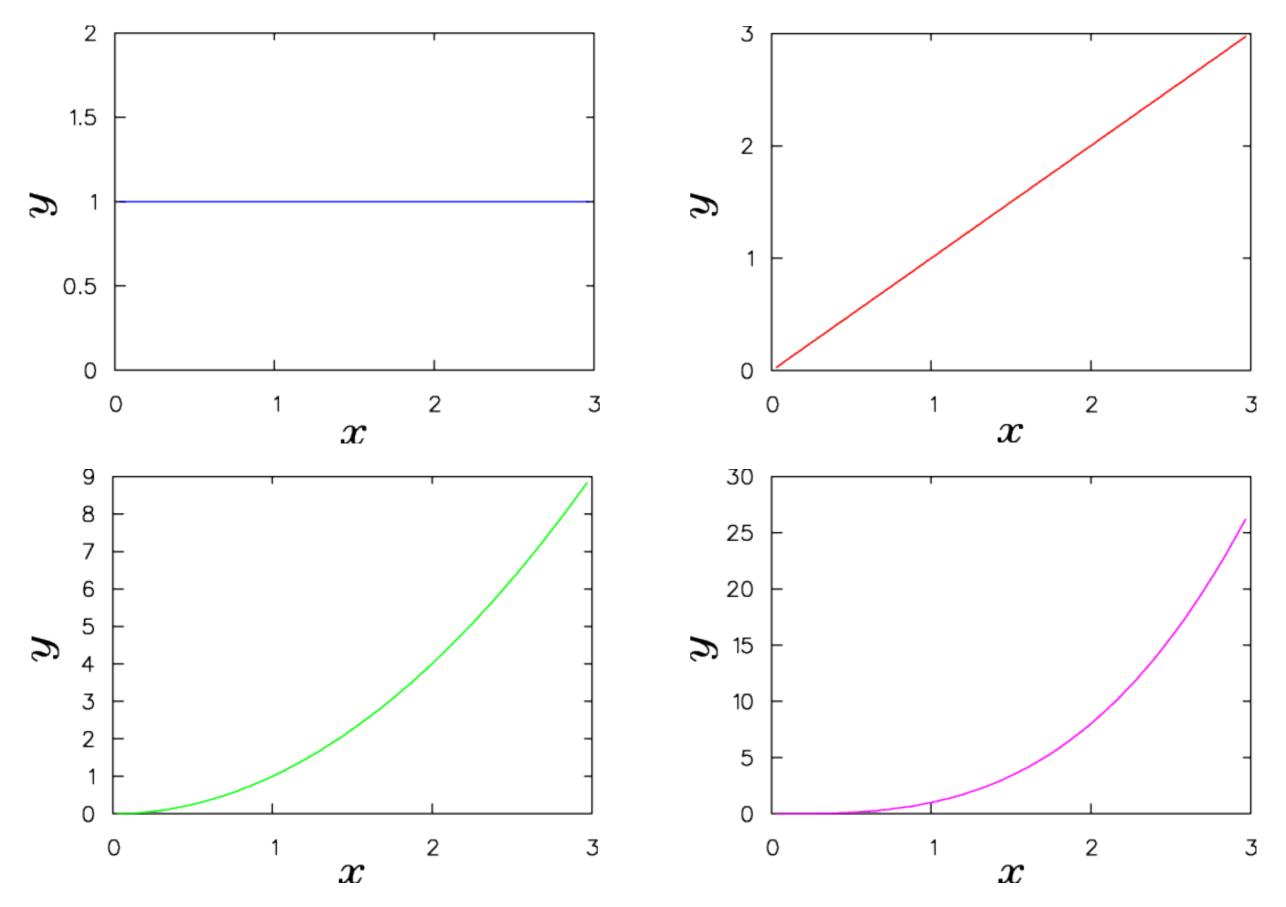
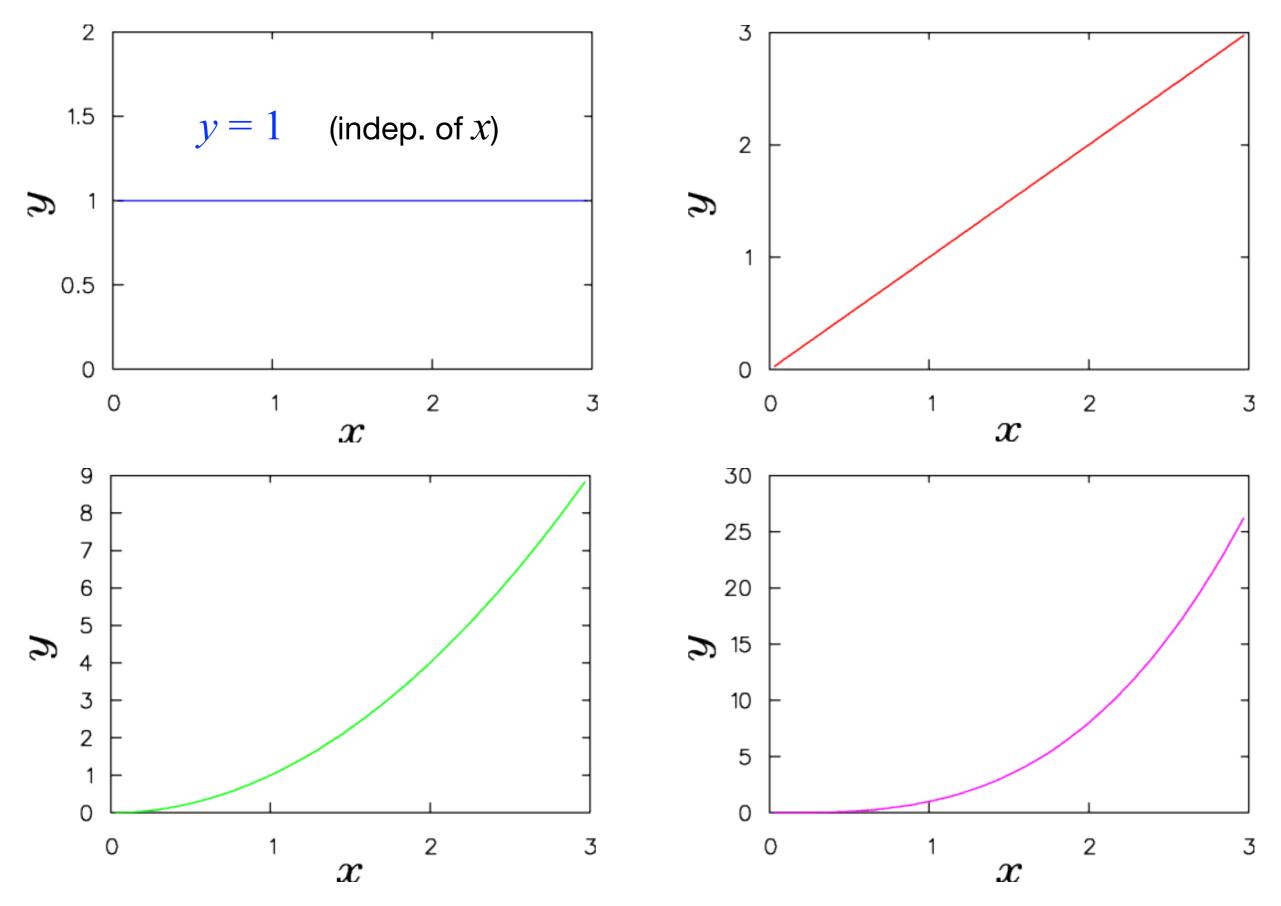
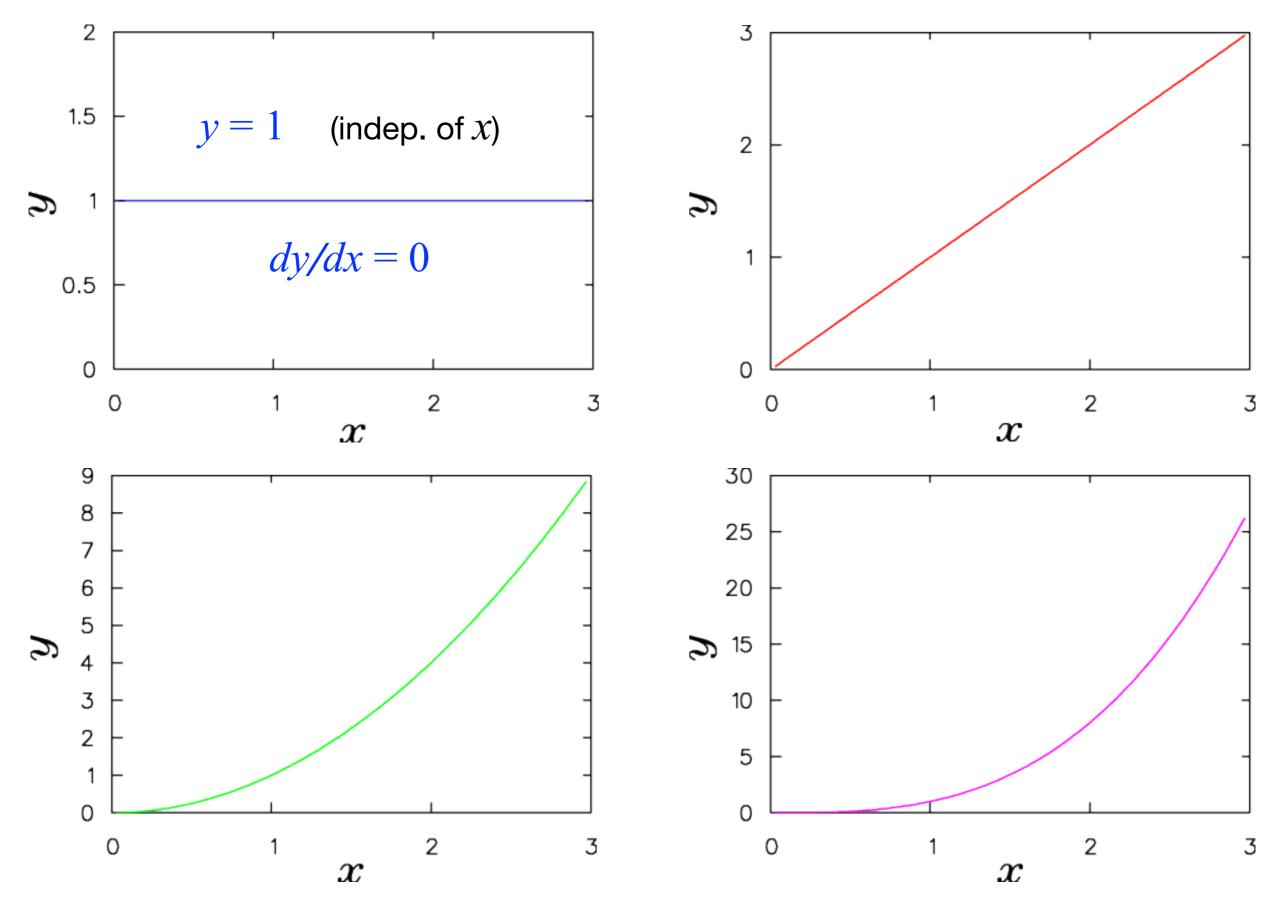
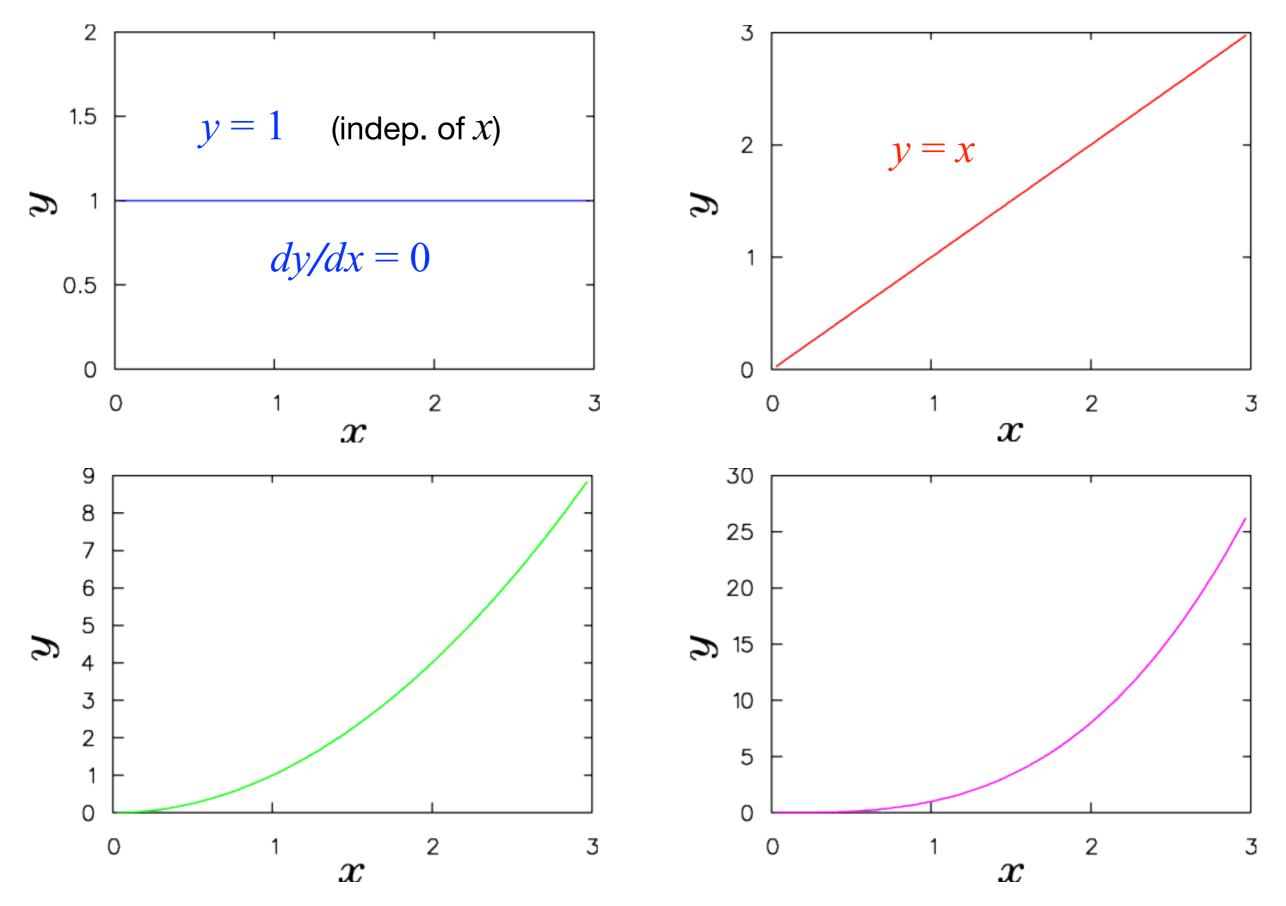
DIFFERENTIAL EQUATIONS

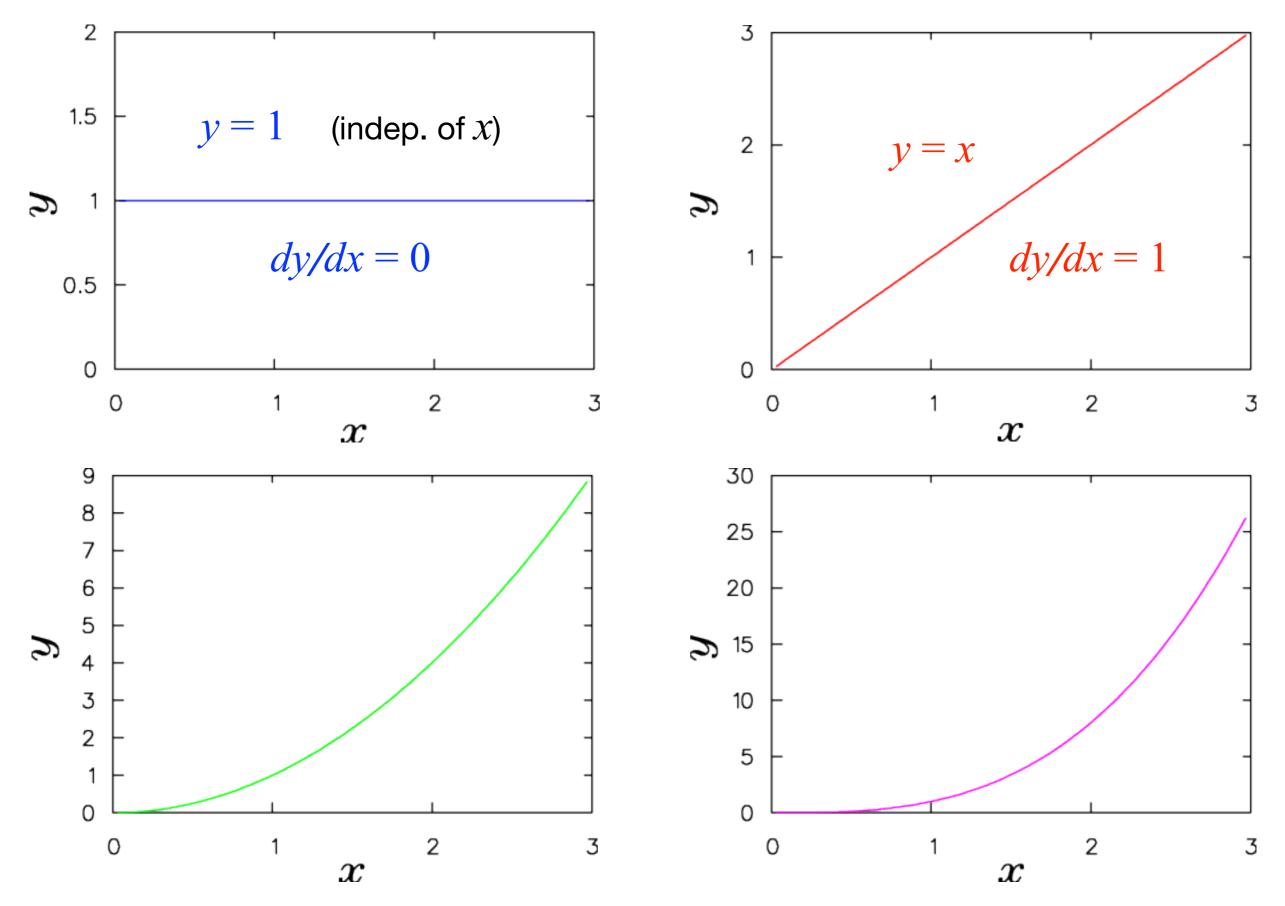
Jess H. Brewer

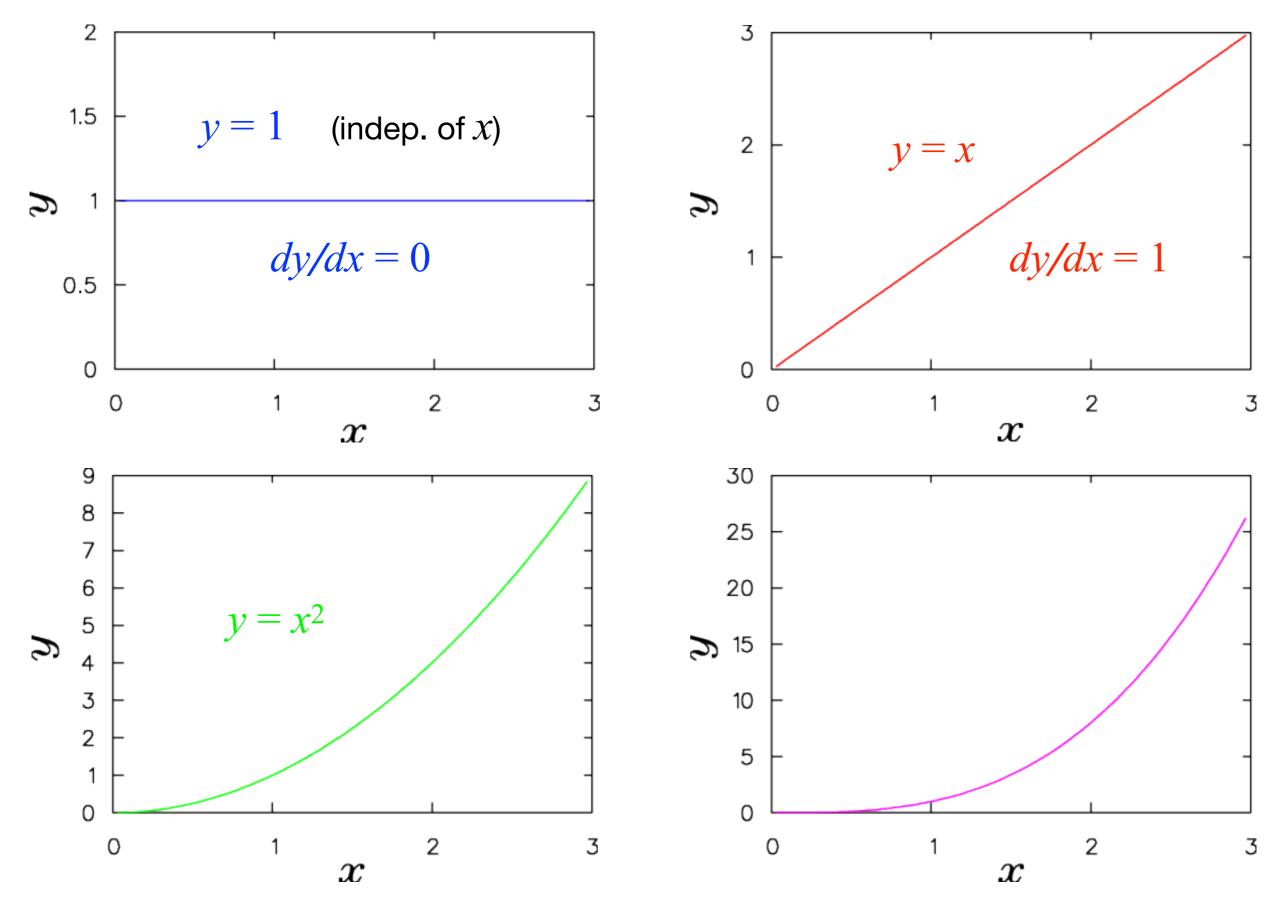


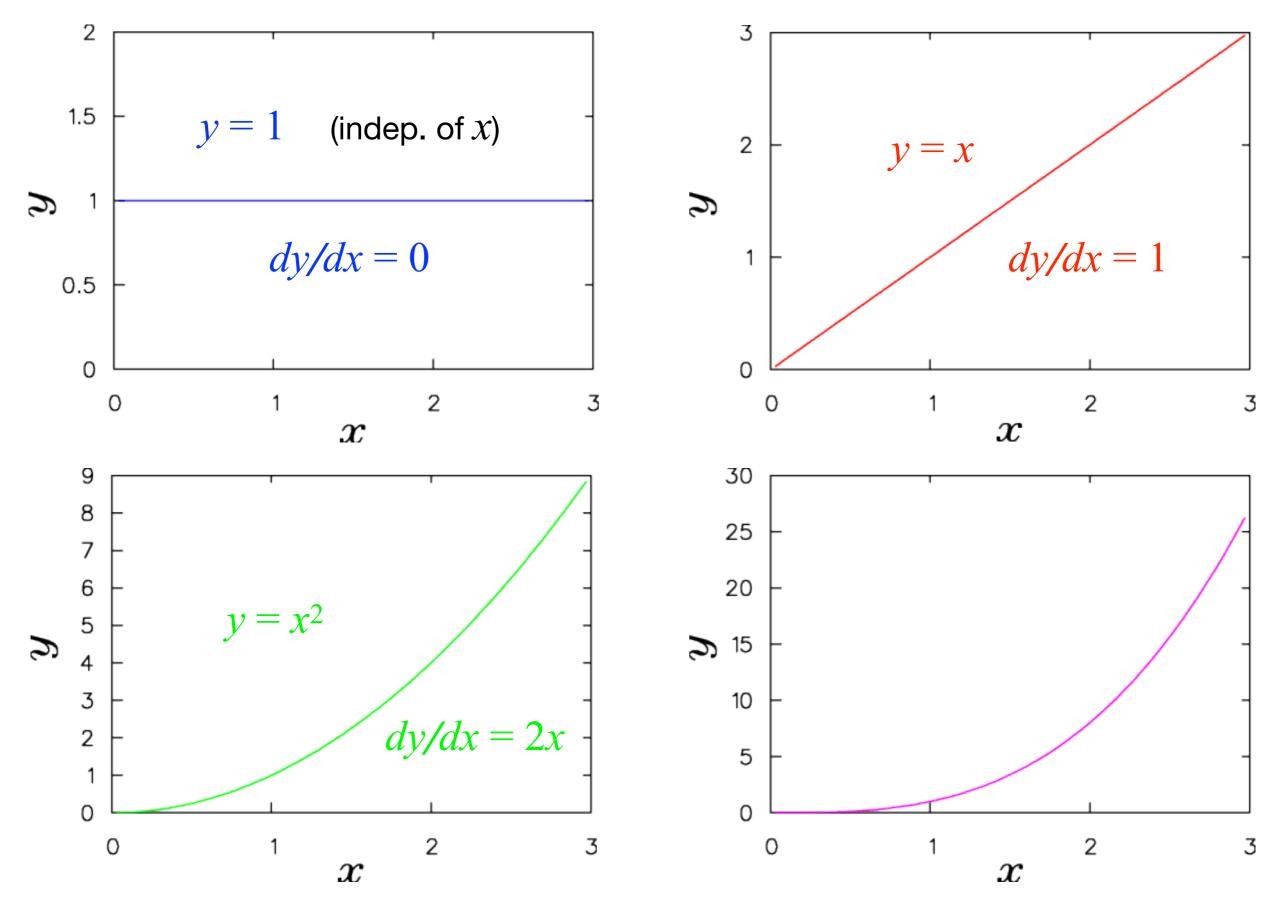


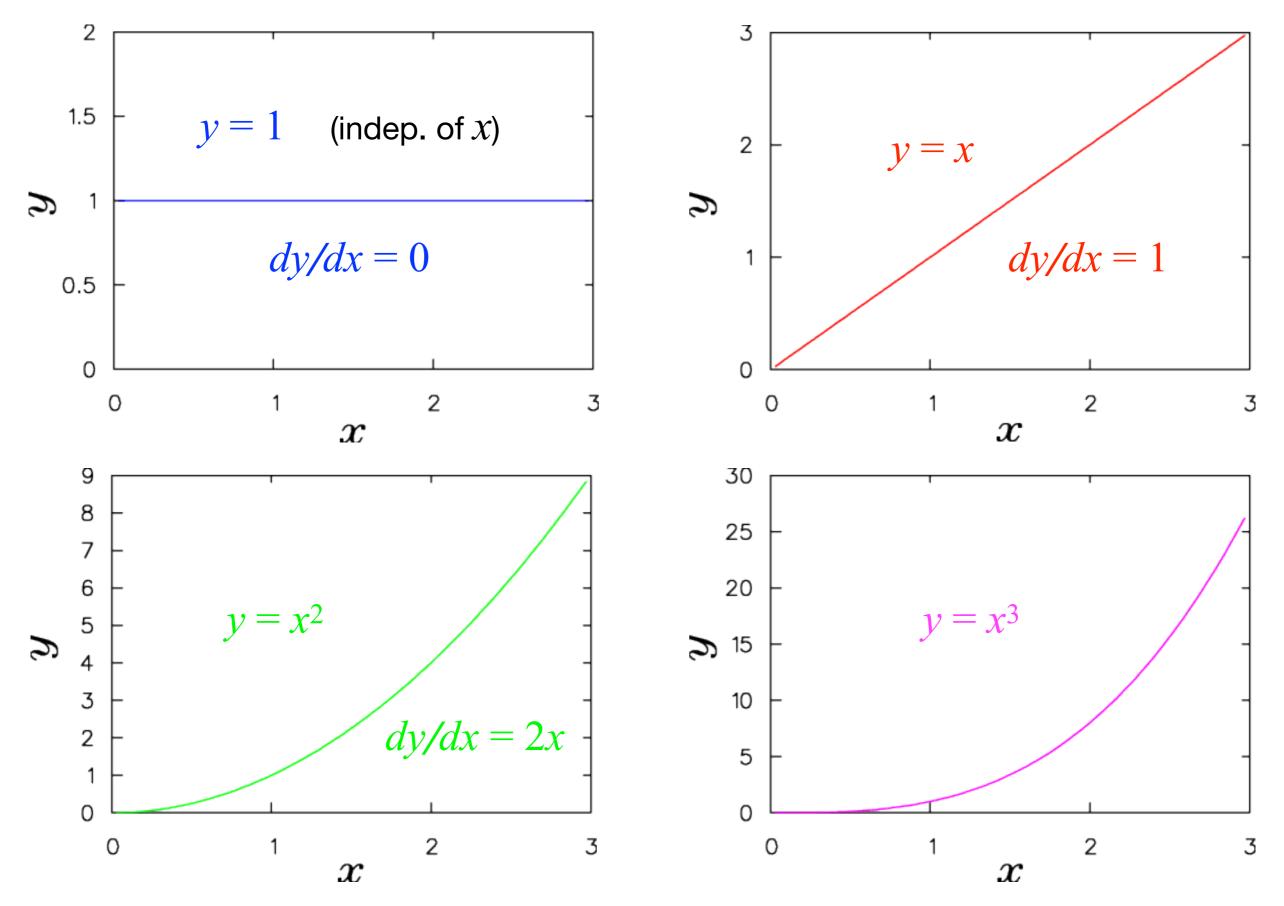


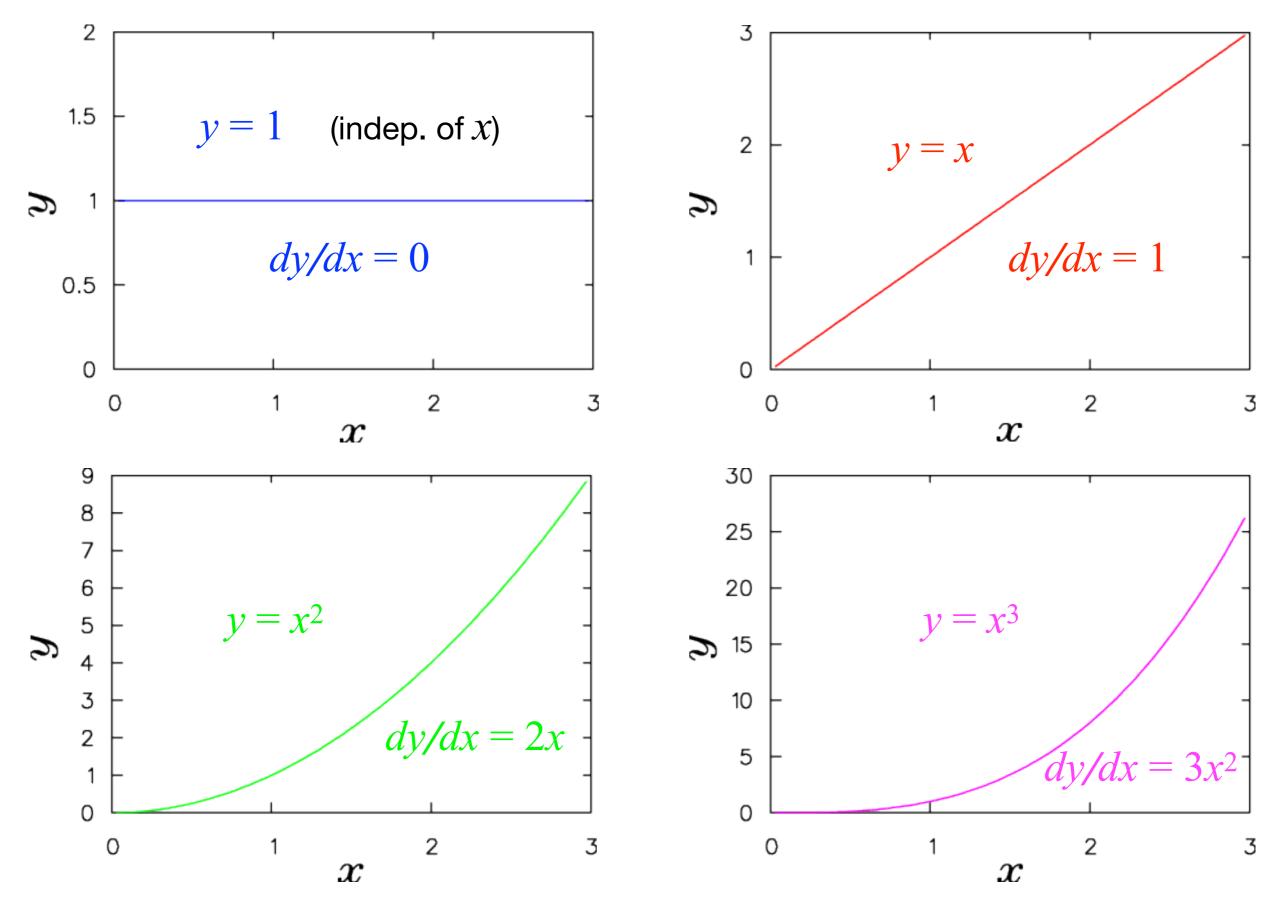












dy/dx = y

 $[y(\mathbf{x}) \text{ is its own derivative.}]$

Thus it's also its own *second* derivative... and *third* derivative... and *n*th derivative.

dy/dx = y

 $[y(\mathbf{x}) \text{ is its own derivative.}]$

Thus it's also its own *second* derivative... and *third* derivative... and *n*th derivative.

We tried to express y(x) as a simple polynomial

$$y(\mathbf{x}) = a_0 + a_1\mathbf{x} + a_2\mathbf{x}^2 + a_3\mathbf{x}^3 + \dots$$

dy/dx = y

 $[y(\mathbf{x}) \text{ is its own derivative.}]$

Thus it's also its own *second* derivative... and *third* derivative... and *n*th derivative.

We tried to express y(x) as a simple polynomial

$$y(\mathbf{x}) = a_0 + a_1\mathbf{x} + a_2\mathbf{x}^2 + a_3\mathbf{x}^3 + \dots$$

and found $y(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \exp(x) = e^x$

dy/dx = y

 $[y(\mathbf{x}) \text{ is its own derivative.}]$

Thus it's also its own *second* derivative... and *third* derivative... and *n*th derivative.

We tried to express y(x) as a simple polynomial

$$y(\mathbf{x}) = a_0 + a_1\mathbf{x} + a_2\mathbf{x}^2 + a_3\mathbf{x}^3 + \dots$$

and found $y(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \exp(x) = e^x$

That was an example of solving a differential equation!

Similarly, if $dy/dx = 1/x \equiv x^{-1}$

we know that

Similarly, if $dy/dx = 1/x \equiv x^{-1}$ we know that $y(x) = \ell n(x) + \text{const.}$ Similarly, if $dy/dx = 1/x \equiv x^{-1}$ we know that $y(x) = \ell n(x) + \text{const.}$

(Another *differential equation* solved!)

How about something a little more complicated?

 $\frac{d^2y}{dx^2} + \frac{2dy}{dx} = 3e^x$

How about something a little more complicated?

 $\frac{d^2y}{dx^2} + \frac{2dy}{dx} = 3e^x$

 $y(x) = e^x$

again!

How about something a little more complicated?

 $\frac{d^2y}{dx^2} + \frac{2dy}{dx} = 3e^x$

 $y(x) = e^x$

again!

(Some differential equations

look harder than they are!)

How about an example from *Physics*?

Simple Harmonic Motion