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Celestial Mechanics

One of the triumphs of Newton’s Mechanics
was that he was able, using only his Laws of

Motion and a postulated Universal Law

of Gravitation, to explain the empirical
Laws of Planetary Motion discovered by
Johannes Kepler. [Clearly there was a great
deal more respect for Law in those days than
there is now!] Although the phenomenology
of orbits (circular, elliptical and hyperbolic)
would appear to be rather esoteric and appli-
cable only to astronomy [and, today, astroga-
tion], in fact the paradigm of uniform circu-

lar motion (i.e. motion in a circle at constant
speed) is one of the most versatile in Physics.
Let us begin, therefore, by deriving its essen-
tial and characteristic features.

10.1 Circular Motion

Although no real orbit is ever a perfect cir-
cle, those of the inner planets aren’t too far
off and in any case it is a convenient idealiza-
tion. Besides, we aren’t restricted to plane-
tary orbits here; the following derivation ap-
plies to any form of uniform circular motion,
from tether balls on ropes to motorcycles on
a circular track to charged particles in a cy-
clotron.1

10.1.1 Radians

In Physics, angles are measured in radians.
There is no such thing as a “degree,” although
Physicists will sometimes grudgingly admit
that π is equivalent to 180◦. The angle θ
shown in Fig. 10.1 is defined as the dimen-

sionless ratio of the distance ℓ travelled along
the circular arc to the radius r of the circle.

1You could even imagine examples from “outside
Physics,” in which the radius and speed were purely
metaphorical; but I can’t think of one. . . .

Figure 10.1 [top] Definition of the angle
θ ≡ ℓ/r. [bottom] Illustration of the trigono-
metric functions cos(θ) ≡ x/r, sin(θ) ≡ y/r,
tan(θ) ≡ y/x etc. describing the position of a
point B in circular motion about the centre at
O.

There is a good reason for this. The trigono-
metric functions cos(θ) ≡ x/r, sin(θ) ≡ y/r,
tan(θ) ≡ y/x etc. are themselves defined as
dimensionless ratios and their argument (θ)
ought to be a dimensionless ratio (a “pure
number”) too, so that these functions can be
expressed as power series in θ:

cos(θ) = 1 −θ2

2!
+

θ4

4!
· · ·

sin(θ) = θ −θ3

3!
+

θ5

5!
· · ·

Why would anyone want to do this? You’ll
see, heh, heh. . . .
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10.1.2 Rate of Change of a Vector

The derivative of a vector quantity ~A with
respect to some independent variable x (of
which it is a function) is defined in exactly the
same way as the derivative of a scalar function:

d~A

dx
≡ lim

∆x→0

~A(x + ∆x) − ~A(x)

∆x
(1)

There is, however, a dramatic difference be-
tween scalar derivatives and vector derivatives:
the latter can be nonzero even if the mag-

nitude A of the vector ~A remains constant.
This is a consequence of the fact that vec-
tors have two properties: magnitude and di-
rection. If the direction changes, the deriva-
tive is nonzero, even if the magnitude stays
the same!

This is easily seen using a sketch in two dimen-
sions:

Figure 10.2 Note that the notation ~A
′

does
not denote the derivative of ~A as it might in
a Mathematics text.

In the case on the left, the vector ~A
′

is in
the same direction as ~A but has a different
length. [The two vectors are drawn side by
side for visual clarity; try to imagine that they
are on top of one another.] The difference vec-

tor ∆~A ≡ ~A
′ − ~A is parallel to both ~A and

~A
′

.2 If we divide ∆~A by the change ∆x in the
independent variable (of which ~A is a func-
tion) and let ∆x → 0 then we find that the

derivative
d~A

dx
is also ‖ ~A.

2We write this ∆~A ‖ ~A ‖ ~A
′

in standard notation.

In the case on the right, the vector ~A
′

has the
same length (A) as ~A but is not in the same di-

rection. The difference ∆~A ≡ ~A
′ − ~A formed

by the “tip-to-tip” rule of vector subtraction is
also no longer in the same direction as ~A. In
fact, it is useful to note that for these condi-
tions (constant magnitude A), as the difference

∆~A becomes infinitesimally small it also be-

comes perpendicular to both ~A and ~A
′

.3 Thus

the rate of change
d~A

dx
of a vector ~A whose

magnitude A is constant will always be per-

pendicular to the vector itself :
d~A

dx
⊥ ~A if A

is constant.

10.1.3 Centripetal Acceleration

Figure 10.3 Differences between vectors at
slightly different times for a body in uniform
circular motion.

From Fig. 10.3 we can see the relationship

3We write this ∆~A ⊥ ~A in standard notation.
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between the change in position ∆~r and the
change in velocity ∆~v in a short time inter-
val ∆t. As all three get smaller and smaller,
∆~v gets to be more and more exactly in the
centripetal direction (along −r̂) and its scalar
magnitude ∆v will always (from similar trian-

gles) be given by

|∆~v|
v

=
|∆~r|

r

where I have been careful to write |∆~r| rather
than ∆r since the magnitude of the radius vec-
tor, r, does not change! Now is a good time to
note that, for a tiny sliver of a circle, there is a
vanishingly small difference between |∆~r| and
the actual distance ∆ℓ travelled along the arc,
which is given exactly by ∆ℓ = r∆θ. Thus

∆~v

v
≈ −r̂

r∆θ

r
= −r̂ ∆θ.

If we divide both sides by ∆t and then take the
limit as ∆t → 0, the approximation becomes
arbitrarily good and we get

1

v

(

d~v

dt

)

= −r̂

(

dθ

dt

)

.

We can now combine this with the definitions
of acceleration (~a ≡ d~v/dt) and angular veloc-
ity (ω ≡ dθ/dt) to give (after multiplying both
sides by v) ~a = −r̂ ω v. We need only divide
the equation ∆ℓ = r∆θ by ∆t and let ∆t → 0
to realize that v = rω. If we substitute this
result into our equation for the acceleration, it
becomes

~a = −r̂
v2

r
= −~r ω2 (2)

which is our familiar result for the centripetal

acceleration in explicitly vectorial form.

10.2 Kepler

10.2.1 Empiricism

We are often led to believe that new theo-
ries are derived in order to explain fresh data.

In actuality this is never the case. Theories
are proposed to explain experimental results,
which are always reported in an intermediate
state of digestion somewhere between the raw
data and the general explanatory theory. Data

are merely meaningless bits of information and
are often disregarded entirely unless and un-
til their custodian (usually the Experimenter
who collected them) translates them into some
empirical shorthand that allows their essential

features to be easily appreciated by other peo-
ple. This is not always a simple task. Ke-
pler, for instance, accumulated a large body
of information in the form of observations of
the positions of planets and stars as a func-
tion of time. In that form the data were in-
comprehensible to anyone, including Kepler.
First he had to extract the interesting part,
namely the positions of the planets relative to

the Sun, from raw data complicated by the un-

interesting effects of the Earth’s rotation and
its own annual trip around Sol, which required
both a good model of what was basically go-
ing on and a lot of difficult calculations. Then,
with these “reduced” data in hand, he had to
draw pictures, plot different combinations of
the variables against each other, and gener-
ally mull over the data (presumably scratch-
ing his head and thinking, “Now what the hell
does this mean?” or his contemporary equiva-
lent) until he began to notice some interesting
empirical generalizations that could be made
about his results. Of course I don’t know ex-
actly how Kepler went about this, but I do
know the experience of turning new data over
and over in my mind and on paper until some
consistent empirical relationship between the
variables “leaps out at me.” And I am very

impressed with the depth and delicacy of Ke-
pler’s observations.

Note that the Empiricist4 has not explained

the observed behaviour at this point, merely
described it.5 But a good description goes a

4(who may or may not be the same person as the Ex-
perimentalist and/or the Theoretician — these are just dif-
ferent “hats” that a Physicist may put on)

5Of course, as in Kepler’s case, the empirical description
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long way! One should never underestimate the
importance of this intermediate step in exper-
imental science.

10.2.2 Kepler’s Laws of Planetary Mo-

tion

1. Elliptical Orbits: The
orbits of the planets are6 el-

lipses7 with the Sun at one of
the foci.

2. Constant Areal Veloc-

ity: The area swept out per

unit time by a line joining the
Sun to the planet in question
is constant throughout the or-
bit.8

3. Scaling of Periods: The
square of the period T of the
orbit is proportional to the
cube of the length of the semi-
major axis (or, in the case of
a circular orbit, the radius r)
of the orbit:

T 2 ∝ r3

is always in terms of some preselected model or paradigm;
but the paradigm in question is generally a familiar and
widely accepted one, otherwise it is not very helpful in
communicating the results to others. Besides, the data

themselves are “collected” within the context of the Ex-
perimenter’s paradigms and models about the world. The
“simple” act of vision employs an enormous amount of
“processing” in the visual cortex, as discussed earlier. . . .

6(neglecting perturbations from the other planets, as is
assumed in all Kepler’s laws)

7Note that a circle is just a special case of an ellipse in
which the major and semimajor axes are both equal to the
radius and both foci are at the centre of the circle.

8This feature, unlike the other two Laws, is true for any

“central force” (a force attracting the body back toward the
centre, in this case the sun). The other two are only true
for inverse square laws, F ∝ 1/r2.

10.3 The Universal Law of

Gravitation

By a process of logic that I will not attempt
to describe, Newton deduced that the force
F between two objects with masses m and
M separated by a distance r was given by

F =
GmM

r2
(3)

where G = (6.67259 ± 0.00085) ×
10−11 m3·kg−1·s−2 is the Universal Gravi-

tational Constant. Actually, Newton didn’t
know the value of G; he only postulated that
it was universal — i.e. that it was the same
constant of proportionality for every pair of
masses in this universe. The actual determi-
nation of the value of G was first done by
Cavendish in an experiment to be described
below.

We should also express this equation in vec-
tor form to emphasize that the force on ei-
ther mass acts in the direction of the other
mass: if ~F 12 denotes the force acting on mass
m2 due to its gravitational attraction by mass
m1 then

~F 12 = − G m1 m2

r2
12

r̂12 (4)

where r̂12 is a unit vector in the direction of
~r12, the vector distance from m1 to m2, and
r12 is the scalar magnitude of ~r12. Note that
the reaction force ~F 21 on m1 due to m2 is
obtained by interchanging the labels “1” and
“2” which ensures that it is equal and opposite
because ~r21 ≡ −~r12 by definition.

10.3.1 Weighing the Earth

Suppose you know your own mass m, deter-
mined not from your weight but from exper-
iments in which you are accelerated horizon-
tally by known forces. Then from your weight
W you can calculate the mass of the Earth,
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ME , if only you know G, the universal gravi-
tational constant, and RE , the radius of the
Earth. The trouble is, you cannot use the
same measurement (or any other combination
of measurements of the weights of objects) to
determine G. So how do we know G? If we can
measure G then we can use our own weight-to-
mass ratio (i.e. the acceleration of gravity, g)
with the known value of RE = 6.37×106 m to
determine ME . How do we do it?

The trick is to measure the gravitational at-
traction between two masses m1 and m2 that
are both known. This seems simple enough
in principle; the problem is that the attractive
force between two “laboratory-sized” masses
is incedibly tiny.9 Cavendish devised a clever
method of measuring such tiny forces: He hung
a “dumbbell” arrangement (two large spheri-
cal masses on opposite ends of a bar) from the
ceiling by a long thin wire and let the system
come completely to rest. Then he brought an-
other large spherical mass up close to each of
the end masses so that the gravitational at-
traction acted to twist the wire. By careful
tests on shorter sections of the same wire he
was able to determine the torsional spring con-

stant of the wire and thus translate the angle
of twist into a torque, which in turn he di-
vided by the moment arm (half the length of
the dumbbell) to obtain the force of gravity F
between the two laboratory masses M1 and m2

for a given separation r between them. From
this he determined G and from that, using

g =
G ME

R2
E

(5)

he determined ME = 5.965 × 1024 kg for
the first time. We now know G a bit better
(see above) but it is a hard thing to measure
accurately!

9If the Earth attracts a 1 kg mass with a force of 9.81 N,
the gravitational force between two 1 kg masses separated
by RE would be smaller by a factor equal to the number
of kilograms in ME , which is a large number. Fortunately
the smaller masses can be placed much closer together; this
helps quite a bit, but the force is still miniscule!

10.3.2 Orbital Mechanics

Let’s pretend for now that all orbits are sim-
ple circles. In that case we can easily calculate
the orbital radius r at which the centripetal
force of gravitational attraction F is just right
to produce the centripetal acceleration a re-
quired to maintain a steady circular orbit at a
given speed v. For starters we will refer to a
light object (like a communication satellite) in
orbit about the Earth.

Orbital Speed

The force and the acceleration are both cen-

tripetal (i.e. back towards the centre of the
Earth, so we can just talk about the magni-

tudes of ~F and ~a:

F =
GmME

r2
and a =

v2

r
.

but F = ma, so

GmME

r2
=

mv2

r
=⇒ G ME

r
= v2.

We can “solve” this equation for v in terms of
r,

v =

√

G ME

r
, (6)

or for r in terms of v:

r =
G ME

v2
. (7)

You can try your hand with these equations.
See if you can show that the orbital velocity at
the Earth’s surface (i.e. the speed required for
a frictionless train moving through an Equato-
rial tunnel to be in free fall all the way around
the Earth) is 7.905 km/s. For a more prac-
tical example, try calculating the radius and
velocity of a geosynchronous satellite — i.e. a
signal-relaying satellite in an Equatorial orbit
with a period of exactly one day, so that it ap-

pears to stay at exactly the same place in the
sky all the time.10

10If you have a TV satellite dish, it is pointing at such a
satellite; note that (if you live in the Northern Hemisphere)
it is tipped toward the South. Why?
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Changing Orbits

The first thing you should notice about the
above equations is that satellites move slower

in higher orbits. This is slightly counterintu-
itive in that they go slower when they have
further to go to get all the way around, which
has a dramatic effect on the period (see below).
However, that’s the way it is. Consequently, if
you are in a low orbit and you want to transfer
into a higher orbit, you eventually want to end
up going slower. Nevertheless, the first thing
you do to initiate such a change is to speed up!
See if you can figure out why.11

Periods of Orbits

We can now explain (at least for circular or-
bits) Kepler’s Third Law. The period T of an
orbit is the circumference 2πr divided by the
speed of travel, v. Using the equation above
for v in terms of r gives

T =
2πr
√

GME

r

=
2π√
GME

r
3

2

or T 2 ∝ r3

as observed by Kepler. Newton explained why.

10.4 Tides

Here on the surface of the Earth, we have lit-
tle occasion to notice that the force of gravity
drops off inversely as the square of the distance
from the centre of the Earth.12 This is fortu-
nate, since otherwise Galileo would not have

11(The most intuitive explanation for this involves the
concepts of kinetic and potential energy, which we will
watch emerge from Newton’s Mechanics in succeeding
Chapters.

12Surely by now you have gotten skeptical of my repeated
declarations that the mass of the Earth can be treated as
if it were all concentrated at the Earth’s centre of gravity
(i.e. the centre of the Earth). What about all the bits

been able to do his experiments demonstrating
the (approximate) constancy of the accelera-
tion of gravity, g; moreover, scales and other
mass-measuring technology based on uniform
gravity would not work well enough for com-
merce of engineering to have evolved as it did.
So we don’t notice any effects of the inverse
square law “here at home,” right? Well, let’s
not be hasty.

The Moon exerts an infinitesimal force on ev-
ery bit of mass on Earth. At a distance of
RME = 380, 000 km, the Moon’s mass of
MM = 7.4 × 1022 kg generates a gravitational
acceleration of only gME = 3.42 × 10−5 m/s2;
in other words, our gravitational attraction to
the Moon is 3.5 × 10−6 of our Earth weight.
Moreover, the Moon’s gravitational accelera-
tion changes by only −1.8 × 10−13 m/s2 for
every metre further away from the Moon we
move — a really tiny gravitational gradient.
Nevertheless, the fact that the water in the
oceans on the side of the Earth facing the
Moon is attracted more and that on the side
away from the Moon is attracted less leads to
a slight bulge of the water on both sides and
a concomitant dip around the middle. As the
Earth turns under these bulges and dips, we
experience (normally) two high tides and two

low tides every day.

The consequences of these tides are nontriv-
ial, as we all know. Even though they are the
result of an incredibly small gravitational gra-
dient, they represent enormous energies that
have been tapped for power generation in a
few places like the Bay of Fundy where reso-
nance effects generate huge movements of wa-
ter. More importantly in the long run (but of
negligible concern in times of interest to hu-
mans) is the fact that the “friction” generated

right next to us? They have a much smaller r2 and thus
contribute far more “pull” than those ‘way on the other
side. Well, hang on to that skepticism! I’m not leading
you astray (promise!) but a little later on I will be in a
better position to use Gauss’ Law to explain in a few quick
steps why this works. You should only provisionally accept
this notion until you have seen a convincing argument with
your own eyes.
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by these tides is gradually sapping the kinetic
energy of the Earth’s rotation and at the same
time causing the Moon to drift slowly further
away from the Earth so that in a few billion
years the Earth will be “locked” as the Moon is
now, with its day the same length as a month
(which will then be twice as long as it is now)
and the same side always facing its partner.
“Sic transit gloria Mundi,” indeed! Let’s en-
joy our spin while we can.

A less potent source of tidal forces (gravita-
tional gradients) on Earth is the Sun, with a
mass of about 3×1040 kg at a distance of about
93 million miles or 1.5 × 1011 m. You can cal-
culate for yourself the Sun’s gravitational ac-
celeration at the Earth: small but not entirely
negligible. The Sun’s gravitational gradient,
on the other hand, is truly miniscule; yet var-
ious species of fish seem to have feeding pat-
terns locked to the relative positions of the Sun
and the Moon, even at night when the more
obvious effects of the Sun are absent. The so-
called “solunar tables” are an essential aid to
the fanatically determined fisherman! Yet, so
far as I know, no one has any plausible ex-
planation for how a fish (or a bird or a shell-
fish, which also seem to know) can detect these
minute force gradients.

A more dramatic example of tidal forces is
the gravitational field near a neutron star,
which has a large enough gradient to dismem-
ber travellers passing nearby even though their
orbits take them safely past.13 Near a small

black hole the tidal forces can literally rip
the vacuum apart into matter and antimat-
ter, causing the black hole to explode with un-
matched violence; this in fact limits how small
black holes can be and still remain stable.14

13This motif has been used in several delightful science
fiction stories, notably “Neutron Star” by Larry Niven. and
? Egg ? by ? .

14Bill Unruh, of the UBC Physics Department, is one of
the world’s leading experts on this subject.


