THE UNIVERSITY OF BRITISH COLUMBIA

Physics 108

First Midterm Examination

Friday 4 February 2005

TIME: 50 MINUTES

SIGNATURE: _____

This Examination paper consists of 8 pages (including this one). Make sure you have all 8.

INSTRUCTIONS:

Write your name on every sheet.

Calculator and 1-page Summary Sheet allowed.

Try every question — easy ones first! A diagram is usually a good start.

Read carefully!

Your answers may be expressed in terms of irrational numbers like π or $\sqrt{2}$.

MARKING:

$\mathbf{Q1}$	/60
$\mathbf{Q2}$	/40
TOTAL	/100

Physics 108 FIRST MIDTERM EXAMINATION — Friday 4 February 2005 — p. 2 of 8

Q1 QUICKIES [10 marks each — 60 total]

(a) Under what circumstances would the *entropy* of a system decrease with the addition of energy, and what could you say about the *temperature* of such a system?

(b) Charges of +2Q and -Q are located in the plane of the page as shown. Sketch the region in the same plane (if any) where the resultant *electric field* is zero.

$$+2Q$$
 $-Q$

(c) In broad general terms, explain why the thermal distribution of particle speeds is **not** the same in a **1**-dimensional ideal gas as it is in a **3**-dimensional ideal gas of the same particles at the same temperature.

(d) A positive point charge Q is fixed at an arbitrary location (not on the axis) inside an uncharged, thin-walled copper tube whose length L is much larger than its radius R. The charge is not located near either end. Define r as the perpendicular distance from the axis of the tube. Match up **all** the left and right side phrases that make up *true* sentences:

is zero.

is a complicated function of the charge's position.

has a magnitude $E \approx Q/2\pi\epsilon_{\circ}Lr$ except near the ends.

is in the $\hat{\boldsymbol{r}}$ direction.

The electric field inside the tube (r < R)

The electric field outside the tube (r > R)

Physics 108 FIRST MIDTERM EXAMINATION — Friday 4 February 2005 — p. 4 of 8

- (e) The diagram shows an edge-on view of an electrically neutral, semi-infinite, flat conducting slab with a parallel sheet of uniformly distributed positive charge (charge per unit area $+\sigma_{\circ}$) on the left and a parallel sheet of uniformly distributed negative charge (charge per unit area $-\sigma_{\circ}$) on the right. What is the direction and magnitude of the electric field ...
 - i) ... to the left of the positive sheet of charge?
 - ii) ... between the positive sheet of charge and the slab?
 - iii) ... inside the slab?
 - iv) ... between the slab and the negative sheet of charge?
 - v) ... to the right of the negative sheet of charge?
- (f) Referring to the previous diagram, calculate the induced surface charge σ per unit area on each side of the slab, in terms of σ_{\circ} .

Physics 108 FIRST MIDTERM EXAMINATION — Friday 4 February 2005 — p. 5 of 8

Q2 CHARGED COAXIAL CONDUCTORS [40 marks]

A long copper cylinder of radius a is surrounded by a coaxial copper tube whose inner radius is b, as shown. The inner cylinder carries a uniform charge per unit length (λ) and the outer shell has an equal and opposite charge per unit length $(-\lambda)$ so that the system as a whole is electrically neutral.

(a) [5 marks] If r is the distance from the axis, what is the electric field for r < a? Explain.

(b) [5 marks] What is the electric field $\vec{E}(r)$ for r > b? Explain.

(c) [10 marks] What is the electric field $\vec{E}(r)$ between the two cylinders (a < r < b)?

Physics 108 FIRST MIDTERM EXAMINATION — Friday 4 February 2005 — p. 6 of 8

Now consider the case where a = 1 m, b = 1.01 m and $\lambda = +10^{-10} \text{ C/m}$. Since $(b-a) \ll a$, you can treat the electric field between the cylinders as approximately constant in magnitude. The 1 cm gap between the inner cylinder and the outer tube is evacuated except for 100 tiny beads, each of which contains a single excess electron fixed at its centre so that its net charge is -e. The beads stick to the copper surfaces, but are occasionally shaken loose by thermal motion. The whole system is in thermal equilibrium at 300 K.

(d) [5 marks] What is the difference $\varepsilon = U(b) - U(a)$ between the electrostatic potential energy U(b) of a bead stuck to the surface of the outer shell and that of a bead stuck to the surface of the inner cylinder, U(a)?

(e) [15 marks] On average, how many beads are stuck to each surface?

(extra work space)

Constants and Conversion Factors. (You may not need all of these!)

Exchange Rate (30 Jan 2005)	1.00 EUR (Euro)	=	\$1.61649 CAD
Universal Gravitational Constant	G	=	$6.672\times 10^{-11}~{\rm m}^3~{\rm kg}^{-1}~{\rm s}^{-2}$
Mass of the Earth	M_E	=	$5.974\times10^{24}~\rm kg$
Mean radius of the Earth	R_E	=	6367 km
Planck's constant	h	=	$6.6262 \times 10^{-34} \text{ J-s}$
Permittivity of free space	ϵ_{\circ}	=	$0.8854 \times 10^{-11} \text{ C}^2/\text{N-m}^2 \text{ [or F/m]}$
constant in Coulomb's Law	$k_E = \frac{1}{4\pi\epsilon_{\rm o}}$	=	$8.988\times 10^9~\mathrm{N}\textrm{-}\mathrm{m}^2/\mathrm{C}^2$
Permeability of free space	$\mu_{ m o}$	=	$1.2566 \times 10^{-6} \text{ N/A}^2 \text{ [or H/m]}$
constant in Biot-Savart Law	$k_M = \frac{\mu_0}{4\pi}$	=	10^{-7} T-m/A
Electric charge of a proton	e	=	$1.602 \times 10^{-19} \text{ C}$
Speed of light in vacuum	С	=	$2.99792458 \times 10^8 \text{ m/s}$
Avogadro's number	$N_{ m o}$	=	6.022×10^{23} molecules per mole
Proton rest mass	M_p	=	$1.673 \times 10^{-27} \text{ kg}$
Neutron rest mass	M_n	=	$1.675 \times 10^{-27} \text{ kg}$
Electron rest mass	m_e	=	$9.11 \times 10^{-31} \text{ kg}$
Boltzmann constant	$k_{ m B}$	=	$1.3807 \times 10^{-23} \text{ J/K}$
electron volt	$1 \mathrm{eV}$	=	$1.602 \times 10^{-19} \text{ J} = k_{\text{B}} \times 11,600 \text{ K}$
Atmospheric pressure:	1 atm	=	760 torr = 1.013×10^5 pascal [N/m ²]