Easy Calculus

a Hand-Waver's Guide

(blame Jess)

Rule 1: A curved line looks straight if you blow it up enough!

Rule 2:

probably
 There are no discontinuities in the real, physical world.

A few easy-to-remember derivatives:

Power Law:

$$
\begin{array}{cc}
\text { Power Law: } & \text { Constant } \times \text { a Function: } \\
\frac{d}{d x}\left(x^{p}\right)=p x^{p-1} & \frac{d}{d x}[a y(x)]=a \frac{d y}{d x} \\
(a=0) &
\end{array}
$$

Product Law:

$$
\frac{d}{d x}[f(x) \cdot g(x)]=\frac{d f}{d x} \cdot g(x)+f(x) \cdot \frac{d g}{d x}
$$

Chain Rule: $\quad \frac{d}{d t} y[x(t)]=\frac{d y}{d x} \cdot \frac{d x}{d t}$

Deriving the derivatives:

Operator Notation:

$$
\frac{d}{d x}[y] \equiv \frac{d y}{d x}
$$

Mathematician's Notation:

$$
\frac{d y}{d x} \equiv y^{\prime}(x)
$$

For Small Changes Δx :

$$
\Delta y=y^{\prime}(x) \Delta x
$$

Deriving the Product Law:

If $y(x)=f(x) \cdot g(x)$ then

$$
\begin{gathered}
y(x+\Delta x)=f(x+\Delta x) \cdot g(x+\Delta x) \\
=\left[f(x)+f^{\prime}(x) \cdot \Delta x\right]\left[g(x)+g^{\prime}(x) \cdot \Delta x\right] \\
=f(x) \cdot g(x)+\left[f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)\right] \Delta x \\
+[\Delta x]^{2} f^{\prime}(x) \cdot g^{\prime}(x)
\end{gathered}
$$

Divide this through by Δx and we have

$$
\begin{aligned}
\frac{y(x+\Delta x)}{\Delta x}= & \frac{y(x)}{\Delta x}+f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) \\
& +\Delta x \cdot f^{\prime}(x) \cdot g^{\prime}(x)
\end{aligned}
$$

Note that $y(x+\Delta x)-y(x) \models \Delta y$ and let Δx shrink to zero, and all that remains is

$$
\frac{\Delta y}{\Delta x} \underset{\Delta x \rightarrow 0}{\longrightarrow} y^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) .
$$

Constant times a Function:

$$
\frac{d}{d x}[a \cdot y(x)]=a \cdot \frac{d y}{d x}
$$

Power Law:

$$
p=1: \quad \frac{d}{d x}[x]=\frac{d x}{d x}=1
$$

$$
p=2: \quad \frac{d}{d x}\left[x^{2}\right]=\frac{d}{d x}[x \cdot x]=1 \cdot x+x \cdot 1=2 x
$$

$$
p=3: \quad \frac{d}{d x}\left[x^{3}\right]=\frac{d}{d x}\left[x \cdot x^{2}\right]=1 \cdot x^{2}+x \cdot 2 x=3 x^{2}
$$

General : $\quad \frac{d}{d x}\left[x^{p}\right]=p x^{p-1}$

Deriving the Chain Rule:

Function of a Function: Suppose y is a function of x and x is in turn a function of t. Then if t changes by $\Delta t, x$ changes by

$$
\Delta x=\frac{d x}{d t} \cdot \Delta t
$$

and y changes by

$$
\Delta y=\frac{d y}{d x} \cdot \Delta x=\frac{d y}{d x} \cdot \frac{d x}{d t} \cdot \Delta t .
$$

Dividing both sides by Δt gives

$$
\frac{\Delta y}{\Delta t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

and if we let $\Delta t \rightarrow 0$ we get

$$
\frac{d}{d t}\{y[x(t)]\}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

A few easy-to-remember derivatives:

Power Law:

$$
\frac{d}{d x}\left(x^{p}\right)=p x^{p-1}
$$

Constant \times a Function:

$$
\frac{d}{d x}[a y(x)]=a \frac{d y}{d x}
$$

Product Law:

$$
\frac{d}{d x}[f(x) \cdot g(x)]=\frac{d f}{d x} \cdot g(x)+f(x) \cdot \frac{d g}{d x}
$$

Chain Rule: $\quad \frac{d}{d t} y[x(t)]=\frac{d y}{d x} \cdot \frac{d x}{d t}$

INTEGRALS

It is described in terms of adding up many vertical "slices" of infinitesimal width $d x$ and height $y(x)$.

INTEGRALS

The Indefinite Integral (a.k.a. Antiderivative) of $y(x)$ is better thought of as the function whose derivative is $y(x)$.
Just ask,
"What Function Has This Derivative?"

$$
\begin{gathered}
\text { If } g(x)=a=d f / d x \text {, what is } f(x) ? \\
\text { Answer: } f(x)=\int a d x=a x+\text { const. } \\
\text { If } g(x)=2 b x=d f / d x \text {, what is } f(x) ? \\
\text { Answer: } f(x)=\int 2 b x d x=b x^{2}+\text { const. }
\end{gathered}
$$

More Examples

of Indefinite Integrals (Antiderivatives)

$$
\begin{aligned}
& \text { if } g(x)=x^{n}=d f / d x \text {, what is } f(x) ? \\
& \text { Answer: } f(x)=\int x^{n} d x=\frac{x^{n+1}}{n+1}+\text { const. } \\
& \text { if } g(x)=1 / x^{n} \equiv x^{-n}=d f / d x \text {, what is } f(x) ? \\
& \text { Answer: } f(x)=\int x^{-n} d x=\frac{x^{-n+1}}{-n+1}+\text { const. }
\end{aligned}
$$

Try this: if $g(x)=1 / x \equiv x^{-1}=d f / d x$, what is $f(x)$?

INTEGRALS

The Definite Integral

$$
\int_{x_{0}}^{x_{1}} y(x) d x
$$

is defined as
the area under the curve $y(x)$ between x_{0} and x_{1}.

But it is equal to the difference between the Antiderivative $\boldsymbol{f}(x)$ of $y(x)$ at the endpoints:

$$
\int_{x_{0}}^{x_{1}} y(x) d x=\boldsymbol{f}\left(x_{1}\right)-\boldsymbol{f}\left(x_{0}\right)
$$

Examples

of Definite Integrals

$$
\begin{aligned}
& \text { If } y(x)=x^{2}, x_{0}=1 \text { and } x_{1}=2 \text {, what is } \int_{x_{0}}^{x_{1}} y(x) d x ? \\
& \text { Answer: } \frac{x_{1}^{3}-x_{0}^{3}}{3}=\frac{8-1}{3}=7 / 3 \\
& \text { If } y(x)=1 / x^{2} \equiv x^{-2}, x_{0}=2 \text { and } x_{1}=4 \text {, what is } \int_{x_{0}}^{x_{1}} y(x) d x ? \\
& \text { Answer: } \frac{x_{1}^{-1}-x_{0}-1}{-1}=\frac{1 / 4-1 / 2}{-1}=1 / 4
\end{aligned}
$$

Rule 3: $d x$ is just a really, really small Δx

Rule 4: If we're really, really careful and never forget that $d v, d x$ and $d t$ are not independent,
We can do algebra with Differentials !

$$
\begin{gathered}
F=m a \& a \equiv d v / d t \Rightarrow m d v=F d t \\
a \equiv d v / d t \quad \& \quad v \equiv d x / d t \Rightarrow v d v / d t=a d x / d t
\end{gathered}
$$

Kinetic Energy \& Work
Cancel $d t$'s \& add $F=m a \Rightarrow m v d v=F d x$

So What?

Change in Momentum $p=m v$

$$
=\text { Impulse } \int F(t) d t
$$

(Useful when we know the force as a function of time.)

Change in Kinetic Energy $K=1 / 2 m v^{2}$

$$
=\text { Work } \int F(x) d x
$$

(Useful when we know the force as a function of position.)

