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REPRESENTATIONS

In Art and Science we pondered the distinc-
tion between intuitive knowledge of the partic-
ular and analytical knowledge of the abstract.
The former governs intimate personal experi-
ence — about which, however, nothing further
can be said without the latter, since all com-
munication relies upon abstract symbolism of
one form or another. We can feel without sym-
bols, but we can’t talk.

Moreover, before two people can communicate
they must reach a consensus about the sym-
bolic representation of reality they will employ
in their conversation. This is so obvious that
we usually take it for granted, but few expe-
riences are so unsettling as to meet someone
whose personal symbolic representation differs
drastically from consensual reality.

How was this consensus reached? How arbi-
trary are symbolic conventions? Do they con-
tinue to evolve? They never represent quite
the same things for different people; how do
we know if there is a reality “out there” to
be represented? These are questions that have
perplexed philosophers for thousands of years;
we are not going to find final answers to them
here. But within the oversimplified context
of Physics (the social enterprise, the human
consensus of paradigmatic conventions, as op-
posed to physics, the actual workings of the
universe) we may find some instructive lessons
in the interactions between tradition, conven-
tion, consensus and analytical logic. This is
the focus of the present Chapter.

Each word in a dictionary plays the same role
in writing or speech (or in “verbal” thought it-
self) as the hieroglyphic-looking symbols play
in algebraic equations describing the latest
ideas in Physics. The big difference is . . . well,
in truth there isn’t really a big difference. The
small differences are in compactness and in the

degree to which ambiguity depends upon con-
text. Obviously an algebraic symbol like t is
rather compact relative to a word composed
of several letters, like time. This allows stor-
age of more information in less space, which is
practical but not always pleasing.

As for ambiguity in context, words are de-
signed to have a great deal of ambiguity until
they are placed in sentences, where the context
partially dictates which meaning is intended.
But never entirely. Part of the magic of poetry
is its ambiguity; a good poet is offended by
the question, “What exactly did you mean by
that?” because all the possible meanings are
intended. Great poetry does not highlight one
meaning above all, but rather manipulates the
interactions between the several possible inter-
pretations so that each enriches the others and
all unite to form a whole greater than the sum
of its parts. As a result, no one ever knows for
certain what another person is talking about;
we merely learn to make good guesses.1

In Mathematics, some claim, every symbol
must be defined exhaustively and explicitly
prior to its use. I will not comment on this
claim, but I will pounce on anyone who tries
to extend it to Physics. A meticulous physi-
cist will try to provide an unambiguous defini-
tion of every unusual symbol introduced, but
there are many symbols that are used so often
in Physics to mean a certain thing that they
have a well-known “default” meaning as long
as they are used in a familiar context.

For instance, if F (t) is written on a blackboard
in a Physics classroom, it is a good bet that F
stands for some force, t almost certainly rep-
resents time, especially when appearing in this
form, and the parentheses () always denote
that F (whatever that is) is a function of t
(whatever it may be). This will be discussed

1This seems to be holding up progress in Artificial In-
telligence (AI) research, where people trying to teach com-
puters to understand “natural language” (human speech)
are stymied by the impossibility of reaching a unique logi-
cal interpretation of a typical sentence. Methinks they are
trying too hard.
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further below and in later Chapters. The point
is, algebraic notation follows a set of conven-
tions, just like the grammar and syntax of ver-
bal language, that defines the context in which
each symbol is to be interpreted and thus pro-
vides a large fraction of the meaning of a given
expression.

It is tempting to try to distinguish the dic-
tionary from the Physics text by pointing out
that every word in the former is defined in
terms of the other words, so that the dic-
tionary (plus the grammar of its language)
form a perfectly closed, self-reference universe;
while all the symbols of Physics refer to en-
tities in the real world of physics. However,
any such distinction is purely æsthetic and has
no rigourous basis. Ordinary words are also
meant to refer to things (i.e. personal experi-
ences of reality) or at least to abstract classes
of particular experiences. If there is a notewor-
thy difference, it consists of the potency of the
æsthetic commitment to the notion of an ex-
ternal reality. “Natural” language can be ap-
plied as effectively in the service of solipsism as
materialism, but Physics was designed exclu-
sively to describe a reality independent of hu-
man perception, “out there” and immutable,
that admits of analytical dissection and con-
forms to its own hidden laws with absolute
consistency. The physicist’s task is to discover
those laws by ingenuity and patience, and to
find ways of expressing them so that other hu-
mans can understand them as well.

This may be a big mistake, of course. There
may not be any external reality; physics may
be just the consensual symbolic representation
of Physics and physicists; or there may not
be any physicists other than myself, nor stu-
dents in my class nor readers of this text, other
than in my vivid imagination. But who cares?
Solipsism cannot be proven wrong, but it can
be proven boring. And since Physics lies at
the opposite end of the æsthetic spectrum, no
wonder it is so exciting!

3.1 Units and Dimensions

3.1.1 Time and Distance

Two of the most important concepts in Physics
are “length” and “time.” As is often the case
with the most important concepts, neither can
be defined except by example — e.g. “a meter
is this long. . . .” or, “a second lasts from now
. . . to now.” Both of these “definitions” com-
pletely beg the question, if you consider care-
fully what we are after; they merely define the
units in which we propose to measure distance
and time. Except for analogic reinforcements
they do nothing at all to explain the “mean-
ing” of the concepts “space” and “time.”

Modern science has replaced the standard
platinum-iridium reference meter (m) stick
with the indirect prescription, “. . . the dis-
tance travelled by light in empty space during
a time of 1/299,792,458 of a second,” where
a second (s) is now defined as the time it
takes a certain frequency of the light emit-
ted by cesium atoms to oscillate 9,192,631,770
times.2 This represents a significant improve-
ment inasmuch as we no longer have to re-
sort to carrying our meter stick to the Inter-
national Bureau of Weights and Measures in
Sèvres, France (or to the U.S. National Bu-
reau of Standards in Boulder, Colorado) to
make sure it is the same length as the Stan-
dard Meter. We can just build an apparatus
to count oscillations of cesium light and mark
off how far light goes in 30.663318988 or so os-
cillations [well, it’s easy if you have the right
tools. . . .] and make our own meter stick in-
dependently, confident that it will come out
the same as the ones in France and Colorado,
because our atoms are guaranteed to be just
like theirs. We can even send signals to neigh-
bors on Tau Ceti IV to tell them what size
to make screwdrivers or crescent wrenches for

2This is only the latest in a long sequence of redefinitions
of the meter. Today’s version reflects our recognition of
the speed of light as a universal constant. (Here is a trick
question for you: if the speed of light were different in one
time and place from another, how could we tell?)
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export to Earth, since there is overwhelming
evidence that their atoms also behave exactly
like ours. This is quite remarkable, and un-
precedented before the discovery of quantum
physics; but unfortunately it does not make
much difference to the dilemma we face when
we try to define “distance.” Nature has kindly
provided us with an unlimited supply of accu-
rate meter sticks, but it is still just a name we
give to something.

To learn the properties of that “something”
which we call “distance” requires first that we
believe that there is truly a physical entity,
with intrinsic properties independent of our
perceptions, to which we have given this name.
This is extremely difficult to prove. Maybe not
impossible, but I’ll leave that to the philoso-
phers. For the physicist it is really a matter of
æsthetics to enter into conversations with Na-
ture as if there were really a partner in such
conversations. In other words, I cannot tell
you what “distance” is, but if you will allow me
to assume that the word refers to something
“real,” I can tell you a great deal about its
properties, until at some point you feel the par-
tial satisfaction of intimate familiarity where
perfect comprehension is denied.

How do we begin to talk about time and space?
The concepts are so fundamental to our lan-
guage that all the words we might use to de-
scribe them have them built in! So for the
moment we will have to give up and say, “Ev-
eryone knows pretty much what we mean by
time and distance.” This is always where we
have to begin. Physics is just like poetry in
this respect: you start by accepting a “basis
set” of images, without discussion; then you
work those images together to build new im-
ages, and after a period of refinement you find
one day, miraculously, that the new images
you have created can be applied to the ideas
you began with, giving a new insight into their
meaning. This “bootstrap” principle is what
makes thinking profitable.

Later on, then, when we have learned to ma-

nipulate time and space more critically, we will
acquire the means to break down the concepts
and take a closer look.

3.1.2 Choice of Units

All choices of units are completely arbitrary
and are made strictly for the sake of conve-
nience. If you were a surveyor in 18th-Century
England, you would consider the chain (66
feet by our standards) an extremely natural
unit of length, and the meter would seem a
completely artificial and useless unit, because
people were shorter then and the yard (1 yard
= 3600/3937 of a meter) was a better approx-
imation to an average person’s stride. Feet

and hands were even better length units in
those days; and if you hadn’t noticed, an inch

is just about the length of the middle bone in
a small person’s index finger.

If you couldn’t get your hands on a timepiece
with a second hand, the utility of seconds

would seem limited to the (non-coincidental)
fact that they are about the same as a rest-
ing heartbeat period. Years and days might
seem less arbitrary to us, but we would have
trouble convincing our friends on Tau Ceti IV.3

Remember, our perspective in Physics is uni-
versal, and in that perspective all units are
arbitrary.

We choose all our measurement conventions
for convenience, often with monumental short-
sightedness. The decimal number system is a
typical example. At least when we realize this
we can feel more forgiving of the clumsiness
of many established systems of measurement.
After all, a totally arbitrary decision is always
wrong. (Or always right.)

3This is a recurring problem in science fiction novels:
will our descendents on other planets use a “local” defini-
tion of years, [months,] days, hours and minutes or try to
stick with an Earth calendar despite the fact that it would
mean the local sun would come up at a different time ev-
ery day? Worse yet, how will a far-flung Galactic Empire
reckon dates, especially considering the conditions imposed
by Relativity? [The Star Trek solution is, of course, to ig-
nore the laws of physics entirely.]
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Physicists are fond of devising “natural units”
of measurement; but as always, what is con-
sidered “natural” depends upon what is be-
ing measured. Atomic physicists are under-
standably fond of the Angstrom (Å), which
equals 10−10 m, which “just happens” to be
roughly the diameter of a hydrogen atom. As-
tronomers measure distances in light years,
the distance light travels in a year (365× 24×
60 × 60 × 2.99 × 108 = 9.43 × 1015 m), as-

tronomical units (a.u.), which I think have
something to do with the Earth’s orbit about
the sun, or parsecs, which I seem to recall are
related to seconds of arc at some distance. [I
am not biased or anything. . . .]

Astrophysicists and particle physicists tend to
use units in which the velocity of light (a fun-
damental constant) is dimensionless and has
magnitude 1; then times and lengths are both
measured in the same units. People who live
near New York City have the same habit,
oddly enough: if you ask them how far it is
from Hartford to Boston, they will usually say,
“Oh, about three hours.” This is perfectly sen-
sible insofar as the velocity of turnpike travel
in New England is nearly a fundamental con-
stant. In my own work at TRIUMF, I habit-
ually measure distances in nanoseconds (bil-
lionths of seconds: 1 ns = 10−9 s), referring to
the distance (29.9 cm) covered in that time by
a particle moving at essentially the velocity of
light.4

In general, physicists like to make all funda-
mental constants dimensionless; this is indeed
economical, as it reduces the number of units
one must use, but it results in some oddities
from the practical point of view. A nuclear
physicist is content to measure distances in in-

verse pion masses, but this is not apt to make
a tailor very happy.

4Inasmuch as a ns is a roughly “person-sized” distance
unit, it could actually be used rather effectively in place
of feet and meters, which would get rid of at least one

arbitrary unit. Oh well.

3.1.3 Perception Through Models

The upshot of all this is that you can’t trust
any units to carry lasting significance; all is
vanity. Each and every choice of units repre-
sents essentially a model of what is significant.
What is vitally relevant to one observer may
be trivial and ridiculous to another. Lest this
seem a depressing appraisal, consider that the
same is true of all our means of perception,
even including the physical sensing apparatus
of our own bodies: our eyes are sensitive to
an incredibly tiny fraction of the spectrum of
electromagnetic radiation; what we miss is in-
conceivably vast compared to what we detect.
And yet we see a lot, especially under the light
of Sol, which at the Earth’s surface happens to
peak in just the region of our eyes’ sensitivity.
Our eyes are simply a model of what is impor-
tant locally, and well adapted for the job.

The only understanding you can develop that
is independent of units has to do with how
dimensions can be combined, juxtaposed, etc.

— their relationships with each other. The no-
tion of a velocity as a ratio of distance to time
is a concept which will endure all vagaries of
fashion in measurment. This is the sort of con-
cept that we try to pick out of the confusion.
This is the sort of understanding for which the
physicist searches.

3.2 Number Systems

We have seen that units of measurement and
indeed the very nature of the dimensions of
measurement are arbitrary models of what is
significant, constructed for the practical con-
venience of their users. If this causes you some
frustration or disappointment, you are not
alone; most students of Physics initially ap-
proach the subject in hope of finding, at last,
some rigor and reliability in an increasingly in-
substantial and malleable reality. Sorry.

What most disillusioned Physics students do
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next is to seek refuge in mathematics. If phys-
ical reality is subject to politics, at least the
rarefied abstract world of numbers is intrinsi-
cally absolute.

Sorry again. Higher mathematics relies on
pure logic, to be sure, but the representation

used to describe all the practically useful ex-
amples (e.g. “arithmetic”) is intrinsically ar-
bitrary, based once again on rather simple-
minded models of what is significant in a prac-
tical sense. The decimal number system, based
as it is upon a number whose only virtue is
that most people have that number of fingers
and thumbs, is a typical example. If we had
only thought to distinguish between fingers
and thumbs, using thumbs perhaps for “car-
rying,” we would be counting in octal and be
able to count up to twenty-four on our hands.
Better yet, if we assigned significance to the
order of which fingers we raised, as well as the
number of fingers, we could count in binary up
to 31 on one hand, and up to 1023 using both
hands! However, we have already made use
of that information for other communication
purposes. . . .

Is mathematics then arbitrary? Of course not.
We can easily understand the distinction be-
tween the representation (which is arbitrary)
and the content (which is not). Ten is still ten,
regardless of which number system we use to
write it. Much more sophisticated notions can
also be expressed in many ways; in fact it may
be that we can only achieve a deep understand-
ing of the concept by learning to express it in
many alternate “languages.”

The same is true of Physics.

3.3 Symbolic Conventions

In Physics we like to use a very compact no-
tation for things we talk about a lot; this is
æsthetically mandated by our commitment to
making complicated things look [and maybe
even be] simpler. Ideally we would like to have

a single character to represent each paradig-
matic “thing” in our lexicon, but in practice
we don’t have enough characters5 and we have
to re-use some of them in different contexts,
just like English!

In principle, any symbol can be used to rep-
resent any quantity, or even a non-quantity
(like an “operator”), as long as it is explicitly
and carefully defined. In practice, life is eas-
ier with some “default” conventions for what
various symbols should be assumed to mean
unless otherwise specified. On the next pages
are some that I will be using a lot. (You will
want to refer to these occasionally when trying
to guess what I am trying to say with formu-
lae. Don’t worry if some are incomprehensible
initially; for completeness, the list includes lots
of “advanced” stuff.) Note: in print, a little
extra information can be packed into the font

used for a given character. The convention in
Physics is that a character used as a symbol

(like m for mass) is italicized. The letter m is
also used (without italics) as an abbreviation
for meter. Units are generally not italicized.
Examples are shown in the second table be-
low:

5The wider availability of nice typesetting languages like
LATEX, in which this manuscript is being prepared, offers
us the opportunity to add new symbols like ℵ, ̟ and ♥,
but this won’t change the qualitative situation.
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Table 3.1 Roman symbols commonly used in Physics:

A = an area. a = acceleration; a general constant.

B = the magnetic field. b = a general constant.

C = heat capacity. c = speed of light; a general constant.

D = a form of the electric field. d = differential operator; diameter.

E = energy ; an electric field. e = 2.71828...; electron’s charge.

F = a force; a general function. f = a fraction; a function as in f(x).

G = Newton’s gravitational constant. g = accel. of gravity at Earth’s surface.

H = magnetic field; Hamiltonian op. h = Planck’s constant; a height.

I = an electric current. i =
√
−1 ; an index (subscript).

J = current density ; angular momentum. j = a common integer index.

K = kaon (a strange particle). k = an integer index; a gen. constant.

L = angular momentum; a length. l = an integer index; a length.

M = magnetization; a mass. m = mass; an integer index.

N = a large number; a normal force. n = a small number; an index.

O = “order of” symbol as in O(α). o = rarely used (looks like a 0).

P = probability; pressure; power. p = momentum.

Q = electric charge. q = elec. charge; “canonical coordinate”.

R = a radius; electrical resistance. r = a radius; a ratio.

S = entropy ; surface area. s = a distance.

T = temperature. t = time.

U = potential energy; internal energy. u = an abstract variable; a velocity.

V = volume; potential energy. v = velocity.

W = work; weight. w = a small weight; a width.

X = an abstract function, like X(x). x = distance; any independent variable.

Y = an abstract function, like Y (y). y = an abstract dependent variable.

Z = atomic number; Z(z). z = an abstract dependent variable.
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Table 3.2 Roman abbreviations commonly used in Physics:

A = Ampere(s). C = Coulomb(s). G = prefix Giga- (billion).

J = Joules. K = degrees Kelvin. k = prefix kilo- (thousand).

M = prefix Mega- (million). m = metre(s). N = Newton(s).

n = prefix nano- (billionth). P = Pascal(s) (pressure). p = prefix pico- (trillionth).

s = second(s). V = Volt(s).

Table 3.3 Greek symbols commonly used in Physics

α = fine structure constant; an angle. β = v/c ; an angle.

Γ = torque; a rate. γ = E/mc2; an angle.

∆ = “change in...”, as in ∆x. δ = an infinitesimal; same as ∆.

ǫ = an infinitesimal quantity. κ = arcane version of k.

E = “electromotive force”. ε = an energy.

ζ = a general parameter. η = index of refraction.

Θ = an angle. θ = an angle (most common symbol).

Λ = a rate; a type of baryon. λ = wavelength; a rate.

µ = reduced mass; muon; prefix micro-. ν = frequency in cycles/s (Hz); a neutrino.

Ξ = a type of baryon. ξ = a general parameter.

Π = product operator. π = 3.14159. . . ; pion (a meson).

ρ = density per unit volume; resistivity. χ = susceptibility.

Σ = summation operator. σ = cross section; area density; conductivity.

Υ = an elementary particle. τ = a mean lifetime; tau lepton.

Φ = a wave function; an angle. φ = an angle; a wave function.

Ψ = a wave function. ψ = a wave function.

Ω = a very heavy baryon. ω = angular frequency (radians/s).
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Table 3.4 Mathematical symbols commonly used in Physics

OPERATORS:

→ = “...approaches in the limit...” (as in ∆t → 0).

∂ = partial derivative operator (as in ∂F
∂x

).

∇ = gradient operator (as in ∇φ = x̂∂φ

∂x
+ ŷ ∂φ

∂y
+ ẑ ∂φ

∂z
).

∫
= integral operator as in

∫
y(x)dx

LOGICAL SYMBOLS: (Handy shorthand that I use a lot!)

.˙. = “Therefore...” ⇒ = “...implies...” ≡ = “...is defined to be...”

∃ = “there exists...” ∋ = “...such that...”

/ [a slash through any logical symbol] = negation; e.g. 6⇒ = “...does not imply...”
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3.4 Functions

Mathematics is often said to be the language
of Physics. This is not the whole truth, but
it is part of the truth; one ubiquitous charac-
teristic of Physics (the human activity), if not
physics (the supposed methodology of nature),
is the expression of relationships between mea-
surable quantities in terms of mathematical
formulae. The advantages of such notation
are that it is concise, precise and “elegant,”
and that it allows one to calculate quantita-
tive predictions which can be compared with
measured experimental results to test the va-
lidity of the description.

The nearly-universal image used in such math-
ematical descriptions of nature is the FUNC-
TION, an abstract concept symbolized in the
form y(x) [read “y of x”] which formally rep-
resents mathematical shorthand for a recipé

whereby a value of the “dependent variable”
y can be calculated for any given value of the
“independent variable” x.

The explicit expression of such a recipé is al-
ways in the form of an equation. For instance,
the answer to the question, “What is y(x)?”
may be “y = 2 + 5x2 − 3x3.” This tells us
how to get a numerical value of y to “go with”
any value of x we might pick. For this rea-
son, in Mathematics (the human activity) it is
often formally convenient to think of a func-
tion as a mapping — i.e. a collection of pairs
of numbers (x, y) with a concise prescription
to tell us how to find the y which goes with
each x. In this sense it is also easier to pic-
ture the “inverse function” x(y) which tells us
how to find a value of x corresponding to a
given y. [There is not always a unique an-
swer. Consider y = x2.] On the other hand,
whenever we go to use an explicit formula for
y(x), it is essential to think of it as a recipé —
e.g. for the example described above, “Take
the quantity inside the parentheses (whatever
it is) and do the following arithmetic on it:
first cube whatever-it-is and multiply by 3;

save that result and subtract it from the result
you get when you multiply 5 by the square of
whatever-it-is; finally add 2 to the difference
and voila! you have the value of y that goes
with x = whatever-it-is.”

This is most easily understood by working
through a few examples, which we will do
shortly.

3.4.1 Formulae vs Graphs

In Physics we often prefer the image of the
GRAPH, because the easiest way to compare
data with a theoretical function in a holistic
manner is to plot both on a common graph.
(The right hemisphere is best at holistic per-
ception, so we go right in through the visual
cortex.) Fortunately, the issue of whether a
graph or an equation is “better” is entirely
subjective, because for every function there is

a graph — although sometimes the interesting
features are only obvious when small regions
are blown up, or when one or the other variable
is plotted on a logarithmic scale, or suchlike.

Nevertheless, this process of translating be-
tween left and right hemispheres has far-
reaching significance to the practice of Physics.
When we draw a graph, we cathect the pattern

recognition skills of our visual cortex, a large
region of the brain devoted mainly to forming
conceptual models of the “meaning” of visual
stimuli arriving through the optic nerve. This
is the part that learned to tell the difference
between a leaf fluttering in the breeze and the
tip of a leopard’s tail flicking in anticipation;
it performs such pattern recognition without
our conscious intervention, and thus falls into
the “intuitive” realm of mental functions. It is
fantastically powerful, yet not entirely reliable
(recall the many sorts of “optical illusions” you
have seen).
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Figure 3.1 A typical graph of y(x) [read “y as
a function of x”].

The mere fact that many (not all) physicists
like to display their results in graphical form
offers a hint of our preferred procedure for
hypothesis formation (Karl Popper’s conjec-

tures). Namely, the data are “massaged” [not
the same as “fudged” — massaging is strictly
legitimate and all the steps are required to be
explained clearly] until they can be plotted on
a graph in a form that “speaks for itself” — i.e.

that excites the strongest pattern-recognition
circuit in the part of our visual cortex that
we use on science — namely, the straight line.
Then the author/speaker can enlist the collab-
oration of the audience in forming the hypoth-
esis that there is a linear relationship between
the two “massaged” variables.

For a simple example, imagine that a force F
actually varies inversely with the square of dis-
tance r: F (r) = k/r2 with k some appropriate
constant. A graph of measured values of F
vs. r will not be very informative to the eye
except to show that, yes, F sure gets smaller
fast as r increases. But if the ingenious exper-
imenter discovers by hook or by crook that a
plot of F vs. 1/r2 (or 1/F vs. r2 or

√
F vs.

1/r or. . . ) comes out looking like a straight
line, you can be sure that the data will be pre-
sented in that form in the ensuing talk or pa-

per. The rigourous validity of this technique
may be questionable, but it works great.


