DIFFERENTIAL EQUATIONS

Jess H. Brewer

Guess the Function and its Derivative:

Recall the function defined by

$$
d y / d x=y
$$

[$y(x)$ is its own derivative.]
Thus it's also its own second derivative... and third derivative... and $n^{\text {th }}$ derivative.

Recall the function defined by

$$
d y / d x=y
$$

[$y(x)$ is its own derivative.]
Thus it's also its own second derivative... and third derivative... and $n^{\text {th }}$ derivative.

We tried to express $y(x)$ as a simple polynomial

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

Recall the function defined by

$$
d y / d x=y
$$

[$y(x)$ is its own derivative.]
Thus it's also its own second derivative... and third derivative... and $n^{\text {th }}$ derivative.

We tried to express $y(x)$ as a simple polynomial

$$
\begin{aligned}
& y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& \text { and found } y(x)=\sum_{n=0}^{\infty} x^{n} n!\equiv \exp (x) \equiv e^{x}
\end{aligned}
$$

Recall the function defined by

$$
d y / d x=y
$$

[$y(x)$ is its own derivative.]
Thus it's also its own second derivative... and third derivative... and $n^{\text {th }}$ derivative.

We tried to express $y(x)$ as a simple polynomial

$$
\begin{aligned}
& y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& \text { and found } y(x)=\sum_{n=0}^{\infty} x^{n} / n!\equiv \exp (x) \equiv e^{x}
\end{aligned}
$$

That was an example of solving a differential equation!

Similarly, if

$$
d y / d x=1 / x \equiv x^{-1}
$$

we know that

Similarly, if

$$
d y / d x=1 / x \equiv x^{-1}
$$

we know that

$$
y(x)=\ln (x)+\text { const. }
$$

Similarly, if

$$
d y / d x=1 / x \equiv x^{-1}
$$

we know that

$$
y(x)=\ln (x)+\text { const. }
$$

(Another differential equation solved!)

How about something a little more complicated?

$$
d^{2} y / d x^{2}+2 d y / d x=3 e^{x}
$$

How about something a little more complicated?

$$
\begin{gathered}
d^{2} y / d x^{2}+2 d y / d x=3 e^{x} \\
y(x)=e^{x}
\end{gathered}
$$

again!

How about something a little more complicated?

$$
\begin{gathered}
d^{2} y / d x^{2}+2 d y / d x=3 e^{x} \\
y(x)=e^{x}
\end{gathered}
$$

again!

(Some differential equations

look harder than they are!)

How about an example from Physics?

Simple
 Harmonic
 Motion

