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1. QUICKIES [10 marks each — 60 total]

(a) Under what circumstances would the entropy of a system decrease with the addition of energy, and
what could you say about the temperature of such a system? 1

(b) Charges of +2Q and −Q are located in the plane of the page as shown. Sketch the region in the
same plane (if any) where the resultant electric field is zero. 2
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(c) In broad general terms, explain why the thermal distribution of particle speeds is not the same in
a 1-dimensional ideal gas as it is in a 3-dimensional ideal gas of the same particles at the same
temperature. 3

(d) A positive point charge Q is fixed at an arbitrary location (not on the axis) inside an uncharged,
thin-walled copper tube whose length L is much larger than its radius R. The charge is not located
near either end. Define r as the perpendicular distance from the axis of the tube. Match up all the
left and right side phrases that make up true sentences: 4

The electric field inside the tube (r < R)

The electric field outside the tube (r > R)

is zero.
is a complicated function of the charge’s position.
has a magnitude E ≈ Q/2πε◦Lr except near the ends.
is in the r̂ direction.

(e) The diagram shows an edge-on view of an electrically neutral, semi-
infinite, flat conducting slab with a parallel sheet of uniformly distributed
positive charge (charge per unit area +σ◦) on the left and a parallel sheet
of uniformly distributed negative charge (charge per unit area −σ◦) on
the right. What is the direction and magnitude of the electric field . . .

i) . . . to the left of the positive sheet of charge?

ii) . . . between the positive sheet of charge and the slab?

iii) . . . inside the slab?

iv) . . . between the slab and the negative sheet of charge?

v) . . . to the right of the negative sheet of charge?
Answers: 5 6 7

1There must be a limit to the amount of energy the system can hold, otherwise more energy is bound to offer more
possibilities for redistribution, and thus more entropy. If the entropy is decreasing with increasing energy (i.e. the
derivative is negative) then by definition the temperature is negative (i.e. hotter than infinite temperature.)

2There is only one point where the electric field is zero: exactly as far to the right of the negative charge as the
separation between the charges.

3The probability of a given single particle state of a given energy being occupied is the same for both, but the density
of states (i.e. the number of possible states with speeds within a given dv of v) is different because there are more
directions for the vector velocity to point in 3 dimensions than in 1 dimension. You can also describe this in terms of
modes of standing waves, but the classical explanation is adequate for full credit.

4The electric field inside the tube (r < R) is a complicated function of the charge’s position. The electric field outside
the tube (r > R) has a magnitude E ≈ Q/2πε◦Lr (except near the ends) and is in the r̂ direction.

5The electric field inside any conductor is zero.
6To the left of the positive sheet of charge and to the right of the negative sheet of charge, the electric field is zero,

because a Gaussian “pillbox” surface cutting through the entire array at right angles encloses no net charge.
7A negative surface charge is attracted to the left side of the conductor by the positive sheet of charge, leaving behind

an equal and opposite positive surface charge on the right side. These induced surface charges must cancel the electric



2

(f) Referring to the previous diagram, calculate the induced surface charge σ per unit area on each side
of the slab in terms of σ◦. 8

2. CHARGED COAXIAL CONDUCTORS [40 marks]
A long copper cylinder of radius a is surrounded by a coaxial copper tube
whose inner radius is b, as shown. The inner cylinder carries a uniform charge
per unit length (λ) and the outer shell has an equal and opposite charge per
unit length (−λ) so that the system as a whole is electrically neutral.

(a) [5 marks] If r is the distance from the axis, what is the electric field for r < a? Explain. 9

(b) [5 marks] What is the electric field ~E(r) for r > b? Explain. 10

(c) [10 marks] What is the electric field ~E(r) between the two cylinders (a < r < b)? 11

Now consider the case where a = 1 m, b = 1.01 m and λ = +10−10 C/m. Since (b− a)� a, you can treat
the electric field between the cylinders as approximately constant in magnitude. The 1 cm gap between the
inner cylinder and the outer tube is evacuated except for 100 tiny beads, each of which contains a single
excess electron fixed at its centre so that its net charge is −e. The beads stick to the copper surfaces, but
are occasionally shaken loose by thermal motion. The whole system is in thermal equilibrium at 300 K.

(a) [5 marks] What is the difference ε = U(b)− U(a) between the electrostatic potential energy U(b) of
a bead stuck to the surface of the outer shell and that of a bead stuck to the surface of the inner
cylinder, U(a)? 12

(b) [15 marks] On average, how many beads are stuck to each surface? 13

fields of the sheets inside the conductor, so they produce electric fields of their own with the same magnitude as those
of the sheets, and (between the sheets and the conductor) in the same direction. So in both gaps we get an electric field

to the right whose (uniform) magnitude is Egap = σ◦/ε◦ , twice that from a single sheet, E◦ = σ◦/2ε◦.
8There are several ways to think about this question; the trick is not to get them mixed up. The reasoning given in

the answer to the previous question treats all sheets of charge (original or induced) on an equal basis, explaining the
zero electric field within the conductor explicitly in terms of the sum of several contributions. This immediately gives

|σ| = σ◦ on both sides of the slab. You can also use the general rule (obtained by taking a very small Gaussian

“pillbox” that only encloses one surface of the conductor) that E = σ/ε◦ near the surface of any conductor; in this case
Egap = σ/ε◦ but since Egap = 2E◦ and E◦ = σ◦/2ε◦ we get σ/ε◦ = 2σ◦/2ε◦ or |σ| = σ◦ again.

9 Zero . There is no net charge enclosed within a coaxial Gaussian cylinder of radius r < a.
10 Zero . There is a positive charge λ` from the inner conductor and a negative charge −λ` from the outer conductor

both enclosed within a coaxial Gaussian cylinder of length ` and radius r > b, but there is still no net charge enclosed.
11Now it gets interesting. A coaxial Gaussian cylinder of length ell and radius r between a and b encloses a net

positive charge Q = `λ which must equal ε◦E times the surface area 2πr` through which ~E emerges, giving the familiar

E(r) = λ/2πε◦r . The negative shell of charge at r = b is not enclosed, so it contributes nothing to E.
12You are welcome to do an integral if you wish, but I excused you from this chore by specifying that you can treat E as

constant in the narrow gap, giving simply ε = eE(b− a). Check the sign: the negatively charged electron experiences an
inward force so “out” is “uphill” and U(b) is greater than U(a). With E ≈ E(a) = λ/2πε◦a this gives ε = eλ(b−a)/2πε◦a.

Putting in the numbers gives ε = (1.602×10−19)(10−10)(0.01)

(2π)(0.8854×10−11)(1)
or ε = 0.288× 10−20 J .

13Here we have two states of different energies and therefore different Boltzmann factors. If we define the energy of a
bead stuck to the surface at r = a to be zero, then the ratio of the probability Pb of being stuck to the surface at r = b to
the probability Pa of being stuck to the surface at r = a is exp(−ε/kBT ), where T = 300 K and kB = 1.3807×10−23 J/K,

giving ε/kBT = 0.288×10−20

0.4142×10−20 = 0.6953 and Pb/Pa = e−0.6953 = 0.499 ≈ 1/2. Since Pa + Pb = 1 ≈ (3/2)Pa, Pa ≈ 2/3

and Pb ≈ 1/3, so on average 67 of the 100 beads will be stuck to the surface at r = a and 33 will be stuck to the
surface at r = b.


