## $k$-SPACE

The wavenumber $k \equiv \frac{2 \pi}{\lambda}$ of a wave has a special significance in both classical and quantum physics. Because waves are quantized (they can only occur in "packets" of energy $h \nu=\hbar \omega$ and momentum $h / \lambda=\hbar k$ ) we are often in the position of asking what possible values $k$ can have, and counting the number of allowed $k$ values. From this procedure arises the notion of " $k$-space" and the density of states in $k$-space, which may seem rather exotic on the first encounter but with which every physicist ultimately becomes intimately familiar.
The following arguments apply to any sort of wave (or wavefunction) that is confined to a finite region and constrained to have nodes at the boundaries.

## 1 Counting Modes in 1D



In a one dimensional "box" of length $L$, the "allowed" wavelengths are $\lambda_{n}=\frac{2 L}{n}$ corresponding to wavenumbers $k_{n}=\frac{n \pi}{L}$. Thus the smallest posssible wavenumber, and the "distance" (in $k$-space) between successive allowed wavenumbers, is $\delta k=\frac{\pi}{L}$. There is $\delta N=1$ allowed "state" per $\delta k$. Put another way, the "density" of allowed states per unit wavenumber is

$$
\rho_{k} \equiv \frac{\delta N}{\delta k}
$$

or, for this one-dimensional ( $1 D$ ) case,

$$
\rho_{k_{1 D}}=\frac{L}{\pi} .
$$

Note that $n>0 \Rightarrow k>0$. We are drawing standing waves, $\cos k x=\frac{1}{2}\left(e^{i k x}+e^{-i k x}\right)$ (we choose $x=0$ at the centre of the box, for symmetry), for which "negative" $k$ values have no independent meaning.

## 2 Counting Modes in 2D

In a rectangular box of width $L_{x}$ and height $L_{y}$ the modes which have nodes at all boundaries are products of sinusoidal functions of the form $\cos k_{x} x \cdot \cos k_{y} y$,
where $k_{x}=n_{x} \frac{\pi}{L_{x}}$ and $k_{y}=n_{y} \frac{\pi}{L_{y}}$. Now the situation is a little more complicated, since $\vec{k}=k_{x} \hat{\imath}+k_{y} \hat{\jmath}$ is a vector. In fact, we call it the wavevector instead of the wavenumber; the wavenumber $k \equiv|\vec{k}|$ is then given by

$$
k=\sqrt{k_{x}^{2}+k_{y}^{2}} .
$$

Why do we bother with the magnitude $k$ instead of sticking to the intrinsically multidimensional vector $\overrightarrow{\boldsymbol{k}}$ ? Well, when we do kinematics we are often concerned with the kinetic energy, which is a scalar quantity depending only upon the magnitude of the momentum $p$ (and upon the effective mass, if any) of the particle in question. Since we have discovered that photons (for example) are in some sense particles which have energy $\varepsilon=\hbar \omega$ and momentum $p=\hbar k$, we can conclude that $\varepsilon=\hbar c k$ (for massless particles only) and so, if all we really care about is the energy $\varepsilon$ of a given mode, the only thing we need to know is its wavenumber, $k$.

But we still need to count up how many modes have (approximately) the same wavenumber $k$. This is where we have to return to the two-dimensional picture and begin talking in terms of $k$-space.


There is one allowed $k_{x}$ for every $\delta k_{x}=\pi / L_{x}$ and one allowed $k_{y}$ for every $\delta k_{y}=\pi / L_{y}$, so there is altogether $\delta N=1$ allowed $\overrightarrow{\boldsymbol{k}}$ for every " $k$-area" element $\delta A_{k}=$ $\delta k_{x} \cdot \delta k_{y}$ in two-dimensional $k$-space. (Yes, this is getting a little weird. Pay close attention!) Note that $\delta A_{k}=$ $\pi^{2} / A$ where $A=L_{x} \cdot L_{y}$ is the actual physical area of the box in normal space. This element of $k$-space contains exactly $\delta N=1$ allowed state, so once again we may define the density of states in $k$-space, $\rho_{k} \equiv \delta N / \delta A_{k}$ or, for this two-dimensional ( $2 D$ ) case,

$$
\rho_{k_{2 D}}=\frac{A}{\pi^{2}} .
$$

Note that the density of states in $k$-space is proportional to the physical area of the region to which the waves are confined.

How many such states have (approximately) the same wavenumber $k$ ? This is a crucial question in many problems. To estimate the result we draw a ring in $k$-space with radius $k$ and width $d k$. Recalling that only positive values of $n_{x}$ and $n_{y}$ are allowed (standing waves and all that), we only consider the upper right-hand quadrant of the circular ring; its " $k$-area" is thus $d A_{k}=\frac{1}{4} \cdot 2 \pi k d k$. At a density of $\rho_{k_{2 D}}$ states per unit $k$-area, this gives $\frac{\pi}{2} \rho_{k_{2 D}} k d k=\frac{\pi}{2} \frac{A}{\pi^{2}} k d k$ or $\frac{A}{2 \pi} k d k$ states in that ring quadrant. We can express this as a density of wavenumber magnitudes in terms of the distribution function

$$
\mathcal{D}_{2 D}(k) d k=\frac{A}{2 \pi} k d k
$$

which is defined as the number of allowed modes whose wavenumbers are within $d k$ of a given $k$. Note that the number increases linearly with $k$, unlike in the $1 D$ case where it is independent of $k$.

## 3 Counting Modes in 3D

In three dimensions, the extension is straightforward: $\overrightarrow{\boldsymbol{k}}=k_{x} \hat{\imath}+k_{y} \hat{\jmath}+k_{z} \hat{k}$ with $k_{x}=n_{x} \pi / L_{x}, n_{x}=1,2,3, \cdots$ etc. Now there is $\delta N=1$ allowed $\overrightarrow{\boldsymbol{k}}$ for each " $k$-volume element $\delta V_{k}=\delta k_{x} \cdot \delta k_{y} \cdot \delta k_{y}=\left(\frac{\pi}{L_{x}}\right) \cdot\left(\frac{\pi}{L_{y}}\right) \cdot\left(\frac{\pi}{L_{z}}\right)=\frac{\pi^{3}}{V}$, where $V=L_{x} \cdot L_{y} \cdot L_{z}$ is the actual physical volume of the three-dimensional box to which the waves are confined. This gives a density of modes in $k$-space of

$$
\rho_{k_{3 D}}=\frac{V}{\pi^{3}}
$$

The "volume" of $k$-space having wavenumbers within $d k$ of $k=|\overrightarrow{\boldsymbol{k}}|$ is now the positive octant of a spherical shell of "radius" $k$ and thickness $d k: d V_{k}=\frac{1}{8} \cdot 4 \pi k^{2} d k$ and this shell contains $\rho_{k_{3 D}} d V_{k}$ allowed modes, so the density of wavenumber magnitudes (distribution function) in $3 D k$-space is

$$
\mathcal{D}_{3 D}(k) d k=\frac{V}{2 \pi^{2}} k^{2} d k
$$

Note that in this case the density increases as the square of the wavenumber. In fact, we can generalize: if $d$ is the dimensionality of the region of confinement, then $\mathcal{D}_{d D}(k) d k \propto k^{d-1} d k$. In each case, the density of states in $k$-space is directly proportional to the size of the realspace region to which the waves are confined. More room, more possibilities.

