
13.1. PERIODIC BEHAVIOUR 1SimpleHarmonicMotionIn the previous chapter we found several newclasses of equations of motion. We now add onelast paradigm to our repertoire | one so pow-erful and ubiquitous in Physics that it deservesa chapter all to itself.13.1 Periodic BehaviourNature shows us many \systems" which re-turn periodically to the same initial state, pass-ing through the same sequence of intermediatestates every period. Life is so full of periodicexperiences, from night and day to the rise andfall of the tides to the phases of the moon to theannual cycle of the seasons, that we all comewell equipped with \common sense" tailored tothis paradigm.1 It has even been suggested thatthe concept of time itself is rooted in the cyclicphenomena of Nature.In Physics, of course, we insist on narrowing thede�nition just enough to allow precision. Forinstance, many phenomena are cyclic withoutbeing periodic in the strict sense of the word.21Many people are so taken with this paradigm that theyapply it to all experience. The I Ching, for instance, is saidto be based on the ancient equivalent of \tuning in" to the\vibrations" of Life and the World so that one's awarenessresonates with the universe. By New Age reckoning, culti-vating such resonances is supposed to be the fast track toenlightenment. Actually, Physics relies very heavily on thesame paradigm and in fact supports the notion that manyapparently random phenomena are actually superpositionsof regular cycles; however, it o�ers little encouragement forexpecting \answers" to emerge e�ortlessly from such a tuningof one's mind's resonances. Too bad. But I'm getting aheadof myself here.2Examples of cyclic but not necessarily periodic phenom-ena are the mass extinctions of species on Earth that seem tohave occurred roughly every 24 million years, the \seven-yearcycle" of sunspot activity, the return of salmon to the river oftheir origin and recurring droughts in Africa. In some cases

Here cyclic means that the same general patternkeeps repeating; periodic means that the systempasses through the same \phase" at exactly thesame time in every cycle and that all the cyclesare exactly the same length. Thus if we knowall the details of one full cycle of true periodicbehaviour, then we know the subsequent stateof the system at all times, future and past. Nat-urally, this is an idealization; but its utility isobvious.

Figure 13.1 Some periodic functions.Of course, there is an in�nite variety of possibleperiodic cycles. Assuming that we can reducethe \state" of the system to a single variable\q" and its time derivatives, the graph of q(t)the basic reason for the cycle is understood and it is obviouswhy it only repeats approximately; in other cases we have noidea of the root cause; and in still others there is not even aconsensus that the phenomenon is truly cyclic | as opposedto just a random uctuation that just happens to mimic cyclicbehaviour over a short time. Obviously the resolution of theseuncertainties demands \more data," i.e. watching to see ifthe cycle continues; with the mass extinction \cycle," thisrequires considerable patience. When \periodicity debates"rage on in the absence of additional data, it is usually a signthat the combatants have some other axe to grind.



2can have any shape as long as it repeats afterone full period. Fig. 13.1 illustrates a few ex-amples. In (a) and (b) the \displacement" ofq away from its \equilibrium" position [dashedline] is not symmetric, yet the phases repeat ev-ery cycle. In (c) and (d) the cycle is symmetricwith the same \amplitude" above and below theequilibrium axis, but at certain points the slopeof the curve changes \discontinuously." Only in(e) is the cycle everywhere smooth and symmet-ric.
13.2 Sinusoidal MotionThere is one sort of periodic behaviour that ismathematically the simplest possible kind. Thisis the \sinusoidal" motion shown in Fig. 13.1(e),so called because one realization is the sine func-tion, sin(x). It is easiest to see this by meansof a crude mechanical example.13.2.1 Projecting the WheelImagine a rigid wheel rotating at constant an-gular velocity about a �xed central axle. A boltscrewed into the rim of the wheel executes uni-form circular motion about the centre of theaxle.3 For reference we scribe a line on the wheelfrom the centre straight out to the bolt and callthis line the radius vector. Imagine now thatwe take this apparatus outside at high noon andwatch the motion of the shadow of the bolt onthe ground. This is (naturally enough) calledthe projection of the circular motion onto thehorizontal axis. At some instant the radius vec-tor makes an angle � = !t + � with the hor-izontal, where ! is the angular frequency ofthe wheel (2� times the number of full revolu-tions per unit time) and � is the initial angle(at t = 0) between the radius vector and the3Note the frequency with which we periodically recycleour paradigms!

Figure 13.2 Projected motion of a point on therim of a wheel.horizontal.4 From a side view of the wheel wecan see that the distance x from the shadow ofthe central axle to the shadow of the bolt [i.e.the projected horizontal displacement of the boltfrom the centre, where x = 0] will be given bytrigonometry on the indicated right-angle trian-gle:cos(�) � xr ) x = r cos(�) = r cos(!t+�)(1)The resultant amplitude of the displacement asa function of time is shown in Fig. 13.3.The horizontal velocity vx of the projectedshadow of the bolt on the ground can also beobtained by trigonometry if we recall that the4The inclusion of the \initial phase" � makes this de-scription completely general.



13.3. SIMPLE HARMONIC MOTION 3

Figure 13.3 The cosine function.vector velocity ~v is always perpendicular tothe radius vector ~r. I will leave it as an exer-cise for the reader to show that the result isvx = � v sin(�) = � r ! sin(!t+ �) (2)where v = r! is the constant speed of thebolt in its circular motion around the axle. Italso follows (by the same sorts of arguments)that the horizontal acceleration ax of the bolt'sshadow is the projection onto the x̂ directionof ~a, which we know is back toward the centreof the wheel | i.e. in the �x̂ direction; itsvalue at time t is given byax = � a cos(�) = � r !2 cos(!t+ �) (3)where a = v2r = r!2 is the magnitude of thecentripetal acceleration of the bolt.13.3 Simple Harmonic MotionThe above mechanical example serves to intro-duce the idea of cos(�) and sin(�) as func-tions in the sense to which we have (I hope)now become accustomed. In particular, if werealize that (by de�nition) vx � _x and ax � �x,the formulae for vx(t) and ax(t) represent the

derivatives of x(t):x = r cos(!t+ �) (4)_x = � r ! sin(!t+ �) (5)�x = � r !2 cos(!t+ �) (6)| which in turn tell us the derivatives of thesine and cosine functions:ddt cos(!t+ �) = �! sin(!t+ �) (7)ddt sin(!t+ �) = ! cos(!t+ �) (8)So if we want we can calculate the nth deriva-tive of a sine or cosine function almost as easilyas we did for our \old" friend the exponentialfunction. I will not go through the details thistime, but this feature again allows us to expressthese functions as series expansions:exp(z) = 1 +z +12z2 + 13!z3 + 14!z4 + � � �cos(z) = 1 �12z2 + 14!z4 � � � �sin(z) = z � 13!z3 + � � �(9)where I have shown the exponential functionalong with the sine and cosine for reasons thatwill soon be apparent.It is de�nitely worth remembering the smallangle approximationsFor � � 1; cos(�) � 1 � 12�2and sin(�) � �: (10)13.3.1 The Spring PendulumAnother mecahnical example will serve to estab-lish the paradigm of Simple Harmonic Mo-tion (SHM) as a solution to a particular typeof equation of motion.55Although we have become conditioned to expect suchmathematical formulations of relationships to be more re-moved from our intuitive understanding than easily visualizedconcrete examples like the projection of circular motion, this
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Figure 13.4 Successive \snapshots" of a massbouncing up and down on a spring.As discussed in a previous chapter, the springembodies one of Physics' premiere paradigms,the linear restoring force. That is, a force whichdisappears when the system in question is in its\equilibrium position" x0 [which we will de�neas the x = 0 position (x0 � 0) to make thecalculations easier] but increases as x movesaway from equilibrium, in such a way that themagnitude of the force F is proportional tothe displacement from equilibrium [F is linearin x] and the direction of F is such as to try torestore x to the original position. The constantof proportionality is called the spring constant,always written k. Thus F = �kx and theresultant equation of motion is�x = � km! x (11)Note that the mass plays a rôle just as essentialis a case where the mathematics allows us to draw a sweep-ing conclusion about the detailed behaviour of any systemthat exhibits certain simple properties. Furthermore, theseconditions are actually satis�ed by an incredible variety ofreal systems, from the atoms that make up any solid objectto the interpersonal \distance" in an intimate relationship.Just wait!

as the linear restoring force in this paradigm.If m ! 0 in this equation, then the accelera-tion becomes in�nite and in principle the springwould just return instantaneously to its equilib-rium length and stay there!In the leftmost frame of Fig. 13.4 the mass m isat rest and the spring is in its equilibrium posi-tion (i.e. neither stretched nor compressed) de-�ned as x = 0. In the second frame, the springhas been gradually pulled down a distance xmaxand the mass is once again at rest. Then themass is released and accelerates upward underthe inuence of the spring until it reaches theequilibrium position again [third frame]. Thistime, however, it is moving at its maximum ve-locity vmax as it crosses the centre position; assoon as it goes higher, it compresses the springand begins to be decelerated by a linear restor-ing force in the opposite direction. Eventually,when x = �xmax, all the kinetic energy hasbeen been stored back up in the compression ofthe spring and the mass is once again instanta-neously at rest [fourth frame]. It immediatelystarts moving downward again at maximum ac-celeration and heads back toward its startingpoint. In the absence of friction, this cycle willrepeat forever.I now want to call your attention to the acutesimilarity between the above di�erential equa-tion and the one we solved for exponential de-cay: _x = �� x (12)and, by extension, �x = �2 x (13)the solution to which equation of motion (i.e.the function which \satis�es" the di�erentialequation) was x(t) = x0 e�� t (14)Now, if only we could equate �2 with �k=m,these equations of motion (and therefore their



13.4. DAMPED HARMONIC MOTION 5solutions) would be exactly the same! The prob-lem is, of course, that both k and m are in-trinsically positive constants, so it is tough to�nd a real constant � which gives a negativenumber when squared.Imaginary ExponentsMathematics, of course, provides a simple solu-tion to this problem: just have � be an imagi-nary number, say� � i ! where i � p�1and ! is a positive real constant. Let's see ifthis trial solution \works" (i.e. take its secondderivative and see if we get back our equation ofmotion): x(t) = x0 ei ! t (15)_x = i ! x0 ei ! t (16)�x = �!2 x0 ei ! t (17)or �x = �!2 x (18)so ! � s km (19)OK, it works. But what does it describe? Forthis we go back to our series expansions for theexponential, sine and cosine functions and notethat if we let z � i�, the following mathemat-ical identity holds:6ei � = cos(�) + i sin(�) (20)Thus, for the case at hand, if � � ! t [youprobably knew this was coming] thenx0 ei ! t = x0 cos(!t) + i x0 sin(!t)| i.e. the formula for the projection of uniformcircular motion, with an imaginary part \tacked6You may �nd this unremarkable, but I have never gottenover my astonishment that functions so ostensibly unrelatedas the exponential and the sinusoidal functions could be sointimately connected! And for once the mathematical oddityhas profound practical applications.

on." (I have set the initial phase � to zero justto keep things simple.) What does this mean?I don't know.What! How can I say, \I don't know," aboutthe premiere paradigm of Mechanics? We'resupposed to know everything about Mechan-ics! Let me put it this way: we have happenedupon a nice tidy mathematical representationthat works | i.e. if we use certain rules to ma-nipulate the mathematics, it will faithfully givecorrect answers to our questions about how thisthing will behave. The rules, by the way, are asfollows:Keep the imaginary componentsthrough all your calculations untilthe �nal \answer," and then throwaway any remaining imaginary partsof any actual measurable quantity.The point is, there is a di�erence between un-derstanding how something works and knowingwhat it means. Meaning is something we putinto our world by act of will, though not alwaysconscious will. How it works is there before usand after we are gone. No one asks the \mean-ing" of a screwdriver or a carburetor or a copymachine; some of the conceptual tools of Physicsare in this class, though of course there is noth-ing to prevent anyone from putting meaning intothem.713.4 Damped Harmonic MotionLet's take stock. In the previous chapter wefound thatx(t) = [constant] � v0� e�� t7I am reminded of a passage in one of Kurt Vonnegut'sbooks, perhaps Sirens of Titan, in which the story of creationis told something like this: God creates the world; then hecreates Man, who sits up, looks around and says, \What'sthe meaning of all this?" God answers, \What, there has tobe a meaning?" Man: \Of course." God: \Well then, I leaveit to you to think of one."



6satis�es the basic di�erential equation�x = �� _x or a = ��vde�ning damped motion (e.g. motion under theinuence of a frictional force proportional to thevelocity). We now have a solution to the equa-tion of motion de�ning SHM,�x = �!2 x ) x(t) = x0 ei ! t;where ! = s kmand I have set the initial phase � to zero just tokeep things simple. Can we put these together to\solve" the more general (and realistic) problemof damped harmonic motion? The di�erentialequation would then read�x = �!2 x � � _x (21)which is beginning to look a little hard. Still,we can sort it out: the �rst term on the RHSsays that there is a linear restoring force and aninertial factor. The second term says that thereis a damping force proportional to the velocity.So the di�erential equation itself is not all thatfearsome. How can we \solve" it?As always, by trial and error. Since we havefound the exponential function to be so useful,let's try one here: Suppose thatx(t) = x0 eK t (22)where x0 and K are unspeci�ed constants.Now plug this into the di�erential equation andsee what we get:_x = K x0 eK t = K xand �x = K2 x0 eK t = K2 xThe whole thing then readsK2 x = �!2 x � �K x

which can be true \for all x" only ifK2 = �!2 � �K or K2 + �K + !2 = 0which is in the standard form of a generalquadratic equation for K, to which there aretwo solutions:K = ���p�2 � 4!22 (23)Either of the two solutions given by substitut-ing Eq. (23) into Eq. (22) will satisfy Eq. (21)describing damped SHM. In fact, generally anylinear combination of the two solutions will alsobe a solution. This can get complicated, but wehave found the answer to a rather broad ques-tion.13.4.1 Limiting CasesLet's consider a couple of \limiting cases" ofsuch solutions. First, suppose that the linearrestoring force is extremely weak compared tothe \drag" force | i.e.8 � � ! = q km . Thenp�2 � 4!2 � � and the solutions are K � 0[i.e. x � constant, plausible only if x = 0]and K � ��, which gives the same sort ofdamped behaviour as if there were no restoringforce, which is what we expected.Now consider the case where the linear restor-ing force is very strong and the \drag" force ex-tremely weak | i.e. � � ! = q km . Thenp�2 � 4!2 � 2 i ! and the solutions are K ��12�� i !, or9x(t) = x0 eK (24)� x0 exp(�i !t � t) (25)= x0 e�i !t � e�t (26)8The \�" symbol means \. . . is much greater than. . . " |there is an analogous \�" symbol that means \. . . is muchless than. . . ."9There is a general rule about exponents that says, \Anumber raised to the sum of two powers is equal to the prod-uct of the same number raised to each power separately," orab+c = ab � ac:



13.6. THE UNIVERSALITY OF SHM 7where  � 12�. We may then think of [iK] asa complex frequency10 whose real part is �!and whose imaginary part is . What sortof situation does this describe? It describes aweakly damped harmonic motion in which theusual sinusoidal pattern damps away within an\envelope" whose shape is that of an exponen-tial decay. A typical case is shown in Fig. 13.5.

Figure 13.5 Weakly damped harmonic motion.The initial amplitude of x (whatever x is) isx0, the angular frequency is ! and the dampingrate is . The cosine-like oscillation, equivalentto the real part of x0 ei ! t, decays within theenvelope function x0 e� t.13.5 Generalization of SHMAs for all the other types of equations of motion,SHM need not have anything to do with masses,springs or even Physics. Even within Physics,however, there are so many di�erent kinds ofexamples of SHM that we go out of our wayto generalize the results: using \q" to represent10The word \complex" has, like \real" and \imaginary,"been ripped o� by Mathematicians and given a very explicitmeaning that is not entirely compatible with its ordinary dic-tionary de�nition. While a complex number in Mathematicsmay indeed be complex | i.e. complicated and di�cult tounderstand | it is de�ned only by virtue of its having botha real part and an imaginary part, such as z = a+i b, wherea and b are both real. I hope that makes everything crystalclear. . . .

the \coordinate" whose displacement from theequilibrium \position" (always taken as q = 0)engenders some sort of restoring \force" Q =�k q and \�" to represent an \inertial factor"that plays the rôle of the mass, we have�q = � k�! q (27)for which the solution is the real part ofq(t) = q0 ei ! t where ! = sk� (28)When some form of \drag" acts on the system,we expect to see the qualitative behaviour pic-tured in Fig. 13.5 and described by Eqs. (22)and (23). Although one might expect virtuallyevery real example to have some sort of fric-tional damping term, in fact there are numerousphysical examples with no damping whatsoever,mostly from the microscopic world of solids.13.6 The Universality of SHMIf two systems satisfy the same equation of mo-tion, their behaviour is the same. Therefore themotion of the mass on the spring is in every re-spect identical to the horizontal component ofthe motion of the peg in the rotating wheel, eventhough these two systems are physically quitedistinct. In fact, any system exhibiting both alinear restoring \force" and an inertialfactor analogous to mass will exhibit SHM.11Moreover, since these arguments may be usedequally well in reverse, the horizontal compo-nent of the force acting on the peg in the wheelmust obey Fx = �kx, where k is an \e�ectivespring constant."11Examples are plentiful, especially in view of the fact thatany potential energy minimum is approximately quadraticfor small enough displacements from equilibrium. A primeexample from outside Mechanics is the electrical circuit, inwhich the charge Q on a capacitor plays the rôle of thedisplacement variable x and the inertial factor is providedby an inductance, which resists changes in the current I =dQ=dt.



8Why is SHM characteristic of such an enor-mous variety of phenomena? Because for suf-�ciently small displacements from equilibrium,every system with an equilibrium con�gurationsatis�es the �rst condition for SHM: the linearrestoring force. Here is the simple argument: alinear restoring force is equivalent to a poten-tial energy of the form U(q) = 12k q2 | i.e.a \quadratic minimum" of the potential energyat the equilibrium con�guration q = 0. But ifwe \blow up" a graph of U(q) near q = 0,every minimum looks quadratic under su�cientmagni�cation! That means any system that hasan equilibrium con�guration also has some ana-logue of a \potential energy" which is a mini-mum there; if it also has some form of inertiaso that it tends to stay at rest (or in motion)until acted upon by the analogue of a force,then it will automatically exhibit SHM for small-amplitude displacements. This makes SHM anextremely powerful paradigm.13.6.1 Equivalent ParadigmsWe have established previously that a linearrestoring force F = �kx is completelyequivalent to a quadratic minimum in po-tential energy U = 12kx2. We now �ndthat, with the inclusion of an inertial factor(usually just the mass m), either of these phys-ical paradigms will guarantee the mathematicalparadigm of SHM | i.e. the displacement xfrom equilibrium will satisfy the equation of mo-tion x(t) = xmax cos(!t+ �) (29)where xmax is the amplitude of the oscillation.Any x(t) of this form automatically satis�es thede�nitive equation of motion of SHM, namelyd2xdt2 = �!2 x (30)and vice versa |whenever x satis�es Eq. (30),the explicit time dependence of x will be givenby Eq. (29).

Figure 13.6 Equivalent paradigms of SHM.13.7 ResonanceNo description of SHM would be complete with-out some discussion of the general phenomenonof resonance, which has many practical conse-quences that often seem very counterintuitive.12I will, however, overcome my zeal for demon-strating the versatility of Mathematics and stickto a simple qualitative description of resonance.12It is, after all, one of the main purposes of this book todismantle your intuition and rebuild it with the faulty partsleft out and some shiny new paradigms added.



13.7. RESONANCE 9Just this once.The basic idea is like this: suppose some systemexhibits all the requisite properties for SHM,namely a linear restoring \force" Q = �k q andan inertial factor �. Then if once set in motion itwill oscillate forever at its \resonant frequency"! = q k� , unless of course there is a \damp-ing force" D = ���q to dissipate the energystored in the oscillation. As long as the dampingis weak [�� q km ], any oscillations will persistfor many periods. Now suppose the system isinitially at rest, in equilibrium, ho hum. Whatdoes it take to \get it going?"The hard way is to give it a great whack to startit o� with lots of kinetic energy, or a great tug tostretch the \spring" out until it has lots of poten-tial energy, and then let nature take its course.The easy way is to give a tiny push to start up asmall oscillation, then wait exactly one full pe-riod and give another tiny push to increase theamplitude a little, and so on. This works be-cause the frequency ! is independent of theamplitude q0. So if we \drive" the system atits natural \resonant" frequency !, no matterhow small the individual \pushes" are, we willslowly build up an arbitrarily large oscillation.13Such resonances often have dramatic results. Avivid example is the famous movie of the col-lapse of the Tacoma Narrows bridge, which hada torsional [twisting] resonance14 that was ex-cited by a steady breeze blowing past the bridge.The engineer in charge anticipated all the othermore familiar resonances [of which there aremany] and incorporated devices speci�cally de-signed to safely damp their oscillations, but for-got this one. As a result, the bridge developed13Of course, this assumes � = 0. If damping occurs atthe same time, we must put at least as much energy in withour driving force as friction takes out through the dampingin order to build up the amplitude. Almost every system hassome limiting amplitude beyond which the restoring force isno longer linear and/or some sort of losses set in.14(something like you get from a blade of grass held be-tween the thumbs to create a loud noise when you blow pastit)

huge twisting oscillations [mistakes like this areusually painfully obvious when it is too late tocorrect them] and tore itself apart.A less spectacular example is the trick of gettingyourself going on a playground swing by leaningback and forth with arms and legs in synchronywith the natural frequency of oscillation of theswing [a sort of pendulum]. If your kinestheticmemory is good enough you may recall that itis important to have the \driving" push exactly�2 radians [a quarter cycle] \out of phase" withyour velocity | i.e. you pull when you reach themotionless position at the top of your swing, ifyou want to achieve the maximum result. Thishas an elegant mathematical explanation, but Ipromised. . . .


