

a Hand-Waver's Guide

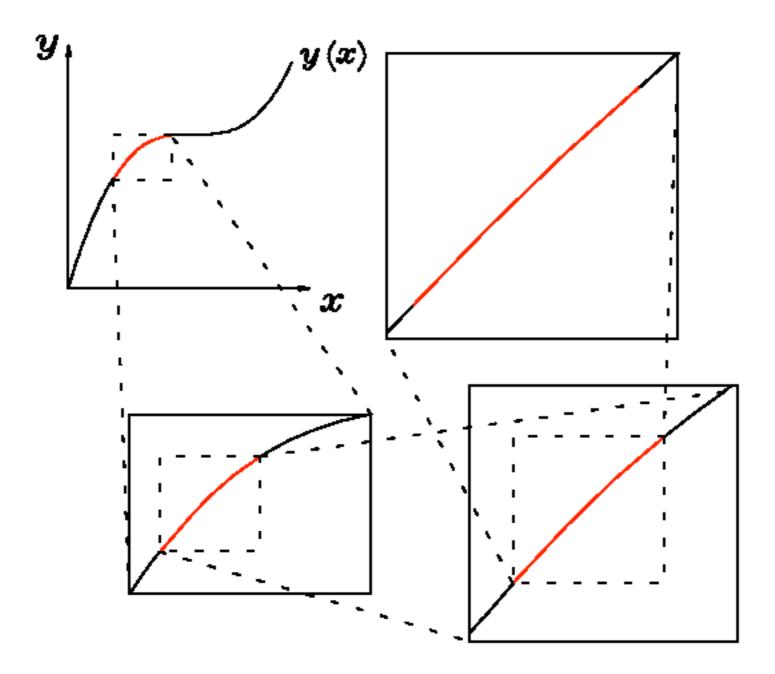
(blame **Jess**)

Rule 1:

Rule 1:

A curved line looks straight if you blow it up enough!

Rule 1:A curved line looks straight
if you blow it up enough!



Rule 2:

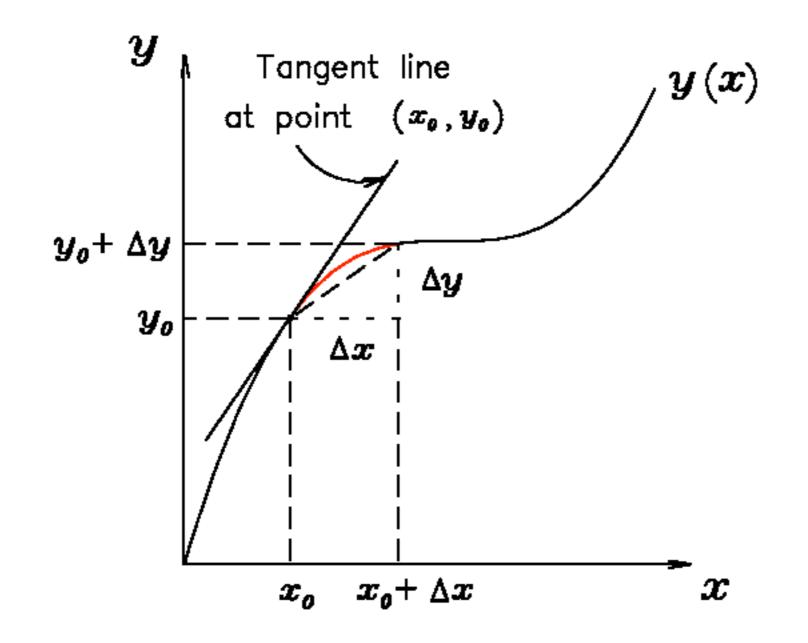
Rule 2:

There are no discontinuities in the real, physical world.

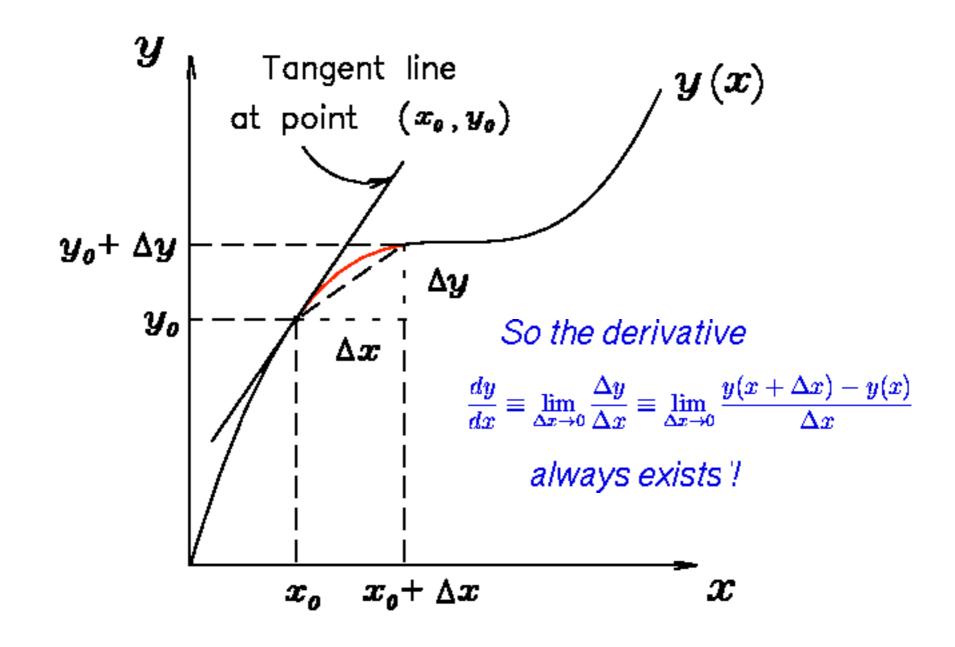
Rule 2:

There are no discontinuities in the real, physical world.

Rule 2: There are no discontinuities in the real, physical world.



Rule 2: There are no discontinuities in the real, physical world.



Power Law:

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Power Law:

Constant × a Function:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Constant × a Function:

$$\frac{d}{dx}\left[a\,y(x)\right] = a\,\frac{dy}{dx}$$

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Constant × a Function:

$$\frac{d}{dx} [a y(x)] = a \frac{dy}{dx}$$
(a = const)

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Constant × a Function:

$$\frac{d}{dx} \begin{bmatrix} a y(x) \end{bmatrix} = a \frac{dy}{dx}$$
(*a* = const)

Product Law:

Power Law: $\frac{d}{dx}(x^p) = p x^{p-1}$ $(p \neq 0)$ Constant × a Function:

$$\frac{d}{dx} \begin{bmatrix} a \ y(x) \end{bmatrix} = a \frac{dy}{dx}$$
(*a* = const)

Product Law:

$$\frac{d}{dx}[f(x) \cdot g(x)] = \frac{df}{dx} \cdot g(x) + f(x) \cdot \frac{dg}{dx}$$

Power Law: $\frac{d}{dx}(x^p) = p x^{p-1}$ $(p \neq 0)$ Constant × a Function:

$$\frac{d}{dx} \begin{bmatrix} a \ y(x) \end{bmatrix} = a \frac{dy}{dx}$$
(*a* = const)

Product Law:

$$\frac{d}{dx}\left[f(x)\cdot g(x)\right] = \frac{df}{dx}\cdot g(x) + f(x)\cdot \frac{dg}{dx}$$

Chain Rule:

Power Law: $\frac{d}{dx}(x^p) = p x^{p-1}$ $(p \neq 0)$ Constant × a Function:

$$\frac{d}{dx} \begin{bmatrix} a \ y(x) \end{bmatrix} = a \frac{dy}{dx}$$
(*a* = const)

Product Law: $\frac{d}{dx} \left[f(x) \cdot g(x) \right] = \frac{df}{dx} \cdot g(x) + f(x) \cdot \frac{dg}{dx}$

Chain Rule:
$$\frac{d}{dt}y[x(t)] = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

Power Law: $\frac{d}{dx}(x^p) = p x^{p-1}$ $(p \neq 0)$ Constant × a Function:

$$\frac{d}{dx} \begin{bmatrix} a \ y(x) \end{bmatrix} = a \frac{dy}{dx}$$
(*a* = const)

Product Law: $\frac{d}{dx} \left[f(x) \cdot g(x) \right] = \frac{df}{dx} \cdot g(x) + f(x) \cdot \frac{dg}{dx}$

Chain Rule:
$$\frac{d}{dt}y[x(t)] = \frac{dy}{dx}\cdot\frac{dx}{dt}$$

...but don't take my word for it!

Operator Notation:

Operator Notation:

$$\frac{d}{dx}\left[y\right] \equiv \frac{dy}{dx}$$

Operator Notation:

$$\frac{d}{dx}\left[y\right] \equiv \frac{dy}{dx}$$

Mathematician's Notation:

Operator Notation:

$$\frac{d}{dx}\left[y\right] \equiv \frac{dy}{dx}$$

Mathematician's Notation:

$$\frac{dy}{dx} \equiv y'(x)$$

Operator Notation:

$$\frac{d}{dx}\left[y\right] \equiv \frac{dy}{dx}$$

Mathematician's Notation:

$$\frac{dy}{dx} \equiv y'(x)$$

For Small Changes Δx :

Operator Notation:

$$\frac{d}{dx}\left[y\right] \equiv \frac{dy}{dx}$$

Mathematician's Notation:

$$\frac{dy}{dx} \equiv y'(x)$$

For Small Changes Δx :

 $\Delta y = y'(x)\Delta x$

Deriving the Product Law:

If $y(x) = f(x) \cdot g(x)$ then $y(x + \Delta x) = f(x + \Delta x) \cdot g(x + \Delta x)$ $= [f(x) + f'(x) \cdot \Delta x] [g(x) + g'(x) \cdot \Delta x]$ $= f(x) \cdot g(x) + [f'(x) \cdot g(x) + f(x) \cdot g'(x)] \Delta x$ $+ [\Delta x]^2 f'(x) \cdot g'(x)$

Divide this through by Δx and we have

$$\frac{y(x + \Delta x)}{\Delta x} = \frac{y(x)}{\Delta x} + f'(x) \cdot g(x) + f(x) \cdot g'(x) + \Delta x \cdot f'(x) \cdot g'(x)$$

Note that $y(x + \Delta x) - y(x) \models \Delta y$ and let Δx shrink to zero, and all that remains is

 $\frac{\Delta y}{\Delta x} \xrightarrow[\Delta x \to 0]{} y'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) .$

Constant times a Function:

$$\frac{d}{dx}\left[a\cdot y(x)\right] = a\cdot \frac{dy}{dx}$$

Constant times a Function:

$$\frac{d}{dx}\left[a\cdot y(x)\right] = a\cdot \frac{dy}{dx}$$

Constant times a Function:

$$\frac{d}{dx}\left[a\cdot y(x)\right] = a\cdot \frac{dy}{dx}$$

$$p = 1: \quad \frac{d}{dx}[x] = \frac{dx}{dx} = 1$$

$$p = 2:$$
 $\frac{d}{dx}[x^2] = \frac{d}{dx}[x \cdot x] = 1 \cdot x + x \cdot 1 = 2x$

$$p = 3:$$
 $\frac{d}{dx}[x^3] = \frac{d}{dx}[x \cdot x^2] = 1 \cdot x^2 + x \cdot 2x = 3x^2$

General:
$$\frac{d}{dx}[x^p] = p \ x^{p-1}$$

Deriving the Chain Rule:

Function of a Function: Suppose y is a function of x and x is in turn a function of t. Then if t changes by Δt , x changes by

$$\Delta x = \frac{dx}{dt} \cdot \Delta t$$

and y changes by

$$\Delta y = \frac{dy}{dx} \cdot \Delta x = \frac{dy}{dx} \cdot \frac{dx}{dt} \cdot \Delta t.$$

Dividing both sides by Δt gives

$$\frac{\Delta y}{\Delta t} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

and if we let $\Delta t \to 0$ we get

$\frac{d}{dt}\left\{y[x(t)]\right\}$	=	dy	dx
		dx	\overline{dt}

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Constant × a Function:

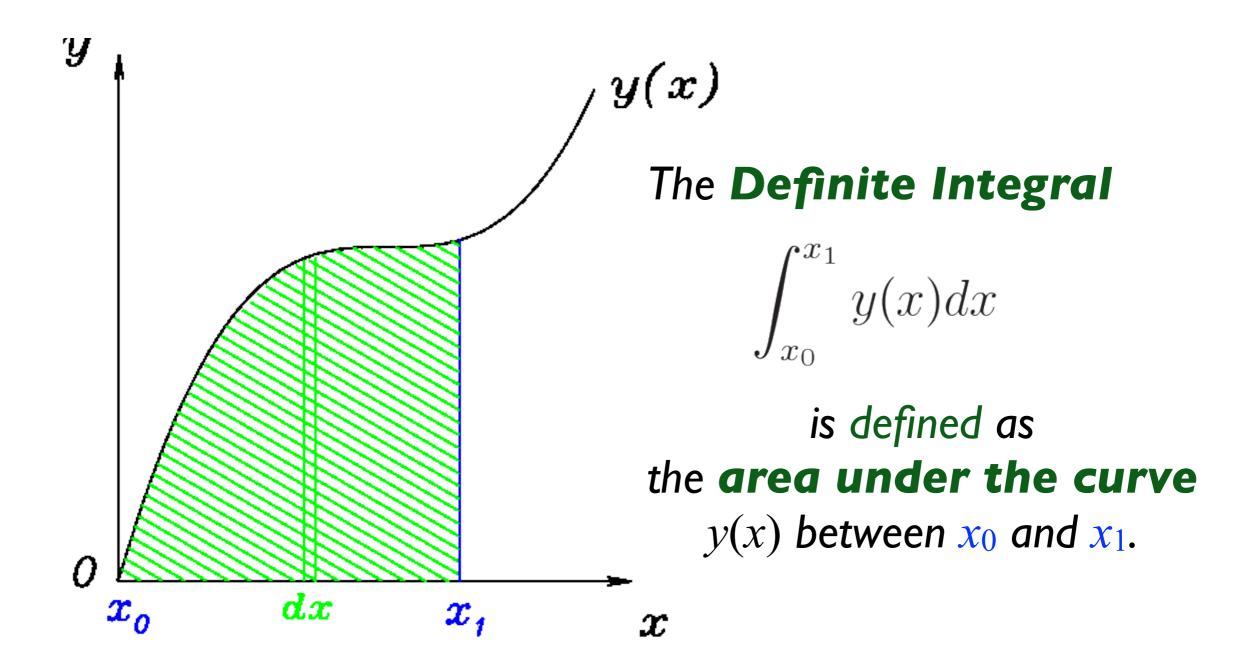
$$\frac{d}{dx} [a y(x)] = a \frac{dy}{dx}$$
(a = const)

Product Law:

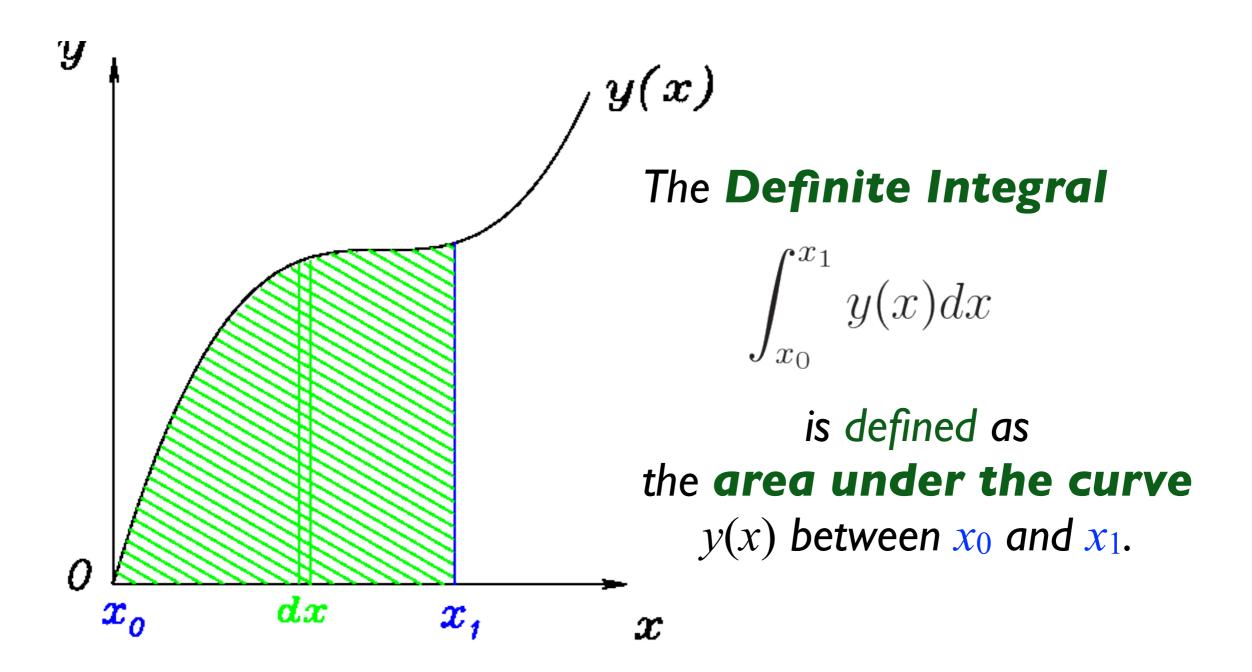
$$\frac{d}{dx}[f(x) \cdot g(x)] = \frac{df}{dx} \cdot g(x) + f(x) \cdot \frac{dg}{dx}$$

Chain Rule:
$$\frac{d}{dt}y[x(t)] = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

INTEGRALS



INTEGRALS



It is described in terms of adding up many vertical "slices" of infinitesimal width dx and height y(x).

The **Indefinite Integral** (a.k.a. **Antiderivative**) of y(x)is better thought of as <u>the function whose derivative is</u> y(x). Just ask, "What Function Has This Derivative?"

The **Indefinite Integral** (a.k.a. **Antiderivative**) of y(x)is better thought of as <u>the function whose derivative is</u> y(x). Just ask, "What Function Has This Derivative?"

If g(x) = a = df/dx, what is f(x)?

The **Indefinite Integral** (a.k.a. **Antiderivative**) of y(x)is better thought of as <u>the function whose derivative is</u> y(x). Just ask, "What Function Has This Derivative?"

If
$$g(x) = a = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int a \, dx = a \, x$ + const.

The **Indefinite Integral** (a.k.a. **Antiderivative**) of y(x)is better thought of as <u>the function whose derivative is</u> y(x). Just ask, "What Function Has This Derivative?"

If
$$g(x) = a = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int a \, dx = a \, x$ + const.

If $g(x) = 2b x = \frac{df}{dx}$, what is f(x)?

The **Indefinite Integral** (a.k.a. **Antiderivative**) of y(x)is better thought of as <u>the function whose derivative is</u> y(x). Just ask, "What Function Has This Derivative?"

If
$$g(x) = a = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int a \, dx = a \, x$ + const.

If g(x) = 2 b x = df/dx, what is f(x)? Answer: $f(x) = \int 2 b x dx = b x^2 + \text{const.}$

of Indefinite Integrals (Antiderivatives)

if $g(x) = x^n = \frac{df}{dx}$, what is f(x)?

if
$$g(x) = x^n = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int x^n dx = \frac{x^{n+1}}{n+1} + \text{const.}$

if
$$g(x) = x^n = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int x^n dx = \frac{x^{n+1}}{n+1} + \text{const.}$

if
$$g(x) = 1/x^n \equiv x^{-n} = \frac{df}{dx}$$
, what is $f(x)$?

if
$$g(x) = x^n = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int x^n dx = \frac{x^{n+1}}{n+1} + \text{const.}$

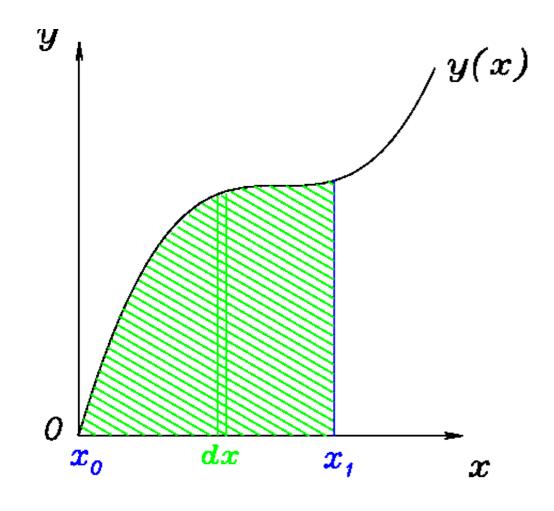
if
$$g(x) = 1/x^n \equiv x^{-n} = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int x^{-n} dx = \frac{x^{-n+1}}{-n+1} + \text{const.}$

of Indefinite Integrals (Antiderivatives)

if
$$g(x) = x^n = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int x^n dx = \frac{x^{n+1}}{n+1} + \text{const.}$

if
$$g(x) = 1/x^n \equiv x^{-n} = df/dx$$
, what is $f(x)$?
Answer: $f(x) = \int x^{-n} dx = \frac{x^{-n+1}}{-n+1} + \text{const.}$

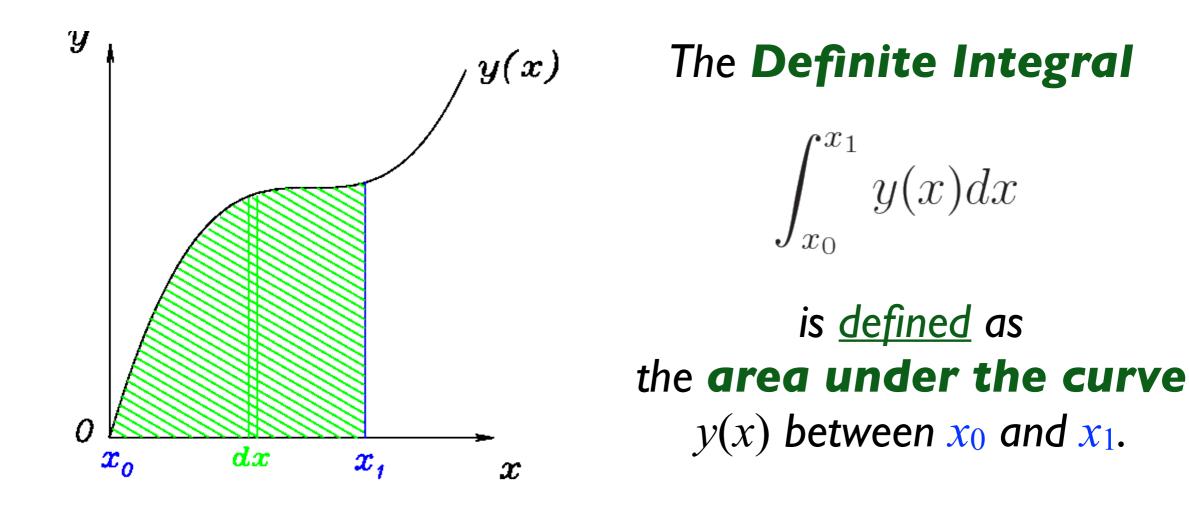
Try this: if $g(x) = 1/x \equiv x^{-1} = \frac{df}{dx}$, what is f(x)?



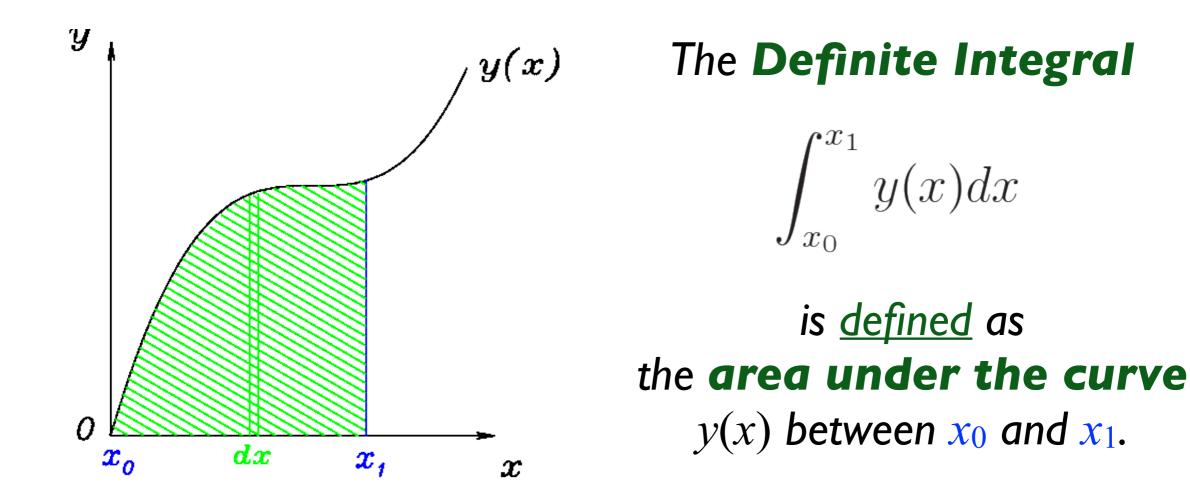
The **Definite Integral**

$$\int_{x_0}^{x_1} y(x) dx$$

is <u>defined</u> as the **area under the curve** y(x) between x_0 and x_1 .



But it is <u>equal to</u> the **difference** between the **Antiderivative** f(x) of y(x) at the endpoints:.



But it is <u>equal to</u> the **difference** between the **Antiderivative** f(x) of y(x) at the endpoints:.

$$\int_{x_0}^{x_1} y(x) dx = f(x_1) - f(x_0)$$

If
$$y(x) = x^2$$
, $x_0 = 1$ and $x_1 = 2$, what is $\int_{x_0}^{x_1} y(x) dx$?

If
$$y(x) = x^2$$
, $x_0 = 1$ and $x_1 = 2$, what is $\int_{x_0}^{x_1} y(x) dx$?

Answer:
$$\frac{x_1^3 - x_0^3}{3} = \frac{8 - 1}{3} = \frac{7/3}{3}$$

If
$$y(x) = x^2$$
, $x_0 = 1$ and $x_1 = 2$, what is $\int_{x_0}^{x_1} y(x) dx$?

Answer:
$$\frac{x_1^3 - x_0^3}{3} = \frac{8 - 1}{3} = \frac{7/3}{3}$$

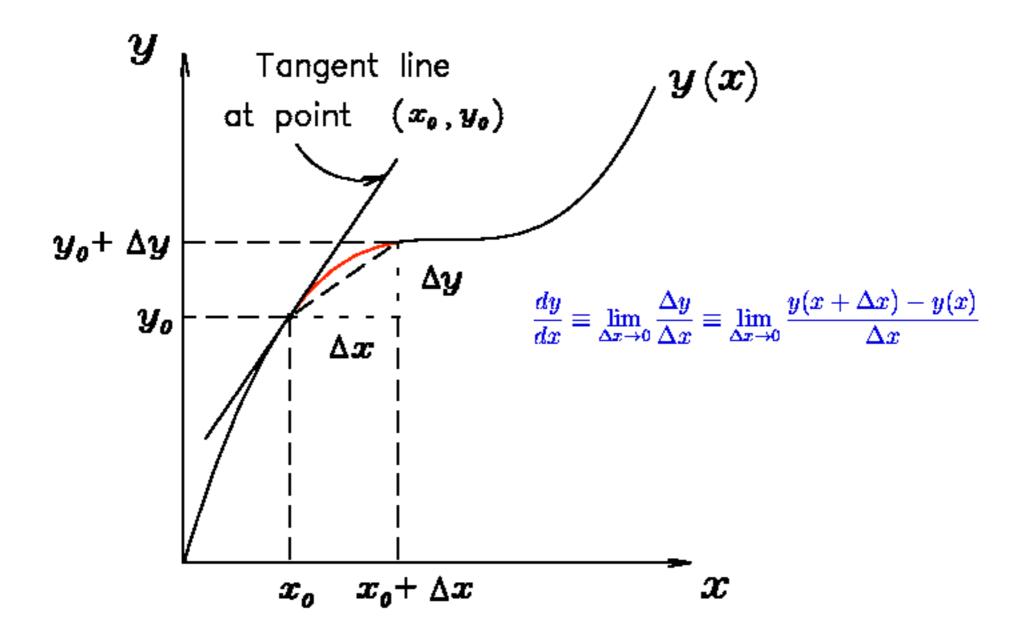
If
$$y(x) = 1/x^2 \equiv x^{-2}$$
, $x_0 = 2$ and $x_1 = 4$, what is $\int_{x_0}^{x_1} y(x) dx$?

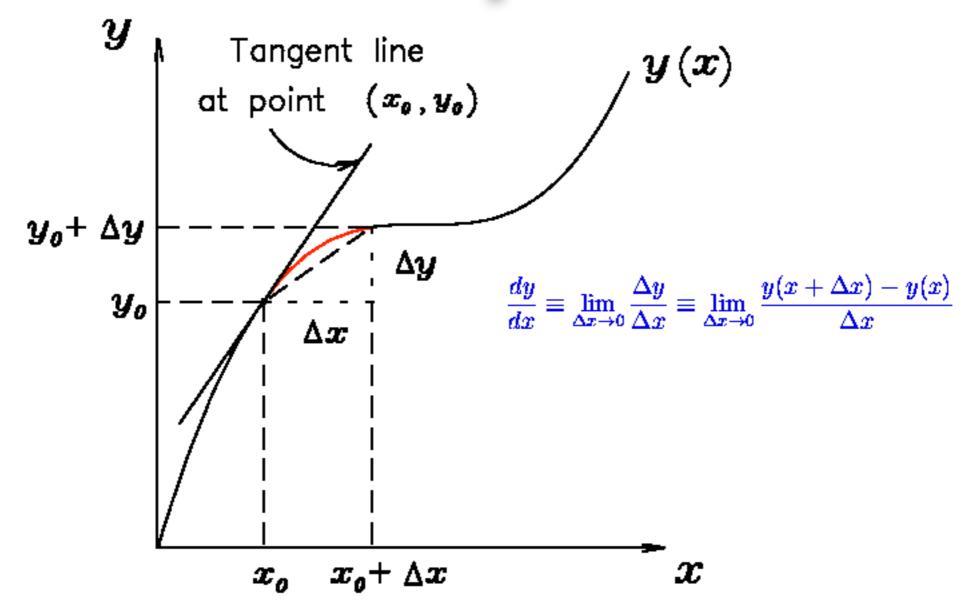
If
$$y(x) = x^2$$
, $x_0 = 1$ and $x_1 = 2$, what is $\int_{x_0}^{x_1} y(x) dx$?

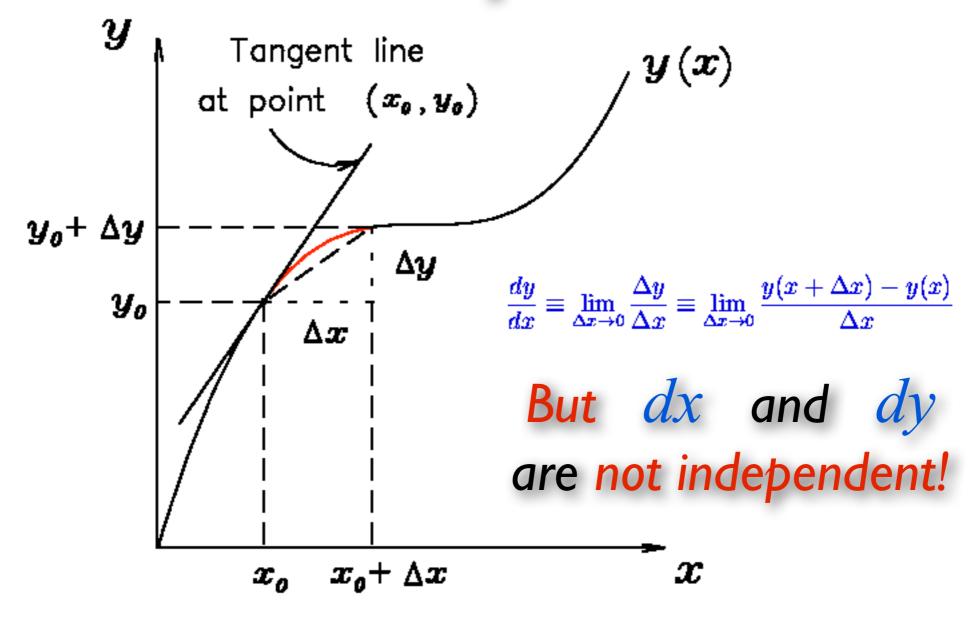
Answer:
$$\frac{x_1^3 - x_0^3}{3} = \frac{8 - 1}{3} = \frac{7/3}{3}$$

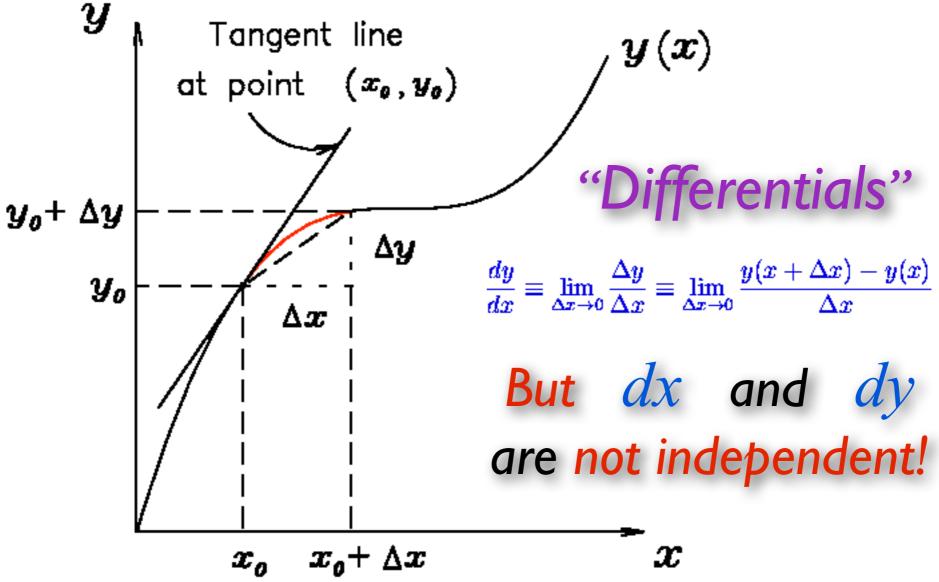
If
$$y(x) = 1/x^2 \equiv x^{-2}$$
, $x_0 = 2$ and $x_1 = 4$, what is $\int_{x_0}^{x_1} y(x) dx$?

Answer:
$$x_1^{-1} - x_0^{-1} = \frac{1/4}{-1/2} = \frac{1}{4}$$









Rule 4:

We can do algebra with Differentials !

We can do algebra with Differentials !

 $F = m a \& a \equiv dv/dt \implies m dv = F dt$

We can do algebra with Differentials !

 $F = m a \& a \equiv \frac{dv}{dt} \Rightarrow m \frac{dv}{dv} = F \frac{dt}{dt}$

 $a \equiv dv/dt \& v \equiv dx/dt \implies v dv/dt = a dx/dt$

We can do algebra with Differentials !

 $F = m a \& a \equiv dv/dt \implies m dv = F dt$

 $a \equiv dv/dt \& v \equiv dx/dt \implies v dv/dt = a dx/dt$

We can do algebra with Differentials !

$$F = m a \& a \equiv \frac{dv}{dt} \Rightarrow m dv = F dt$$

 $a \equiv dv/dt \& v \equiv dx/dt \Rightarrow v dv/dt = a dx/dt$

Rule 4: If we're really, **really** careful and never forget that $\frac{dv}{dx}$ and $\frac{dt}{dt}$ are not independent,

We can do algebra with Differentials !

Momentum & Impulse

$$F = m \ a \ \& \ a \equiv \frac{dv}{dt} \Rightarrow m \ dv = F \ dt$$

 $a \equiv dv/dt \& v \equiv dx/dt \Rightarrow v dv/dt = a dx/dt$

Rule 4: If we're really, **really** careful and never forget that $\frac{dv}{dx}$ and $\frac{dt}{dt}$ are not independent,

We can do algebra with Differentials !

Momentum & Impulse

$$F = m \ a \ \& \ a \equiv \frac{dv}{dt} \Rightarrow m \ dv = F \ dt$$

 $a \equiv dv/dt \& v \equiv dx/dt \Rightarrow v dv/dt = a dx/dt$

Rule 4: If we're really, **really** careful and never forget that $\frac{dv}{dx}$ and $\frac{dt}{dt}$ are not independent,

We can do algebra with Differentials !

Momentum & Impulse

$$F = m \ a \ \& \ a \equiv \frac{dv}{dt} \Rightarrow m \ dv = F \ dt$$

 $a \equiv dv/dt \& v \equiv dx/dt \Rightarrow v dv/dt = a dx/dt$

Kinetic Energy & Work Cancel dt's & add $F = m a \implies mv dv = F dx$

Change in Momentum p = m v= Impulse $\int F(t) dt$

Change in Momentum p = m v= Impulse $\int F(t) dt$ (Useful when we know the force as a function of time.)

Change in Momentum p = m v= Impulse $\int F(t) dt$ (Useful when we know the force as a function of time.)

Change in Kinetic Energy $K = \frac{1}{2} m v^2$ = Work $\int F(x) dx$

Change in Momentum p = m v= Impulse $\int F(t) dt$ (Useful when we know the force as a function of time.)

Change in Kinetic Energy $K = \frac{1}{2} m v^2$ = Work $\int F(x) dx$

> (Useful when we know the force as a function of position.)