Easy Calculus

a Hand-Waver's Guide

(blame **Jess**)

Rule 1:

A curved line looks straight if you blow it up enough!

Rule 2:

There are no discontinuities in the real, physical world.

A few easy-to-remember derivatives:

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Constant × a Function:

$$\frac{d}{dx} [ay(x)] = a \frac{dy}{dx}$$
(a = const)

Product Law:

$$\frac{d}{dx} [f(x) \cdot g(x)] = \frac{df}{dx} \cdot g(x) + f(x) \cdot \frac{dg}{dx}$$

Chain Rule:
$$\frac{d}{dt}y[x(t)] = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

...but don't take my word for it!

Deriving the derivatives:

Operator Notation:

$$\frac{d}{dx}[y] \equiv \frac{dy}{dx}$$

Mathematician's Notation:

$$\frac{dy}{dx} \equiv y'(x)$$

For Small Changes Δx :

$$\Delta y = y'(x)\Delta x$$

Deriving the Product Law:

If
$$y(x) = f(x) \cdot g(x)$$
 then
$$y(x + \Delta x) = f(x + \Delta x) \cdot g(x + \Delta x)$$

$$= [f(x) + f'(x) \cdot \Delta x] [g(x) + g'(x) \cdot \Delta x]$$

$$= f(x) \cdot g(x) + [f'(x) \cdot g(x) + f(x) \cdot g'(x)] \Delta x$$

$$+ [\Delta x]^2 f'(x) \cdot g'(x)$$

Divide this through by Δx and we have

$$\frac{y(x + \Delta x)}{\Delta x} = \frac{y(x)}{\Delta x} + f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
$$+\Delta x \cdot f'(x) \cdot g'(x)$$

Note that $y(x + \Delta x) - y(x) \models \Delta y$ and let Δx shrink to zero, and all that remains is

$$\frac{\Delta y}{\Delta x} \xrightarrow{\Delta x \to 0} y'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) .$$

Constant times a Function:

$$\frac{d}{dx} \left[a \cdot y(x) \right] = a \cdot \frac{dy}{dx}$$

Power Law:

$$p = 1$$
: $\frac{d}{dx}[x] = \frac{dx}{dx} = 1$

$$p = 2$$
: $\frac{d}{dx}[x^2] = \frac{d}{dx}[x \cdot x] = 1 \cdot x + x \cdot 1 = 2x$

$$p = 3$$
: $\frac{d}{dx}[x^3] = \frac{d}{dx}[x \cdot x^2] = 1 \cdot x^2 + x \cdot 2x = 3x^2$

General:
$$\frac{d}{dx}[x^p] = p \ x^{p-1}$$

Deriving the Chain Rule:

Function of a Function: Suppose y is a function of x and x is in turn a function of t. Then if t changes by Δt , x changes by

$$\Delta x = \frac{dx}{dt} \cdot \Delta t$$

and y changes by

$$\Delta y = \frac{dy}{dx} \cdot \Delta x = \frac{dy}{dx} \cdot \frac{dx}{dt} \cdot \Delta t.$$

Dividing both sides by Δt gives

$$\frac{\Delta y}{\Delta t} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

and if we let $\Delta t \to 0$ we get

$$\left| \frac{d}{dt} \left\{ y[x(t)] \right\} \right| = \left| \frac{dy}{dx} \cdot \frac{dx}{dt} \right|$$

A few easy-to-remember derivatives:

Power Law:

$$\frac{d}{dx}(x^p) = p x^{p-1}$$

$$(p \neq 0)$$

Constant × a Function:

$$\frac{d}{dx} [ay(x)] = a \frac{dy}{dx}$$
(a = const)

Product Law:

$$\frac{d}{dx} [f(x) \cdot g(x)] = \frac{df}{dx} \cdot g(x) + f(x) \cdot \frac{dg}{dx}$$

Chain Rule:
$$\frac{d}{dt} y[x(t)] = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

INTEGRALS

It is described in terms of adding up many vertical "slices" of infinitesimal width dx and height y(x).

INTEGRALS

The Indefinite Integral (a.k.a. Antiderivative) of y(x)

is better thought of as the function whose derivative is y(x).

Just ask,

"What Function Has This Derivative?"

If
$$g(x) = a = df/dx$$
, what is $f(x)$?

Answer:
$$f(x) = \int a \, dx = a \, x + \text{const.}$$

If
$$g(x) = 2b x = df/dx$$
, what is $f(x)$?

Answer:
$$f(x) = \int_{0}^{2} \frac{b x}{x} dx = \frac{b x^2}{x^2} + \text{const.}$$

More Examples

of Indefinite Integrals (Antiderivatives)

if
$$g(x) = x^n = \frac{df}{dx}$$
, what is $f(x)$?

Answer:
$$f(x) = \int x^n dx = \frac{x^{n+1}}{n+1} + \text{const.}$$

if
$$g(x) = 1/x^n \equiv x^{-n} = df/dx$$
, what is $f(x)$?

Answer:
$$f(x) = \int x^{-n} dx = x^{-n+1} + \text{const.}$$

Try this: if $g(x) = 1/x \equiv x^{-1} = \frac{df}{dx}$, what is f(x)?

INTEGRALS

The **Definite Integral**

$$\int_{x_0}^{x_1} y(x) dx$$

is <u>defined</u> as the **area under the curve** y(x) between x_0 and x_1 .

But it is <u>equal to</u> the **difference** between the **Antiderivative** f(x) of y(x) at the endpoints:.

$$\int_{x_0}^{x_1} y(x) dx = f(x_1) - f(x_0)$$

Examples

of **Definite Integrals**

If
$$y(x) = x^2$$
, $x_0 = 1$ and $x_1 = 2$, what is $\int_{x_0}^{x_1} y(x) dx$?

Answer:
$$\frac{x_1^3 - x_0^3}{3} = \frac{8 - 1}{3} = \frac{7/3}{3}$$

If
$$y(x) = 1/x^2 \equiv x^{-2}$$
, $x_0 = 2$ and $x_1 = 4$, what is $\int_{x_0}^{\infty} y(x) dx$?

Answer:
$$x_1^{-1} - x_0^{-1} = \frac{1}{4} - \frac{1}{2} = \frac{1}{4}$$

Rule 3: $\frac{dx}{dx}$ is just a really, really small $\frac{dx}{dx}$

Rule 4: If we're really, really careful and never forget that $\frac{dv}{dx}$ and $\frac{dt}{dt}$ are not independent,

We can do algebra with Differentials!

Momentum & Impulse

$$F = m \ a \ \& \ a \equiv \frac{dv}{dt} \implies m \ dv = F \ dt$$

$$a \equiv dv/dt \& v \equiv dx/dt \implies v dv/dt = a dx/dt$$

Kinetic Energy & Work

Cancel dt's & add $F = m \ a \implies mv \ dv = F \ dx$

So What?

Change in Momentum p = m v= Impulse $\int F(t) dt$

(Useful when we know the force as a function of time.)

Change in Kinetic Energy $K = \frac{1}{2} m v^2$ = Work $\int F(x) dx$

(Useful when we know the force as a function of position.)