
Setion 2: COUNTING MODES IN 2D 1k-SPACEThe wavenumber k � 2�� of a wave has a speialsigni�ane in both lassial and quantum physis. Be-ause waves are quantized (they an only our in \pak-ets" of energy h� = �h! and momentum h=� = �hk) weare often in the position of asking what possible valuesk an have, and ounting the number of allowed k val-ues. From this proedure arises the notion of \k-spae"and the density of states in k-spae, whih may seemrather exoti on the �rst enounter but with whih ev-ery physiist ultimately beomes intimately familiar.The following arguments apply to any sort of wave (orwavefuntion) that is on�ned to a �nite region and on-strained to have nodes at the boundaries.1 Counting Modes in 1D
In a one dimensional \box" of length L, the \allowed"wavelengths are �n = 2Ln orresponding to wavenum-bers kn = n�L . Thus the smallest posssible wavenum-ber, and the \distane" (in k-spae) between suessiveallowed wavenumbers, is Æk = �L . There is ÆN = 1 al-lowed \state" per Æk. Put another way, the \density"of allowed states per unit wavenumber is�k � ÆNÆkor, for this one-dimensional (1D) ase,�k1D = L� :Note that n > 0 ) k > 0. We are drawing standingwaves, os kx = 12 �eikx + e�ikx� (we hoose x = 0 atthe entre of the box, for symmetry), for whih \nega-tive" k values have no independent meaning.2 Counting Modes in 2DIn a retangular box of width Lx and height Ly themodes whih have nodes at all boundaries are prod-uts of sinusoidal funtions of the form os kxx �os kyy,

where kx = nx �Lx and ky = ny �Ly . Now the situationis a little more ompliated, sine ~k = kx{̂ + ky |̂ is avetor. In fat, we all it the wavevetor instead of thewavenumber; the wavenumber k � j~kj is then given byk =qk2x + k2y :Why do we bother with the magnitude k instead ofstiking to the intrinsially multidimensional vetor ~k?Well, when we do kinematis we are often onernedwith the kineti energy, whih is a salar quantity de-pending only upon the magnitude of the momentum p(and upon the e�etive mass, if any) of the partile inquestion. Sine we have disovered that photons (forexample) are in some sense partiles whih have energy" = �h! and momentum p = �hk, we an onlude that" = �hk (for massless partiles only) and so, if all wereally are about is the energy " of a given mode, theonly thing we need to know is its wavenumber, k.But we still need to ount up how many modes have(approximately) the same wavenumber k. This is wherewe have to return to the two-dimensional piture andbegin talking in terms of k-spae.

There is one allowed kx for every Ækx = �=Lx and oneallowed ky for every Æky = �=Ly, so there is altogetherÆN = 1 allowed ~k for every \k-area" element ÆAk =Ækx �Æky in two-dimensional k-spae. (Yes, this is gettinga little weird. Pay lose attention!) Note that ÆAk =�2=A where A = Lx �Ly is the atual physial area of thebox in normal spae. This element of k-spae ontainsexatly ÆN = 1 allowed state, so one again we mayde�ne the density of states in k-spae, �k � ÆN=ÆAk or,for this two-dimensional (2D) ase,�k2D = A�2 :Note that the density of states in k-spae is proportionalto the physial area of the region to whih the waves areon�ned.



Setion 3: COUNTING MODES IN 3D 2How many suh states have (approximately) the samewavenumber k? This is a ruial question in many prob-lems. To estimate the result we draw a ring in k-spaewith radius k and width dk. Realling that only positivevalues of nx and ny are allowed (standing waves and allthat), we only onsider the upper right-hand quadrant ofthe irular ring; its \k-area" is thus dAk = 14 � 2� k dk.At a density of �k2D states per unit k-area, this gives�2 �k2D k dk = �2 A�2 k dk or A2� k dk states in that ringquadrant. We an express this as a density of wavenum-ber magnitudes in terms of the distribution funtionD2D(k) dk = A2� k dkwhih is de�ned as the number of allowed modes whosewavenumbers are within dk of a given k. Note that thenumber inreases linearly with k, unlike in the 1D asewhere it is independent of k.3 Counting Modes in 3DIn three dimensions, the extension is straightforward:~k = kx{̂+ ky |̂+ kzk̂ with kx = nx�=Lx, nx = 1; 2; 3; � � �et. Now there is ÆN = 1 allowed ~k for eah \k-volumeelement ÆVk = Ækx �Æky �Æky = � �Lx� �� �Ly � �� �Lz � = �3V ,where V = Lx�Ly �Lz is the atual physial volume of thethree-dimensional box to whih the waves are on�ned.This gives a density of modes in k-spae of�k3D = V�3 :The \volume" of k-spae having wavenumbers within dkof k = j~kj is now the positive otant of a spherial shellof \radius" k and thikness dk: dVk = 18 � 4�k2 dk andthis shell ontains �k3DdVk allowed modes, so the den-sity of wavenumber magnitudes (distribution funtion)in 3D k-spae isD3D(k) dk = V2�2 k2 dk :Note that in this ase the density inreases as the squareof the wavenumber. In fat, we an generalize: if d isthe dimensionality of the region of on�nement, thenDdD(k) dk / kd�1 dk. In eah ase, the density of statesin k-spae is diretly proportional to the size of the real-spae region to whih the waves are on�ned. Moreroom, more possibilities.


