Easy Calculus

a Hand-Waver’s Guide

(blame Jess)
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at point (&, %)

So the derivative

Ay _ . (e + Az) — y(2)
Ar—0 Axr = Arz—0 Ax
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A few easy-to-remember derivatives:

Power Law: Constant x a Function:

d d ay

P\ — poPl —lay(x)| = a—=

-(af) = px - lay(2)] o
(p £ 0) (a = const)

Product Law:

C1f(@) - g(@)] = o g(a) + fa)- 5

Chain Rule: g ylz(t)] = d_y : d_:c

dxr dt

...but don’t take my word for it!
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Mathematician’s Notation:
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For Small Changes Ax:



Deriving the Product Law:

If y(x) = f(z) - g(x) then
y(z + Az) = f(z + Az) - g(z + Ax)

= [f(x) + f'(z) - Az][g(x) + ¢'(z) - Ax]
= f(z) - g(z) + [f(z) - g(z) + f(z) - ¢'(z)] Az
+Az]*f'(z) - ¢ ()

Divide this through by Az and we have

y(xr + Az)  y(z)

A = Ay /(@ 9(@)+ fz)- g ()

+Az - f'(x) - ¢'(z)

Note that y(z + Az) — y(x) = Ay and let Az
shrink to zero., and all that remains 1s

2 e V@) = F(@) - g(x) + f(2) - d'(x)










Power Law:

p=1: [:r]———l

d['rz] [a:-:z:]=1-:1:+:1:-1=2:1:

dx dx

d d

dT[Tq] = d:r[:r 2% = l-a*+x-2r = 327
d -1

General : —[zP] = pa?

dx



u [ J [ J l I CI o . I °
Function of a Function: Suppose y 1s

a function of z and z 1s 1n turn a function
of t. Then 1if ¢t changes by At, xz changes

by

dx
Ar =— - At
T
and y changes by
dy dy dx
A _ — A p— . * At
YT T T A dt

Dividing both sides by At gives

Ay dy dx
At dr dt

and 1f we let At — 0 we get

)y = L




A few easy-to-remember derivatives:

Power Law: Constant x a Function:
d d dy
(P — p—1 _ — g7
-(@¥) = pz —lay(z)] = a—-
(p 7 0) (a = const)
Product Law:
d df dg
(@) g@)] = ——-g(z) + flz)- -
. d dy dx
Chain Rule: — ] = =£. 2
RG] By
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y(x)

The Definite Integral

/ ‘ y(w)dx

is defined as
the area under the curve
y(x) between xo and x.

X

It is described in terms of adding up many vertical “slices™
of infinitesimal width dx and height y(x).
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More Examples

of Indefinite Integrals (Antiderivatives)

if o(x)= x" = df/dx, whatis f(x)?

Answer: f(x) = fx" dx = X1 4 const.
n+1

if o(x)= 1/x"=x-" =df/dx, whatis f(x)?

Answer: f(x) = fx-" dx = X1 + const.
-n+1

Try this: if g(x) = 1/x = x-1 =df/dx, whatis f(x)?
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1
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L0

Answer: xi13 -x03 = 8-1=7/3
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Examples

of Definite Integrals

T
If v(x)= x2, xo=1 and x; =2, whatis [ y(x)dr ?

o

Answer: xi13 -x03 = 8-1=7/3

3 3

T1
If y(x)= 1/x2=x-2, x0=2 and x1 =4, what is/ y(x)dr ?
Answer: x;-l -xol = V4-15 =Y,
-1 -1




Y,

Tangent line
at point (&, ¥,)

Y (T)




Rule 32  dx s just a really,

really small /x

Y A Tangent line y(x)

at point (&, ¥,)




Rule 3:  dx s just a really,

Y,

really small /x

Tangent line y(x)
at point (=, %)

But dx and dy
are not independent!

X



Rule 3: dx s just a really,

really small /x
L

Tangent line y(x)
at point (=, ,U.)/
“Differentials”
l dy .. Ay _ y(z + Az) — y(z)

— = lIim — = lim

tly Ar—0 Ar Ax—0 Ar

But dx and dy
are not independent!
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Rule 4: [f were redlly, really careful
and never forget that

dv, dx and dt
are not independent,

We can do algebra with Differentials !

Momentum & Impulse

F=ma & a=dv/idt = mdv=F dt

a=dvdt & v=dx/dt = v dv/dt = a dx/dt

Kinetic Energy & Work

Cancel dfs & add F=ma = mvdv =F dx
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So What?

Change in Momentum p =mv
= Impulse | F(1) dt

(Useful when we know the force
as a function of time.)

Change in Kinetic Energy K = 7> m?
= Work | Fx) d

(Useful when we know the force
as a function of position.)



