
The University of British Columbia

Physics 401 Assignment # 3:

Conservation Laws

SOLUTIONS:

Wed. 18 Jan. 2006 — finish by Wed. 25 Jan.

1. (p. 340, Problem 7.58) — TRANSMISSION
LINE: A transmission line is constructed two
parallel thin metal “ribbons” of width w sepa-
rated by a very small distance h ≪ w. The cur-
rent travels down one strip and back along the
other. In each case it spreads out uniformly over
the surface of the ribbon.

(a) Find the capacitance per unit length, C.
ANSWER: We have a parallel-plate
capacitor with a plate separation d = h and
an area wℓ, where ℓ is the length of the
strip. Thus C = ǫ0A/d = ǫ0wℓ/h and

C ≡ C/ℓ = ǫ0w/h .

(b) Find the inductance per unit length, L.
ANSWER: Assuming the current flows to
the right (+ẑ) on the bottom strip and back
(−ẑ) on the top, Ampère’s law gives
~B = (µ0I/w)ŷ (uniform between the strips,
zero elsewhere). For a length ℓ the resultant
flux is Φ = Bhℓ = µ0(h/w)ℓI = LI, so

L ≡ L/ℓ = µ0h/w .

(c) What is the product, LC, numerically? 1

ANSWER: LC = ǫ0(w/h)µ0(h/w) =
ǫ0µ0 or

LC = 1/c2 = 1.11265× 10−17 s2/m2 .

(d) If the strips are insulated from one another
by a nonconducting material of
permittivity ǫ and permeability µ, what is
then the product LC? What is the

1L and C will, of course, vary from one kind of trans-
mission line to another, but their product is a universal
constant — check, for example, the cable in Exercise 7.13
on p. 319 — provided the space between the conductors is
a vacuum. In the theory of transmission lines, this product
is related to the speed at which a pulse propagates down
the line (v = 1/

√
LC).

propagation speed? 2 ANSWER: We
simply replace ǫ0 by ǫ and µ0 by µ, giving

LC = ǫµ = 1/v2

where v < c is the propagation velocity of a
pulse down the line.

2. (p. 349, Problem 8.1) — POWER
TRANSMISSION: Calculate the power
(energy per unit time) transported down the
cables of Exercise 7.13 (p. 319) and Problem
7.58 (p. 340), assuming the two conductors are
held at a potential difference V , and carry
current I (down one and back up the other).
ANSWER: Exercise 7.13 describes a coaxial
cable with inner radius a and outer radius b.
Naturally the answer should be P = V I in both
cases; the idea is to check this against the result
calculated from P =

∫∫ ~S · d~a where
~S = ~E × ~B/µ0 is the Poynting vector
representing energy flux per unit time per unit
area. For the coaxial cable, ~E = λr̂/2πǫ0r and
~B = µ0Iφ̂/2πr so ~(S) = λIẑ/4π2ǫ0r

2 and the

power is P = (λI/4π2ǫ0)
∫ b

a r−2 · 2πrdr or

P =
λI

2πǫ0
ln

(

b

a

)

.

Is this the same as V I? We have V =
∫

~E · d~ℓ =

(λ/2πǫ0)
∫ b

a r−1dr = (λ/2πǫ0) ln(b/a) and this

times I is indeed the above P .
√

QED

For Problem 7.58, ~E = σx̂/ǫ0 and
~B = (µ0I/w)ŷ are uniform and mutually
perpendicular, making
~S = ~E × ~B/µ0 = (σI/ǫ0w)ẑ and thus

P =
∫∫ ~S · d~a = (σI/ǫ0w)(wh) or

P =
σIh

ǫ0
.

Compare V = Eh = σh/ǫ0 so that V I = σIh/ǫ0.
√

QED

3. (p. 357, Problem 8.5) — FORCE on a
PARALLEL PLATE CAPACITOR:
Consider a semi-infinite parallel plate capacitor
(far from the edges), with the lower plate (at
z = −d/2) carrying a uniform charge density
−σ and the upper plate (at z = +d/2) carrying
a uniform charge density +σ.

(a) Determine all nine elements of the stress
tensor in the region between the plates.

2
Hint: see Exercise 4.6 on p. 183; by what factor does

L change when an inductor is immersed in linear material
of permeability µ?



2

Display your answer as a 3 × 3 matrix:





Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz





ANSWER: Generally

Tij = ǫ0(EiEj−δijE
2/2)+(BiBj−δijB

2/2)/µ0 .

In this case ~B = 0 and ~E = −(σ/ǫ0)ẑ has
only one component (Ez), so all off-diagonal
terms are zero and

Tij =
σ2

2ǫ0





−1 0 0
0 −1 0
0 0 +1



 .

(b) Use Eq. (8.22) on p. 353 to determine the
force per unit area on the top plate.
Compare Eq. (2.51) on p. 103.

ANSWER: Since ~B = 0, ~S = 0, leaving
Fj =

∫∫

©Tijdai. A surface enclosing both

plates will yield a zero result, since there is
no field outside the capacitor. What we want
is a surface enclosing just the top plate. Its
shape above the plate where ~E = 0 doesn’t
matter, but inside the gap it should be
normal to ~E and parallel to the plate — i.e.

d~a = −ẑda (remember, d~a always points
out of the enclosed region). Thus Eq. (8.22)
is reduced to Fz = −ATzz = −σ2A/2ǫ0 and

~F ≡
~F

A
= −

σ2

2ǫ0
ẑ ,

in agreement with Eq. (2.51).
√

QED

(c) What is the momentum per unit area, per
unit time, crossing the xy plane (or any
other plane parallel to that one, between
the plates)? ANSWER: Really this is just
a question of momentum conservation. The
upper plate feels a downward force (and the
lower plate an equal and opposite upward
one); this force is transmitted by the
electric field: you may think of the lower
plate “emitting” an electromagnetic field

with momentum flux ∂
~
P
∂t per unit area and

time, and the upper plate “absorbing” same:

∂ ~P

∂t
= ~F = −

σ2

2ǫ0
ẑ .

(d) At the plates this momentum is absorbed,
and the plates recoil (unless there is some
other force holding them in position).
Find the recoil force per unit area on the
top plate, and compare your answer to

that in part (b). 3 ANSWER: It’s the
same thing, we already said that. There
are two conceptual challenges to this picture:
First, we are not used to “things” whose
momentum is toward their emitter and
away from their absorber. Switching the
roles of the two plates is no help; the same
conundrum persists. Second, we have
already noted that ~S = 0 (no magnetic
field). So the momentum is not being
transmitted as a Poynting vector. It is in the
stress tensor itself (see p. 356). (By asking
the same question three times in different
guises, Griffiths is trying to force you to
reconcile these notions in your own mind. I
hope it worked. :-)

4. (p. 361, Problem 8.9) — SOLENOID and
RING: A very long solenoid of radius a, with
n turns per unit length, carries a current IS .
Coaxial with the solenoid, at radius b ≫ a, is a
circular ring of wire with resistance R. When
the current in the solenoid is gradually
decreased, a current Ir is induced in the ring.

(a) Calculate Ir in terms of dIS/dt.
ANSWER: We have within the solenoid a
uniform magnetic field ~B = µ0nIS ẑ, giving
a flux Φ = πa2B = µ0nπa2IS = LIS in the
positive z direction. If IS decreases, a
current Ir = E/R will flow in such a
direction as to replace the missing flux —
i.e. in the same sense as the original current
in the solenoid. Here
E = −Φ̇ = −µ0nπa2∂IS/∂t, so that

Ir = −
µ0nπa2

R

∂IS

∂t
.

(b) The power (I2
r R) delivered to the ring

must have come from the solenoid.
Confirm this by calculating the Poynting
vector just outside the solenoid, where the
electric field is due to the changing flux in
the solenoid and the magnetic field is due
to the current in the ring. Integrate over
the entire surface of the solenoid, and
check that you recover the correct total
power. ANSWER: In the above
calculation (which required only first year
Physics methods) we were careful not to mix
up the “cause” (the changing magnetic field
of the solenoid) with the “effect” (the
magnetic field generated by Ir in the ring).

3
Note: this is not an additional force, but rather an al-

ternative way of calculating the same force — in (b) we got
it from the force law, and in (d) we got it from conservation
of momentum.



3

But when we think in terms of “the
electromagnetic field” in calculating the
Poynting vector (or, for that matter, the
stress tensor) there is no such separation: we
must use the total field(s) at any given time.

Outside the solenoid there is no ~B from the
solenoid itself, but the current in the ring

generates a field ~B =
µ0Ir

2

b2

(b2 + z2)
3/2

ẑ

(see Example 5.6 on p. 218). Meanwhile

E =
∮

~E · d~ℓ = −µ0nπa2∂IS/∂t, and (by

symmetry) ~E = −E(r)φ̂, so around any

loop at r we have
∮

~E · d~ℓ = −2πrE(r)
= −µ0nπa2∂IS/∂t, giving

~E = −
µ0na

2

∂IS

∂t
φ̂. Putting these together

gives ~S = ~E × ~B/µ0

= −
1

µ0

µ0na

2

∂IS

∂t

µ0Irb
2

2 (b2 + z2)3/2
r̂. Using

the earlier result we can substitute
−(IrR/µ0nπa2) for ∂IS/∂t to get

~S = I2
r R

b2

4πa (b2 + z2)
3/2

r̂. Now we

integrate ~S · d~a = Sda over the surface of
the solenoid to get the net power P “sent”
to the ring:

P = I2
r R

b2

4πa

∫ +∞

−∞

2πa dz

(b2 + z2)
3/2

= I2
r R

b2

2

∫ +∞

−∞

dz

(b2 + z2)3/2
. Looking up

the integral
(http://integrals.wolfram.com/index.jsp
is a big help!) we have
∫ +∞

−∞

dz

(b2 + z2)3/2
=

[

z

b2 (b2 + z2)1/2

]+∞

−∞

=
2

b2
,

giving

P = I2
r R .

√

(This sure is doing it the hard way, but it’s

nice to know that ~S really is transmitting
power.)

5. PHOTON DRIVE: Rocket ships propelled
by photon drives often appear in science fiction
novels and movies. The idea is to generate
thrust by expelling photons. Since the “exhaust
velocity” of photons is as high as you can get
(the speed of light), you might expect photon
drive rockets to outperform conventional
rockets.

(a) Calculate the power you’d need to produce
1 Newton of thrust with a photon drive
rocket. How does this compare with the
typical output of BC’s huge Stave Lake
power station, which has a peak capacity

of about 200 MW? ANSWER: We did
something like this in class: if ~S is power per
unit area and ~S/c2 is momentum density per

unit volume, then ~S/c is the “radiation
pressure” (force per unit area) and the
relationship between net force F and net
power P is just F = P/c. So for a 1 N
thrust you’d need about 3 × 108 W or

300 MW . Stave Lake could manage
2/3 N.

(b) What accelerations would result if your
power source provided 200 MW and the
total mass of the rocket were 20,000 kg?
ANSWER: From
a = F/m = 2/(3 × 2 × 104) we get

a = 0.333× 10−4 m/s2 . Pretty puny.

(c) In spite of these numbers, the photon drive
offers one very attractive advantage over
conventional rockets, especially for long

space voyages. What is it?
ANSWER: It keeps going and going and
going and . . . . If it weren’t for relativity, we
would reach c after only 285,000 years!
Hmm, maybe if we use antimatter
annihilation. . . .


