The University of British Columbia

 Physics 401 Assignment \# 1:

 Physics 401 Assignment \# 1:

 REVIEW

 REVIEW}

Wed. 04 Jan. 2006 - finish by Wed. 11 Jan.

This first assignment is just review, to make sure you haven't forgotten (or can quickly recall) what you learned in PHYS $301 / 354$ (or earlier) about the E\&M covered in the first 7 chapters of our textbook: David Griffiths, "Introduction to Electrodynamics".

1. MAXWELL'S EQUATIONS:

(a) Starting with Maxwell's equations in differential form, derive Maxwell's equations in integral form.
(b) Starting with Maxwell's generalization of Ampère's Law, $\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{H}}=\overrightarrow{\boldsymbol{J}}_{f}+\frac{\partial \boldsymbol{D}}{\partial t}$, derive the continuity equation, $\quad \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{J}}+\frac{\partial \rho}{\partial t}=0$, which is the mathematical expression of charge conservation.
(c) Starting with Maxwell's equations in free space $(\overrightarrow{\boldsymbol{J}}=0, \rho=0)$, show that $\overrightarrow{\boldsymbol{E}}$ and $\overrightarrow{\boldsymbol{B}}$ each satisfy a wave equation. What is the speed of propagation of the resulting wave in each case?
2. CHARGED CONDUCTORS: Two spherical cavities, of radii a and b, are hollowed out from the interior of a solid neutral conducting sphere of radius R, as shown in the figure. There are charges q_{a} and q_{b} at the centres of the respective cavities.
(a) What is the electric field in the solid (shaded) conducting material?
(b) Find the surface charges σ_{a}, σ_{b} and σ_{R} at the respective surfaces.
(c) What is the electric field outside the conductor at a distance $r>R$ from the centre of the large sphere?
(d) What are the electric fields inside cavities a and b ?
(e) What are the forces on q_{a} and q_{b} ?

(f) If a third charge q_{c} were brought near the conductor, which (if any) would change:
(i) σ_{a} ?
(ii) σ_{b} ?
(ii) σ_{R} ?
(iv) The electric fields inside cavities a and b ?
(v) The electric field outside the conductor?
3. COAXIAL CAPACITOR: A capacitor is constructed of two very long concentric cylindrical conductors with their common axis horizontal, as shown in the diagram. The space between them is exactly half filled with a linear dielectric liquid with dielectric constant κ.
(a) Show that the electric field is radial and is the same in the dielectric half as in the vacuum half of the capacitor.
(b) Deduce the capacitance per unit length of this coaxial capacitor.
(c) If the conductors carry free charges per unit length $\pm \lambda$, find the polarization $\overrightarrow{\boldsymbol{P}}$ in the dielectric at any point a distance r from the central axis, in terms of $\epsilon_{0}, \kappa, \lambda$ and r.

4. LINEAR CURRENTS:

Two very long parallel wires carry equal currents $\pm I$ in opposite directions, as illustrated in the figure. Take the $\hat{\boldsymbol{z}}$ direction to be out of the page, in the direction of the current in wire 1. The field point P is located a distance r_{1} from wire 1 and a distance r_{2} from wire 2 , as shown.
(a) Consider each wire separately and indicate the direction of the vector potential $\overrightarrow{\boldsymbol{A}}$ in each case.
(b) Show that the vector potential $\overrightarrow{\boldsymbol{A}}$ at the point P is given by: $\overrightarrow{\boldsymbol{A}}=\frac{\mu_{0} I}{2 \pi} \ln \left(\frac{r_{2}}{r_{1}}\right) \hat{\boldsymbol{z}}$
(c) Show that the result in part (b) is consistent with that obtained using Ampère's Law.

Head-on View

5. LAPLACE'S EQUATION: Consider an infinitely long metal pipe, of radius R, which is placed at right angles to an otherwise uniform electric field $\overrightarrow{\boldsymbol{E}}_{0}=E_{0} \hat{\boldsymbol{x}}$.
(a) What is the "uniqueness theorem" and why would you want to use it to solve for the electric potential V ?
(b) What are the boundary conditions on the electric potential V ?
(c) Solve Laplace's equation for the potential V outside the long metal pipe. You should obtain: $V(r, \theta)=E_{0} r\left(\frac{R^{2}}{r^{2}}-1\right) \cos \theta$.

Hint: Note that this situation has cylindrical symmetry (not spherical!), with no z dependence, and hence simplifies to a 2-D plane polar problem.

Solutions to Laplace's Equation: $\quad \nabla^{2} V=0$

2D Cartesian:

$$
\begin{gathered}
\nabla^{2} V \equiv \frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0 \\
\left.\left.\left.\left.V(x, y)=\begin{array}{l}
x \\
1
\end{array}\right\} \begin{array}{l}
y \\
1
\end{array}\right\}+\begin{array}{c}
e^{k x} \\
e^{-k x}
\end{array}\right\} \begin{array}{l}
\cos k y \\
\sin k y
\end{array}\right\}+ \text { permutations }(x \leftrightarrow y) .
\end{gathered}
$$

3D Cartesian:

$$
\begin{gathered}
\nabla^{2} V \equiv \frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0 \\
\left.\left.\left.\left.\left.\left.\left.\left.\left.V(x, y, z)=\begin{array}{l}
x \\
1
\end{array}\right\} \begin{array}{l}
y \\
1
\end{array}\right\} \begin{array}{c}
z \\
1
\end{array}\right\}+\begin{array}{c}
x \\
1
\end{array}\right\} \begin{array}{c}
\cos p y \\
\sin p y
\end{array}\right\} \begin{array}{c}
e^{q z} \\
e^{-q z}
\end{array}\right\}+\begin{array}{c}
e^{p x} \\
e^{-p x}
\end{array}\right\} \begin{array}{c}
\cos q y \\
\sin q y
\end{array}\right\} \begin{array}{c}
\cos \sqrt{p^{2}-q^{2}} z \\
\sin \sqrt{p^{2}-q^{2}} z
\end{array}\right\} \\
+ \text { all permutations }\{x, y, z\} .
\end{gathered}
$$

2D Plane Polar:

$$
\begin{gathered}
\nabla^{2} V \equiv \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}=0 \\
\left.\left.\left.V(r, \theta)=\begin{array}{c}
\ln r \\
1
\end{array}\right\}+\begin{array}{c}
r^{n} \\
r^{-} n
\end{array}\right\} \begin{array}{c}
\cos n \theta \\
\sin n \theta
\end{array}\right\}
\end{gathered}
$$

3D Cylindrical:

$$
\begin{gathered}
\nabla^{2} V \equiv \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0 \\
\left.\left.\left.V(\rho, \phi, z)=\begin{array}{c}
J_{n}(k \rho) \\
N_{n}(k \rho)
\end{array}\right\} \begin{array}{c}
\cos n \phi \\
\sin n \phi
\end{array}\right\} \begin{array}{c}
e^{k z} \\
e^{-k z}
\end{array}\right\}
\end{gathered}
$$

where $J_{n}(k \rho) \rightarrow$ Bessel functions and $N_{n}(k \rho) \rightarrow$ Neumann functions.

3D Spherical:

$$
\begin{gathered}
\nabla^{2} V \equiv \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0 \\
\left.\left.\left.V(r, \theta, \phi)=\begin{array}{c}
r^{\ell} \\
r^{-(\ell+1)}
\end{array}\right\} \begin{array}{c}
P_{\ell}^{m}(\cos \theta) \\
Q_{\ell}^{m}(\cos \theta)
\end{array}\right\} \begin{array}{c}
\cos m \phi \\
\sin m \phi
\end{array}\right\}
\end{gathered}
$$

where $P_{\ell}^{m}(\cos \theta)$ are associated Legendre polynomials and $Q_{\ell}^{m}(\cos \theta)$ are associated Legendre polynomials of the second kind.

If axial symmetry then $\left.\left.V(r, \theta, \phi)=\begin{array}{c}r^{\ell} \\ r^{-(\ell+1)}\end{array}\right\} \begin{array}{c}P_{\ell}(\cos \theta) \\ Q_{\ell}(\cos \theta)\end{array}\right\}$
where $P_{\ell}(\cos \theta)$ are Legendre polynomials and $Q_{\ell}(\cos \theta)$ are Legendre polynomials of the second kind.

Match linear combinations of the forms above to the appropriate boundary conditions imposed by (e.g.) conducting surfaces (equipotentials) and any requirements that $V \underset{r \rightarrow \infty}{\longrightarrow} 0$ etc.

