology," I feelsure my readers are intelligent enough to �nd such a juxta-position humourous.3Some people feel that we should be prevented from hav-ing new ideas until those ideas have been \cleared" as in-nocuous. This would be hilarious if it weren't so dangerous.4Let's limit our attention to one dimensional problems forthe duration of this chapter, to keep things simple and avoidthe necessity of using vector notation.



2This equation can be written�x = 1m F (1)to emphasize that it described a relationship be-tween the acceleration �x, the inertial coe�cientm [usually constant] and the force F . It isconventional to call an equation in this form the\equation of motion" governing the problemat hand. When F is constant [as for \local"gravity] the \solution" to the equation of mo-tion is the well-known set of equations governingconstant acceleration, covered in the chapter onFalling Bodies. Things are not always thatsimple, though.Sometimes the problem is posed in such a waythat the force F is explicitly a function of time,F (t). This is not hard to work with, at leastin principle, since the equation of motion (1) isthen in the form �x = 1m F (t) (2)which can be straightforwardly integrated [as-suming one knows a function whose time deriva-tive is F (t)] using the formal operationv(t) � _x � Z t0 �x dt = 1m Z t0 F (t) dt (3)| which, when multiplied on both sides by m,leads to the paradigm of Impulse and Momen-tum.In other cases the problem may be posed in sucha way that the force F is explicitly a functionof position, F (x). Then the equation of motionhas the form �x = 1m F (x) (4)which can be converted without too much trou-ble [using the identity a dx = v dv ] into theparadigm of Work and Energy.12.1.1 Timing is Everything!If the equation of motion is the \question," whatconstitutes an \answer"? Surely the most con-

venient thing to know about any given problemis the explicit time dependence of the position,x(t), because if we want the velocity v(t) � _x,all we have to do is take the �rst time deriva-tive | which may not be entirely trivial but isusually much easier than integrating! And if wewant the acceleration a(t) � _v � �x, all we haveto do is take the time derivative again. Once youhave found the acceleration, of course, you alsoknow the net force on the object, by Newton'sSecond Law. A problem of this sort is there-fore considered \solved" when we have discov-ered the explicit function x(t) that \satis�es"the equation of motion.For example, suppose we know thatx(t) = x0 cos(!t); (5)where ! is some constant with units of radi-ans/unit time, so that !t is an angle. The timederivative of this is the velocity_x � v(t) = �! x0 sin(!t)[look it up if needed] and the time derivative ofthat is the acceleration�x � _v � a(t) = �!2 x0 cos(!t):Note that the right-hand side of the last equa-tion is just �!2 times our original formula forx(t), so we can also write�x = �!2 x: (6)Multiplying through both sides by the mass mof the object in motion givesma = F = �m!2 x;which ought to look familiar to you: it is justHooke's Law with a force constant k = m!2.Rearranging this a little gives! = qk=m;which may also look familiar. . . . More on thislater. Note, however, that we can very easily de-duce what is going on in this situation, includingthe type of force being applied, just from know-ing x(t). That's why we think of it as \thesolution."



12.1. \SOLVING" THE MOTION 312.1.2 Canonical VariablesLet's write the equation of motion in a general-ized form, �q = 1m F (7)where I have used \q" as the \canonical coordi-nate" whose second derivative (�q) is the \canoni-cal acceleration." Normally q will be the spatialposition x [measured in units of length like me-tres or feet], but you have already seen one case(rotational kinematics) in which \q" is the angle� [measured in radians], \m" is the moment ofinertia IO and \F" is the torque �O; then acompletely analogous set of equations pertains.This turns out to be a quite common situation.Can we describe simply how to go about for-mulating the equations of motion for \systems"that might even be completely di�erent from thestandard objects of Classical Mechanics?In general there can be any number of canoni-cal coordinates qi in a given \system" whosebehaviour we want to describe. As long as wehave an explicit formula for the potential energyV in terms of one or more qi, we can de�ne thegeneralized force Qi = �@V@qi (8)If we then generalize the \inertial coe�cient"m ! �, we can write out ith equation ofmotion in the form �qi = Qi� (9)which in most cases will produce a valid andworkable solution. There is an even more gen-eral and elegant formulation of the canonicalequations of motion which we will discuss to-ward the end of this chapter.I am not really sure how the term canonicalcame to be fashionable for referring to this ab-straction/generalization, but Physicists are allso fond of it by now that you are apt to hear

them using it in all their conversations to meansomething like archetypal: \It was the canonicalGovernment coverup. . . " or \This is a canonicalcocktail party conversation. . . ."12.1.3 Di�erential EquationsWhat we are doing when we \solve the equa-tion of motion" is looking for a \solution" [inthe sense de�ned above] to the di�erential equa-tion de�ned by Eq. (7). You may have heardhorror stories about the di�culty of \solving dif-ferential equations," but it's really no big deal;like long division, basically you can only use atrial-and-error method: does this function havethe right derivative? No? How about this one?And so on. Obviously, you can quickly learn torecognize certain functions by their derivatives;more complicated ones are harder, and it doesn'ttake much to stump even a seasoned veteran.The point of all this is that \solving di�eren-tial equations" is a di�cult and arcane art onlyif you want to be able to solve any di�erentialequation; solving the few simple ones that oc-cur over and over in physics is no more tediousthan remembering multiplication tables. Someof the other commonly-occuring examples havealready been mentioned.12.1.4 Exponential FunctionsYou have seen the procedure by which anew function, the exponential function q(t) =q0 exp(kt), was constructed from a power seriesjust to provide a solution to the di�erential equa-tion _q = k q. (There are, of course, other waysof \inventing" this delightful function, but I likemy story.) You may suspect that this sort ofprocedure will take place again and again, aswe seek compact notation for the functions that\solve" other important di�erential equations.Indeed it does! We have Legendre polynomi-als, various Bessel functions, spherical harmon-ics and many other \named functions" for just



4this purpose. But | pleasant surprise! | wecan get by with just the ones we have so far foralmost all of Newtonian Mechanics, provided weallow just one more little \extension" of the ex-ponential function. . . .Frequency = Imaginary Rate?Suppose we have q(t) = q0e�t:It is easy to take the nth time derivative of thisfunction | we just \pull out a factor �" n times.For n = 2 we get �q = �2q0e�t or just�q = �2q: (10)Now go back to the example \solution" inEq. (5), which turned out to be equivalent toHookes's law [Eq. (6)]: �x = �!2 x, where! = qk=m and k and m are the \spring con-stant" and the mass, respectively.Equations (10) and (6) would be the same equa-tion if only we could let q � x and �2 = �!2.Unfortunately, there is no real number whosesquare is negative. Too bad. It would be aw-fully nice if we could just re-use that familiarexponential function to solve mass-on-a-springproblems too. . . . If we just use a little imagi-nation, maybe we can �nd a � whose square isnegative. This would require having a numberwhose square is �1, which takes so much imag-ination that we might as well call it i. If therewere such a number, then we could just write� = i!: (11)That is, the rate � in the exponential formulawould have to be an \imaginary" version of thefrequency ! in the oscillatory version, whichwould mean (if the solution is to be unique) thatei!t = cos!t:It's not.Oh well, maybe later. . . .

12.2 Mind Your p's and q's!Earlier we introduced the notion of canonical co-ordinates qi and the generalized forces Qi de-�ned by the partial derivatives of the potentialenergy V with respect to qi. I promised thenthat I would describe a more general prescrip-tion later. Well, here it comes!If we may assume that both the potential en-ergy V (qi; _qi) and the kinetic energy T (qi; _qi)are known as explicit functions of the canonicalcoordinates qi and the associated \canonicalvelocities" _qi, then it is useful to de�ne theLagrangian functionL(qi; _qi) � T (qi; _qi) � V (qi; _qi) (12)in terms of which we can then de�ne the canon-ical momenta pi � @L@ _qi (13)These canonical momenta are then guaranteedto \act like" the conventional momentum m _xin all respects, though they may be somethingentirely di�erent.How do we obtain the equations of motion in thisnew \all-canonical" formulation? Well, Hamil-ton's Principle declares that the motion ofthe system will follow the path qi(t) for whichthe \path integral" of L from initial time t1to �nal time t2,I = Z t2t1 L dt (14)is an extremum [either a maximum or a mini-mum]. There is a very powerful branch of math-ematics called the calculus of variations that al-lows this principle to be used5 to derive the La-grangian equations of motion,_pi = @L@qi (15)Because the \q" and \p" notation is alwaysused in advanced Classical Mechanics courses5Relax, we aren't going to do it here.



12.2. MIND YOUR P 'S AND Q'S! 5to introduce the ideas of canonical equations ofmotion, almost every Physicist attaches specialmeaning to the phrase, \Mind your p's andq's." Now you know this bit of jargon andcan impress Physicist friends at cocktail parties.More importantly, you have an explicit prescrip-tion for determining the equations of motion ofany system for which you are able to formulateanalogues of the potential energy V and thekinetic energy T .There is one last twist to this canonical businessthat bears upon greater things to come. That isthe procedure by which the description is re-castin a form which depends explicitly upon qi andpi, rather than upon qi and _qi. It turns outthat if we de�ne the Hamiltonian functionH(qi; pi) � Xi _qi pi � L(qi; _qi) (16)then it is usually true thatH = T + V (17){ that is, the Hamiltonian is equal to the totalenergy of the system! In this case the equationsof motion take the form_qi = @H@pi and _pi = �@H@qi (18)So what? Well, we aren't going to crank out anyexamples, but the Lagrangian and/or Hamil-tonian formulations of Classical Mechanics arevery elegant (and convenient!) generalizationsthat let us generate equations of motion forproblems in which they are by no means self-evident. This is especially useful in solving com-plicated problems involving the rotation of rigidbodies or other problems where the motion ispartially constrained by some mechanism [usu-ally an actual machine of some sort]. It shouldalso be useful to you, should you ever decide toapply the paradigms of Classical Mechanics tosome \totally inappropriate" phenomenon likeeconomics or psychology. First, however, youmust invent analogues of kinetic energy V and

potential energy T and give formulae for howthey depend upon your canonical coordinatesand velocities or momenta.Note the dramatic paradigm shift from the forceand mass of Newton's Second Law to a com-plete derivation in terms of energy in \mod-ern" Classical Mechanics. It turns out that thisshift transfers smoothly into the not-so-classicalrealm of Quantum Mechanics, where theHamiltonian H takes on a whole new mean-ing.


