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In a stylistic sense, Algebra starts to become
Calculus when we write the preceding example,
y = x2, in the form

y(x) = x2

which we read as “y of x equals x squared.”
This is how we signal that we mean to think
of y as a function of x, and right away we are
leading into the terminology of Calculus. Recall
the final sections of the preceding Chapter.

However, Calculus really begins when we start
talking about the rate of change of y as x varies.

1 Rates of Change

One thing that is easy to “read off a graph”
of y(x) is the slope of the curve at any given
point x. Now, if y(x) is quite “curved” at the
point of interest, it may seem contradictory to
speak of its “slope,” a property of a straight

line. However, it is easy to see that as long as
the curve is smooth it will always look like a

straight line under sufficiently high magnifica-

tion. This is illustrated in Fig. 1 for a typical
y(x) by a process of successive magnifications.

We can also prescribe an algebraic method for
calculating the slope, as illustrated in Fig. 2:
the definition of the “slope” is the ratio of the
increase in y to the increase in x on a van-
ishingly small interval. That is, when x goes
from its initial value x0 to a slightly larger value
x0+∆x, the curve carries y from its initial value
y0 = y(x0) to a new value y0+∆y = y(x0+∆x),
and the slope of the curve at x = x0 is given
by ∆y/∆x for a vanishingly small ∆x. When
a small change like ∆x gets really small (i.e.
small enough that the curve looks like a straight
line on that interval, or “small enough to satisfy
whatever criterion you want,” then we write it

Figure 1 A series of “zooms” on a segment of the
curve y(x) showing how the curved line begins
to look more and more like a straight line under
higher and higher magnification.

differently, as dx, a “differential” (vanishingly
small) change in x. Then the exact definition
of the SLOPE of y with respect to x at some
particular value of x, written in conventional
Physics1 language, is

dy

dx
≡ lim

∆x→0

∆y

∆x
≡ lim

∆x→0

y(x + ∆x) − y(x)

∆x
(1)

This is best understood by an example: con-
sider the simple function y(x) = x2. Then

y(x + ∆x) = (x + ∆x)2 = x2 + 2x∆x + (∆x)2

and y(x + ∆x) − y(x) = 2x∆x + (∆x)2.

Divide this by ∆x and we have

∆y

∆x
= 2x + ∆x.

1 Real Mathematicians prefer the “primed” notation,
dy/dx ≡ y′(x), for several reasons: first, it reminds us that
dy/dx is also a function of x; the second reason will be
obvious a little later. . . .



Figure 2 A graph of the function y(x) showing
how the average slope ∆y/∆x is obtained on a
finite interval of the curve. By taking smaller and
smaller intervals, one can eventually obtain the
slope at a point, dy/dx.

Now let ∆x shrink to zero, and all that remains
is

∆y

∆x
−→

∆x→0

dy

dx
= 2x.

Thus the slope [or derivative, as mathemati-
cians are wont to call it] of y(x) = x2 is
dy/dx = 2x. That is, the slope increases lin-
early with x. The slope of the slope — which
we call2 the curvature, for obvious reasons —
is then trivially d(dy/dx)/dx ≡ d2y/dx2 = 2,
a constant. Make sure you can work this part
out for yourself.

We have defined all these algebraic solutions
to the geometrical problem of finding the slope
of a curve on a graph in completely abstract
terms — “x” and “y” indeed! What are x and
y? Well, the whole idea is that they can be any-
thing you want! The most common examples
in Physics are when x is the elapsed time, usu-
ally written t, and y is the distance travelled,

2This differs from the conventional mathematical defini-
tion of curvature, κ ≡ dφ/ds, where φ is the tangential angle
and s is the arc length, but I like mine better, because it’s
simple, intuitive and useful. (OK, I’m a Philistine. So shoot
me. ;-) Thanks to Mitchell Timin for pointing this out.

usually (alas) written x. Thus in an elementary
Physics context the function you are apt to see
used most often is x(t), the position of some
object as a function of time. This particular
function has some very well-known derivatives,
namely dx/dt = v, the speed or (as long as the
motion is in a straight line!) velocity of the ob-
ject; and dv/dt ≡ d2x/dt2 = a, the acceleration

of the object. Note that both v and a are them-
selves (in general) functions of time: v(t) and
a(t). This example so beautifully illustrates the
“meaning” of the slope and curvature of a curve
as first and second derivatives that many intro-
ductory Calculus courses and virtually all intro-
ductory Physics courses use it as the example
to explain these Mathematical conventions. I
just had to be different and start with some-
thing a little more formal, because I think you
will find that the idea of one thing being a func-

tion of another thing, and the associated ideas
of graphs and slopes and curvatures, are handy
notions worth putting to work far from their
traditional realm of classical kinematics.

2 Second Derivatives

How about the rate of change of the rate of
change? I slipped this in surreptitiously above
when I defined the curvature,

d

dx

dy

dx
≡

d2y

dx2

where the left hand side now explicitly displays
the operator d/dx which means, “take the
derivative with respect to x of whatever appears
immediately to the right.” (We will encounter
other operators later on, so it’s important to
get used to this idea.)

In the prime Physics example where the verti-
cal axis is distance and the horizontal axis is
time, the concave graph corresponds to accel-

eration (speeding up of the speed) and the con-

vex graph corresponds to deceleration (slowing
down).



Figure 3 A graph of two functions, y
−
(x) [left]

and y+(x) [right], having negative and positive
curvature d2y/dx2, respectively. The frivolous
cartoon format is an easy way to remember that
a negative second derivative “curves downward”
to make a convex “frowney face” whereas a pos-

itive second derivative “curves upward” to make
a concave “smiley face”.

3 Higher Derivatives

One can, of course, take the derivative of the
derivative of the derivative,

d

dt

d

dt

dx

dt
≡

d3x

dt3
,

a.k.a. (in Physics) as the “jerk”. (No, I’m not
kidding.) In Physics we rarely go this far, be-
cause Newton’s Second Law relates the second

time derivative of distance (the acceleration) to
the mass of a body and the force applied to
it. But Mathematicians know no such restraint.
They will happily refer to the nth derivative,

dny

dxn

which has the d/dx operator applied n times to
y(x). Later on we will encounter a function for
which the nth derivative of y(x) is both nonzero
and as simple as y(x) itself — in fact, for which

dny

dxn

= y(x).

Stay tuned. . . .3

3 This would be a good time to remind you that Real
Mathematicians prefer the notation y′(x) instead of dy/dx.
What do they use for the second derivative, d2y/dx2? Not
surprisingly, they use y′′(x). For higher derivatives, I think
the Physics notation d5y/dx5 is clearly preferable to the
Mathematics notation y′′′′′(x).

4 Integrals

Figure 4 What is the area under the curve of
y(x)?

Suppose that y is the number of new COVID-
19 cases per day and x is time in units of days.
We have all seen many curves like this in 2020.
Then the total number of COVID-19 cases be-
tween day x0 and day x1 is given by∫

x1

x0

y(x)dx

(read “the integral of y(x) with respect to x
from x0 to x1”), whose rigorous, formal mean-
ing is simply the area under the curve of
y(x) from x0 to x1.

The usual approach to evaluating this quan-
tity is to break the area up into a large num-
ber of very skinny vertical rectangles of very
narrow width ∆x and height y(x) and then let
∆x → 0 as the number of tall skinny rectangles
becomes infinite. Although this formulation is
easy to evaluate numerically on a computer, it
does not lend itself to fun handwaving explana-
tions that yield simple algebraic answers, so I’ll
be using the idea of antiderivatives — generally
disdained by Real Mathematicians — to make
it easier. Stay tuned.


	Rates of Change
	Second Derivatives
	Higher Derivatives
	Integrals

