
Easy Calculus 

a Hand-Waver’s Guide

(blame Jess)
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y(x) between x0 and x1.

It is described in terms of adding up many vertical “slices” 
of infinitesimal width dx and height y(x).
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is better thought of as the function whose derivative is y(x).

Just ask, 
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Answer:  f (x) =  ∫ a dx  = a x  + const.

If  g(x) = 2 b x  = df /dx,  what is  f (x) ?

Answer:  f (x) =  ∫ 2 b x dx  = b x2  + const.
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Examples

of  Definite Integrals 

If  y(x) =  x2,  x0 = 1  and  x1 = 2 ,   what is                          ?

Answer:  x13 - x03  =  8 - 1 = 7/3   _______      ____
      3               3

If  y(x) =  1/x 2 ≡ x − 2 ,  x0 = 2  and  x1 = 4 ,  what is                     ?

Answer:  x1-1 - x0-1  =  ¼ - ½   = ¼    ________      ______
      -1                -1
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Rule 4: If we’re really, really careful
and never forget that 
dv,   dx   and   dt   

are not independent,

We can do algebra with Differentials ! 

F = m a  &  a ≡ dv/dt  ⇒  m dv = F dt

a ≡ dv/dt  &  v ≡ dx/dt  ⇒  v dv/dt = a dx/dt

Cancel  dt’s  &  add  F = m a  ⇒  m v dv = F dx

Momentum & Impulse

Kinetic Energy & Work



So What?



Change in Momentum   p = m v 

=  Impulse   ∫ F(t) dt

So What?



Change in Momentum   p = m v 

=  Impulse   ∫ F(t) dt
(Useful when we know the force 

as a function of time.)

So What?



Change in Momentum   p = m v 

=  Impulse   ∫ F(t) dt
(Useful when we know the force 

as a function of time.)

Change in Kinetic Energy   K = ½ m v2

=  Work   ∫ F(x) dx

So What?



Change in Momentum   p = m v 

=  Impulse   ∫ F(t) dt
(Useful when we know the force 

as a function of time.)

Change in Kinetic Energy   K = ½ m v2

=  Work   ∫ F(x) dx
(Useful when we know the force 

as a function of position.)

So What?


