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Physics 401 Assignment # 12:

RADIATION 2

SOLUTIONS:

Wed. 29 Mar. 2006 — finish by Wed. 5 Apr.

1. (p. 450, Problem 11.3) — Radiation Resis-

tance of a Cell Phone: Find the radiation

resistance of the wire joining the two ends of
the oscillating electric dipole described in Section
11.1.2. (This is the resistance that would give
the same average power loss — to heat — as the
oscillating dipole in fact puts out in the form of
radiation.) Show that R = 790(d/λ)2 Ω, where λ
is the wavelength of the radiation. For the wires
in an ordinary cell phone (say, d = 5 cm), should
you worry about the radiation contribution to
the total resistance? Does it matter whether
your cell phone uses the 900 MHz band or the
1.9 GHz band?1

ANSWER: For a simple resistor R driven by a
power supply that moves charge back and forth in
an oscillation q(t) = q0 cos(ωt), we have a current
I(t) = −ωq0 sin(ωt) and a power
P (t) = I2(t)R = ω2q2

0 sin2(ωt)R which averages
to 〈P 〉 = 1

2
ω2q2

0R. Thus we can associate
Reff = 2〈P 〉/ω2q2

0 . Plugging in the average power

radiated by the electric dipole, 〈P 〉 =
µ0 p2

0 ω4

12πc
,

with p0 = q0d, we get

Reff =
2〈P 〉

ω2q2
0

=
µ0 q2

0 d2 ω4

6πcω2q2
0

=
µ0 d2 ω2

12πc
. Since

λ = 2πc/ω, we can substitute ω = 2πc/λ to get

Reff =
µ0 d2 4π2c2

6πcλ2
=

2

3
µ0 π c

(

d

λ

)2

. The

coefficient 2µ0πc/3 = 789 N-A−2m-s−1, whose
units are equivalent to W/A−2 or Ω, leaving

Reff = [789 Ω] ×

(

d

λ

)2

.

For 900 or 1900 MHz, we have
λ = c/ν = 33.3 cm or 15.8 cm, respectively,2

1You might also want to calculate the intensity of your
cell phone’s transmission signal at a distance of 10 cm (i.e.
in your brain while you hold it to your ear). This is a topic
upon which a great deal has been written. Just Google it!
But it’s not part of this assignment.

2Note that this scenario barely satisfies the “slow ap-
proximation” d ≪ λ used to derive the formula for 〈P 〉 >
for the radiating electric dipole. For a tuned half-wave an-
tenna (d = λ/2) the approximation is completely invalid.

giving radiation resistances of 17.8 Ω or

79.2 Ω , respectively. Neither is a huge
resistance, but both are certainly larger than that
of the wires in your cell phone. The power is thus
used quite efficiently. (Very little goes into useless
heat; almost all is transmitted!) This is even more
true of the higher frequency band: whatever
transmission intensity is required, it can be
realized with a smaller I.

2. (p. 454, Problem 11.6) — Radiation

Resistance of a Magnetic Dipole

Antenna: Find the radiation resistance for
the oscillating magnetic dipole shown in
Fig. 11.8. Express your answer in terms of λ
and b, and compare the radiation resistance of
the electric dipole.3

ANSWER: For the magnetic dipole,

〈P 〉 =
µ0 m2

0 ω4

12πc3
where mu0 = πb2I0. Again

setting this equal to 1

2
I2
0Reff , we get

Reff = 2〈P 〉/I02 =
2µ0(πb2I0)

2ω4

12πc3I2
0

=
µ0πb4ω4

6c3
.

Again substituting 2πc/λ for ω, we get

Reff =
8

3
µ0π

5c

(

b

λ

)4

. The coefficient

8

3
µ0π

5c = 3.074× 105 Ω, so

Reff = [3.074 × 105 Ω] ×

(

b

λ

)4

.

In this case, for a given frequency, the radiation
resistance increases as the square of the area of

the loop. For λ = 33.3 cm or 15.8 cm, a 2.5 cm
radius loop would have Reff = 9.77 Ω or 192.7 Ω,
respectively. Thus the magnetic dipole antenna is
similar to the electric dipole antenna at this size
and frequency, but is much more strongly size-
and frequency-dependent.

3You should get R = 3 × 105(b/λ)4 Ω.
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3. (p. 464, Problem 11.13) — Nonrelativistic

Bremsstrahlung Radiation:

(a) Suppose an electron decelerates at a
constant rate a from some initial velocity
v0 down to zero. What fraction of its
initial kinetic energy is lost to EM
radiation? (The rest is absorbed by
whatever mechanism keeps the
acceleration constant.) Assume v0 ≪ c
(nonrelativistic case) so that the Larmor
formula can be used.4

ANSWER: The Larmor formula

says P = µ0q
2a2/6πc. This is expended for

a time t = v0/a, giving a total radiated
energy E = Pt = µ0q

2v0a/6πc. The initial
kinetic energy K0 = 1

2
mv2

0 . Thus the
fraction lost to EM radiation is
frad = E/K0 = 2µ0q

2v0a/6πcmv2
0 or

frad =
µ0q

2a

3πmcv0

.

(b) To get a sense of the numbers involved,
suppose the initial velocity is thermal5

(around 105 m/s) and the distance over
which the electron decelerates to rest is
30 Å. What can you conclude about
radiation losses for electrons in an
ordinary conductor?

ANSWER: Using v2
0 = 2ad with

v0 = 105 m/s and d = 3 × 10−9 m, we have
a = v2

0/2d = 1010/6 × 10−9 =
1.67 × 1018 m/s2. With
q = −1.602× 10−19 C and
m = 0.911× 10−30 kg, we get

frad = 2.09 × 10−10 . (Not much!) The

true picture is much stranger, of course;
electrons are not localized point charges
following classical trajectories, they are
described by extended wavefunctions and do
not radiate at all in things like atoms
(luckily!).

4Relativistic electrons radiate furiously; this is known
as Bremsstrahlung (German for “braking radiation”, doh!)
and is an important mechanism for energy loss of high en-
ergy electrons.

5This thermal velocity corresponds to about 330 K, not
far above room temperature, and so appears realistic. In
point of fact, the conduction electrons in a good metal
have velocities on the order of 10−3c, thanks to the Pauli
exclusion principle. However, their quantum mechanical
wavefunctions are extended over distances large compared
to 30 Å, and this classical picture of an accelerated point
charge has to be reformulated with a quantum version. The
present approximation is a reasonable compromise.

4. Half-Wave Antenna: Consider a half-wave
linear antenna of length ℓ, with current
I(z, t) = I0 cos kz sin ωt, where k = π/ℓ.

(a) Show that the linear charge density is
λ(z, t) = (I0/c) sinkz cosωt, (i.e. the
charge density is maximum at the times
when the current is zero.)

ANSWER: For a half-wave antenna
ℓ = λ/2 and k = π/ℓ. Charge conservation

requires ~∇ · ~J +
∂ ρ

∂t
= 0. For a

1-dimensional wire with a current I(z, t)
flowing in the ẑ direction, the same logic
demands dI/dz + dλ/dt = 0 where
λ ≡ |dq/dz|. Thus
dλ = −kI0 sin kz sin ωt dt. Integrating,

λ = −
k

ω
I0 sin kz

∫

sinu du

where u ≡ ωt and sin u du = −d cosu,

giving λ(z, t) =
I0

c
sin kz cosωt .

√

Note that λ is also maximum at the places

where the current is zero.

(b) If an FM radio station broadcasts at a
frequency of 10 MHz with a power of
10 kW from a half-wave antenna, how long
must the antenna be? What is the
current?

ANSWER: The length is simple: ℓ = λ/2
where λ = c/ν = 3× 108/107 = 30 m. Thus

ℓ = 15 m . The current we can get from

the power, using 〈P 〉 ≈ 1.22
µ0I

2
0 c

4π

= 104 W. Thus I2

0 =
4π × 104

1.22µ0c
or

I0 =

√

1.257× 105

460
or I0 = 16.54 A .


