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Why Am I Doing This?

Once upon a time I wrote a book entitled “The
Skeptic’s Guide to Physics” to go with Physics
340, a course for Arts students at the University
of British Columbia. After several experiments
with existing textbooks, I decided to start my
own, based on the usual collection of handwrit-
ten lecture notes. My reasons did not include
any conviction that I could do a better job than
anyone else; rather that I hadn’t found any text
that set out to do quite the same thing that I
wanted to do, and I was too stubborn to revise
my intentions to fit the literature. I have gotten
worse with age.

What did I want to do? The impossible.
Namely, to take my Arts students on a whirl-
wind tour of Physics from classical mechanics
through modern elementary particle physics,
without any patronizing appeals to faith in the
experts. I especially wanted to avoid any hint
of phrases like, “scientific tests prove. . . ” that
are employed with such poisonous efficiency by
media manipulators. I wanted to treat them
like savvy graduate students auditing a course
outside their specialty, not like woodenheaded
ignoramuses who had no intellect to appeal to.
In particular, I believed that smart Arts people
are as smart as (maybe smarter than!) smart
Science people, and a good deal more eclectic
on average.

Now I am retired from UBC, but I miss teach-
ing; so I occasionally teach courses in the El-
der College of Vancouver Island University in
Nanaimo, BC. I found that folks over 50 who
never took Physics before are a little reluctant
to dive into the subject later in life, no matter
how I promised to Keep It Simple.

So I decided to start a little less ambitiously:
one of the reasons people are reluctant to tackle
Physics is that they find the necessary Mathe-
matics challenging. Now, a lot of Physicists
offer courses entitled “Physics Without Math-
ematics” — that’s ridiculous! Physics with-
out Mathematics is like Poetry without Words.1

Even babies acquire language skills, and small
children are quite capable of appreciating po-
etry, though some of the more erudite nuances
may escape them at first.

Hence this Elder College course. As it says in
the course description, every discipline has easy
parts and hard parts; the Easy parts of Alge-
bra and Calculus are really all we need to make
a satisfactory introduction to Physics (my ul-
timate goal) and the concomitant Mathemat-
ical understanding offers untold opportunities
for enlightenment in myriad realms — Just wait
and see!

So I will be addressing you as if you were in the
Humanities, though you may just as well be a
Nobel laureate or a short-order cook at a fast
food restaurant. What do I care what you do
for a living? I do want you to see Algebra and
Calculus the way I see them, not some edited-
for-television version. A tall order? You bet.
I’m asking a lot? That’s what I’m here for.

1 Yes, yes, music and visual arts can be thought of
metaphorically as forms of poetry, but I’m talking about
literal poetry.
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Chapter 1

Symbols

All communication relies upon abstract sym-
bolism of one form or another. We can feel
without symbols, but we can’t talk. Before
two people can communicate they must reach a
consensus about the symbolic representation of
reality they will employ in their conversation.
This is so obvious that we usually take it for
granted, but few experiences are so unsettling
as to meet someone whose personal symbolic
representation differs drastically from consen-
sual reality.

How was this consensus reached? How arbi-
trary are symbolic conventions? Do they con-
tinue to evolve? They never represent quite
the same things for different people; how do
we know if there is a reality “out there” to
be represented? These are questions that have
perplexed philosophers for thousands of years;
we are not going to find final answers to them
here. But within the intrinsically abstract con-
text of Mathematics we may find some instruc-
tive lessons in the interactions between tra-
dition, convention, consensus and analytical
logic. This is the focus of the present Chap-
ter.

Each word in a dictionary plays the same role
in writing or speech (or in “verbal” thought it-
self) as the hieroglyphic-looking symbols play
in the equations of Algebra and Calculus. The
big difference is compactness and in the degree
to which ambiguity depends upon context. Ob-
viously an algebraic symbol like t is rather com-
pact relative to a word composed of several let-

ters, like time. This allows storage of more in-
formation in less space, which is pragmatic but
not always pleasing.

As for ambiguity in context, words are designed
to have a great deal of ambiguity until they are
placed in sentences, where the context partially
dictates which meaning is intended. But never
entirely. Part of the magic of poetry is its am-
biguity; a good poet is offended by the ques-
tion, “What exactly did you mean by that?”
because all the possible meanings are intended.
Great poetry does not highlight one meaning
above all, but rather manipulates the interac-
tions between the several possible interpreta-
tions so that each enriches the others and all
unite to form a whole greater than the sum of
its parts. As a result, no one ever knows for
certain what another person is talking about;
we merely learn to make good guesses.1

In Mathematics, every symbol must in princi-
ple be defined exhaustively and explicitly prior
to its use. A meticulous Mathematician will try
to provide an unambiguous definition of every
unusual symbol introduced, but there are many
symbols that are used so often in Mathematics
to mean a certain thing that they have a well-
known “default” meaning as long as they are
used in a familiar context. In practice, some

1This seems to be holding up progress in Artificial Intel-
ligence (AI) research, where people trying to teach comput-
ers to understand “natural language” (human speech) are
stymied by the impossibility of reaching a unique logical in-
terpretation of a typical sentence. Methinks they are trying
too hard.
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symbols (like ∂) are universally recognized as
having a specific meaning that effectively de-
fines the context.

The point is, algebraic notation follows a set of
conventions, just like the grammar and syntax
of verbal language, that defines the context in
which each symbol is to be interpreted and thus
provides a large fraction of the meaning of a
given expression.

1.1 Number Systems

The first thing we learn about Mathematics as
children is usually one of the most abstract con-
cepts of all: the idea of numbers — zero, one,
two, three, . . . that have meaning independent
of the concrete things they are the numbers
of, like apples, oranges or universes. Numbers
must also be assigned a conventional represen-
tation before they can be used to describe any
practically useful examples (e.g. “arithmetic”).
Such representations are arbitrary, based on
rather simpleminded models of what is signifi-
cant in a practical sense.

The decimal number system, based as it is upon
a number whose only virtue is that most people
have that number of fingers and thumbs, is a
typical example. We all learned this convention
as children and use it in our daily lives, but it is
neither unique nor optimal. Let’s examine the
various ways we can count to ten:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

is “the decimal way”. We can use our fingers
to count to ten, but is it an efficient use of our
fingers? If we had only thought to distinguish
between fingers and thumbs, using thumbs for
“carrying,” and distinguishing between left and
right hands, we could easily count to one hun-
dred with our hands. If we were even cleverer,
we could give each finger and thumb its own
special significance and count to thirty-one on
one hand and up to one thousand and twenty-
three on both hands! That’s as good as it can

get, though; it requires a binary number sys-
tem in which there are only two digits: 0 and
1. Counting to ten in binary looks like this:

1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010

This is how integers are stored in a digital com-
puter. We could also count in octal:

1, 2, 3, 4, 5, 6, 7, 10, 11, 12

or hexadecimal:

1, 2, 3, 4, 5, 6, 7, 8, 9, A

or in trinary :

1, 2, 10, 11, 12, 20, 21, 22, 100, 101

or in any other base we choose. I recommend
learning to count in binary as well as decimal.

Is mathematics then arbitrary? Of course not.
We can easily understand the distinction be-
tween the representation (which is arbitrary)
and the content (which is not). Ten is still ten,
regardless of which number system we use to
write it “mathematically”. Much more sophis-
ticated notions can also be expressed in many
ways; in fact it may be that we can only achieve
a deep understanding of any concept by learn-
ing to express it in many alternate “languages.”

The same is arguably true of Physics. Since I
will often be using Physics examples to demon-
strate the utility of Algebra and Calculus, it
behooves me to briefly discuss some of the con-
ventions and representations used in Physics.

1.2 Units & Dimensions

1.2.1 Time & Distance

Two of the most important concepts in Physics
are “length” and “time.” As is often the case
with the most important concepts, neither can
be defined except by example — e.g. “a meter
is this long. . . .” or, “a second lasts from now
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. . . to now.” Both of these “definitions” com-
pletely beg the question, if you consider care-
fully what we are after; they merely define the
units in which we propose to measure distance
and time. Except for analogic reinforcements
they do nothing at all to explain the “mean-
ing” of the concepts “space” and “time.”

Modern science has replaced the standard
platinum-iridium reference meter (m) stick
with the indirect prescription, “. . . the distance
travelled by light in empty space during a time
of 1/299,792,458 of a second,” where a sec-

ond (s) is now defined as the time it takes a
certain frequency of the light emitted by ce-
sium atoms to oscillate 9,192,631,770 times.2

This represents a significant improvement inas-
much as we no longer have to resort to car-
rying our meter stick to the International Bu-
reau of Weights and Measures in Sèvres, France
(or to the U.S. National Bureau of Standards
in Boulder, Colorado) to make sure it is the
same length as the Standard Meter. We can
just build an apparatus to count oscillations of
cesium light and mark off how far light goes in
30.663318988 or so oscillations [well, it’s easy if
you have the right tools. . . .] and make our own
meter stick independently, confident that it will
come out the same as the ones in France and
Colorado, because our atoms are guaranteed to
be just like theirs. We can even send signals to
neighbors on Tau Ceti IV to tell them what size
to make screwdrivers or crescent wrenches for
export to Earth, since there is overwhelming ev-
idence that their atoms also behave exactly like
ours. This is quite remarkable, and unprece-
dented before the discovery of quantum physics;
but unfortunately it does not make much dif-
ference to the dilemma we face when we try to
define “distance.” Nature has kindly provided
us with an unlimited supply of accurate me-

2This is only the latest in a long sequence of redefinitions
of the meter. Today’s version reflects our recognition of
the speed of light as a universal constant. (Here is a trick
question for you: if the speed of light were different in one
time and place from another, how could we tell?)

ter sticks, but it is still just a name we give to
something.

To learn the properties of that “something”
which we call “distance” requires first that we
believe that there is truly a physical entity, with
intrinsic properties independent of our percep-
tions, to which we have given this name. This is
extremely difficult to prove. Maybe not impos-
sible, but I’ll leave that to the philosophers. For
the physicist it is really a matter of æsthetics to
enter into conversations with Nature as if there
were really a partner in such conversations. In
other words, I cannot tell you what “distance”
is, but if you will allow me to assume that the
word refers to something “real,” I can tell you
a great deal about its properties, until at some
point you feel the partial satisfaction of inti-
mate familiarity where perfect comprehension
is denied.

How do we begin to talk about time and space?
The concepts are so fundamental to our lan-
guage that all the words we might use to de-
scribe them have them built in! So for the mo-
ment we will have to give up and say, “Everyone
knows pretty much what we mean by time and
distance.” This is always where we have to be-
gin. Physics is just like poetry in this respect:
you start by accepting a “basis set” of images,
without discussion; then you work those im-
ages together to build new images, and after a
period of refinement you find one day, mirac-
ulously, that the new images you have created
can be applied to the ideas you began with,
giving a new insight into their meaning. This
“bootstrap” principle is what makes thinking
profitable.

Later on, then, when we have learned to ma-
nipulate time and space more critically, we will
acquire the means to break down the concepts
and take a closer look.
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1.2.2 Choice of Units

All choices of units are completely arbitrary and
are made strictly for the sake of convenience. If
you were a surveyor in 18th-Century England,
you would consider the chain (66 feet by our
standards) an extremely natural unit of length,
and the meter would seem a completely ar-
tificial and useless unit, because people were
shorter then and the yard (1 yard = 3600/3937
of a meter) was a better approximation to an
average person’s stride. Feet and hands were
even better length units in those days; and if
you hadn’t noticed, an inch is just about the
length of the middle bone in a small person’s
index finger.

If you couldn’t get your hands on a timepiece
with a second hand, the utility of seconds

would seem limited to the (non-coincidental)
fact that they are about the same as a resting
heartbeat period. Years and days might seem
less arbitrary to us, but we would have trou-
ble convincing our friends on Tau Ceti IV.3 Re-
member, our perspective in Physics is universal,
and in that perspective all units are arbitrary.

We choose all our measurement conventions
for convenience, often with monumental short-
sightedness. The decimal number system is a
typical example. At least when we realize this
we can feel more forgiving of the clumsiness
of many established systems of measurement.
After all, a totally arbitrary decision is always
wrong. (Or always right.)

Physicists are fond of devising “natural units”
of measurement; but as always, what is con-
sidered “natural” depends upon what is being
measured. Atomic physicists are understand-

3This is a recurring problem in science fiction novels: will
our descendents on other planets use a “local” definition of
years, [months,] days, hours and minutes or try to stick with
an Earth calendar despite the fact that it would mean the lo-
cal sun would come up at a different time every day? Worse
yet, how will a far-flung Galactic Empire reckon dates, es-
pecially considering the conditions imposed by Relativity?
[The Star Trek solution is, of course, to ignore the laws of
physics entirely.]

ably fond of the Angstrom (Å), which equals
10−10 m, which “just happens” to be roughly
the diameter of a hydrogen atom. Astronomers
measure distances in light years, the distance
light travels in a year (365 × 24 × 60 × 60 ×
2.99 × 108 = 9.43 × 1015 m), astronomical

units (a.u.), which I think have something to
do with the Earth’s orbit about the sun, or par-

secs, which I seem to recall are related to sec-
onds of arc at some distance. [I am not biased
or anything. . . .]

Astrophysicists and particle physicists tend to
use units in which the velocity of light (a fun-
damental constant) is dimensionless and has
magnitude 1; then times and lengths are both
measured in the same units. People who live
near New York City have the same habit, oddly
enough: if you ask them how far it is from
Hartford to Boston, they will usually say, “Oh,
about three hours.” This is perfectly sensible
insofar as the velocity of turnpike travel in New
England is nearly a fundamental constant. In
my own work at TRIUMF, I habitually mea-
sure distances in nanoseconds (billionths of
seconds: 1 ns = 10−9 s), referring to the dis-
tance (about 29.97 cm) covered in that time by
a particle moving at essentially the velocity of
light.4

In general, physicists like to make all funda-
mental constants dimensionless; this is indeed
economical, as it reduces the number of units
one must use, but it results in some oddities
from the practical point of view. A nuclear
physicist is content to measure distances in in-
verse pion masses, but this is not apt to make
a tailor very happy.

4Inasmuch as a ns is a roughly “person-sized” distance
unit, it could actually be used rather effectively in place of
feet and meters, which would get rid of at least one arbitrary
unit. Oh well.
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1.2.3 Perception Through Models

The upshot of all this is that you can’t trust any
units to carry lasting significance; all is vanity.
Each and every choice of units represents es-
sentially a model of what is significant. What
is vitally relevant to one observer may be triv-
ial and ridiculous to another. Lest this seem a
depressing appraisal, consider that the same is
true of all our means of perception, even includ-
ing the physical sensing apparatus of our own
bodies: our eyes are sensitive to an incredibly
tiny fraction of the spectrum of electromagnetic
radiation; what we miss is inconceivably vast
compared to what we detect. And yet we see a
lot, especially under the light of Sol, which at
the Earth’s surface happens to peak in just the
region of our eyes’ sensitivity. Our eyes are sim-
ply a model of what is important locally, and
well adapted for the job.

The only understanding you can develop that
is independent of units has to do with how di-
mensions can be combined, juxtaposed, etc. —
their relationships with each other. The notion
of a velocity as a ratio of distance to time is a
concept which will endure all vagaries of fash-
ion in measurment. This is the sort of concept
that we try to pick out of the confusion. This is
the sort of understanding for which the physi-
cist searches.

1.3 Symbolic Conventions

In Physics we like to use a very compact no-
tation for things we talk about a lot; this is
æsthetically mandated by our commitment to
making complicated things look [and maybe
even be] simpler. Ideally we would like to have
a single character to represent each paradig-
matic “thing” in our lexicon, but in practice
we don’t have enough characters5 and we have

5The wider availability of nice typesetting languages like
LATEX, in which this manuscript is being prepared, offers us
the opportunity to add new symbols like ℵ, ̟ and ♥, but

to re-use some of them in different contexts —
just like in English!

In principle, any symbol can be used to repre-
sent any quantity, or even a non-quantity (like
an “operator”), as long as it is explicitly and
carefully defined. In practice, life is easier with
some “default” conventions for what various
symbols should be assumed to mean unless oth-
erwise specified. On the next pages are some
that I will be using a lot.6

this won’t change the qualitative situation.
6(You may want to refer to these occasionally when try-

ing to guess what I am trying to say with formulae. Don’t
worry if some are incomprehensible initially; for complete-
ness, the list includes lots of “advanced” stuff.)
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Table 1.1 Roman symbols commonly used in Physics

ROMAN LETTERS:

A = an area; Ampere(s). a = acceleration; a general constant.

B = magnetic field. b = a general constant.

C = heat capacity; Coulomb(s). c = speed of light; a gen. constant.

D = a form of the electric field. d = differential operator; diameter.

E = energy ; electric field. e = 2.71828...; electron’s charge.

F = force; a general function. f = a fraction; a function as in f(x).

G = grav. constant; prefix Giga-. g = accel. of gravity at Earth’s surface.

H = magnetic field; Hamiltonian op. h = Planck’s constant; a height.

I = electric current. i =
√
−1 ; an index (subscript).

J = Joules; spin; angular momentum. j = a common integer index.

K = degrees Kelvin. k = an integer index; a gen. constant; kilo-.

L = angular momentum; length. l = an integer index; a length.

M = magnetization; mass; Mega-. m = metre(s); mass; an integer index.

N = Newton(s); a large number. n = a small number; prefix nano-.

O = “order of” symbol as in O(α). o = rarely used (looks like a 0).

P = probability; pressure; power. p = momentum; prefix pico-.

Q = electric charge. q = elec. charge; “canonical coordinate”.

R = radius; electrical resistance. r = radius.

S = entropy ; surface area. s = second(s); distance.

T = temperature. t = time.

U = potential energy; internal energy. u = an abstract variable; a velocity.

V = Volts; volume; potential energy. v = velocity.

W = work; weight. w = a small weight; a width.

X = an abstract function, as X(x). x = distance; any independent variable.

Y = an abstract function, as Y (y). y = an abstract dependent variable.

Z = atomic number; Z(z). z = an abstract dependent variable.
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Table 1.2 Greek symbols commonly used in Physics

GREEK LETTERS: (Capital Greek letters that look the same as Roman are omitted.)

α = fine structure constant; an angle.

β = v/c; an angle.

Γ = torque; a rate. γ = E/mc2; an angle.

∆ = “change in...”, as in ∆x. δ = an infinitesimal; same as ∆.

ǫ = an infinitesimal quantity.

E = “electromotive force”. ε = an energy.

ζ = a general parameter.

η = index of refraction.

Θ = an angle. θ = an angle (most common symbol).

ι = rarely used (looks like an i).

κ = arcane version of k.

Λ = a rate; a type of baryon. λ = wavelength; a rate.

µ = reduced mass; muon; prefix micro-.

ν = frequency in cycles/s (Hz); neutrino.

Ξ = a type of baryon. ξ = a general parameter.

Π = product operator. π = 3.14159. . . ; pion (a meson).

ρ = density per unit volume; resistivity.

Σ = summation operator. σ = cross section; area density; conductivity.

τ = a mean lifetime; tau lepton.

Υ = an elementary particle. υ = rarely used (looks like v).

Φ = a wave function; an angle. φ = an angle; a wave function.

χ = susceptibility.

Ψ = a wave function. ψ = a wave function.

ω = angular frequency (radians/s).
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Table 1.3 Mathematical symbols commonly used in Physics

OPERATORS:

→ = “...approaches in the limit...” (as in ∆t → 0).

∂ = partial derivative operator (as in ∂F
∂x

).

∇ = gradient operator (as in ∇φ = x̂∂φ
∂x

+ ŷ ∂φ
∂y

+ ẑ ∂φ
∂z

).
∫

= integral operator as in
∫

y(x)dx

LOGICAL SYMBOLS: (Handy shorthand that I use a lot!)

.˙. = “Therefore...” ⇒ = “...implies...” ≡ = “...is defined to be...”

∃ = “there exists...” ∋ = “...such that...”

/ [a slash through any logical symbol] = negation; e.g. 6⇒ = “...does not imply...”
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1.4 Functions

Mathematics is often said to be the language of
Physics. This is not the whole truth, but it is
part of the truth; one ubiquitous characteristic
of Physics (the human activity), if not physics
(the supposed methodology of nature), is the
expression of relationships between measurable
quantities in terms of mathematical formulae.
The advantages of such notation are that it is
concise, precise and “elegant,” and that it al-
lows one to calculate quantitative predictions
which can be compared with measured exper-
imental results to test the validity of the de-
scription.

The nearly-universal image used in such math-
ematical descriptions of nature is the FUNC-
TION, an abstract concept conventionally sym-
bolized in the form y(x) [read “y of x”] which
formally represents mathematical shorthand
for a recipé whereby a value of the “dependent
variable” y can be calculated for any given value
of the “independent variable” x.

The explicit expression of such a recipé is al-
ways in the form of an equation. For instance,
the answer to the question, “What is y(x)?”
may be “y = 2 + 5x2 − 3x3.” This tells us
how to get a numerical value of y to “go with”
any value of x we might pick. For this reason,
in Mathematics (the human activity) it is of-
ten formally convenient to think of a function
as a mapping — i.e. a collection of pairs of
numbers (x, y) with a concise prescription to
tell us how to find the y which goes with each
x. In this sense it is also easier to picture the
“inverse function” x(y) which tells us how to
find a value of x corresponding to a given y.
[There is not always a unique answer. Consider
y = x2.] On the other hand, whenever we go to
use an explicit formula for y(x), it is essential
to think of it as a recipé — e.g. for the example
described above, “Take the quantity inside the
parentheses (whatever it is) and do the follow-
ing arithmetic on it: first cube whatever-it-is

and multiply by 3; save that result and subtract
it from the result you get when you multiply 5
by the square of whatever-it-is; finally add 2 to
the difference and voila! you have the value of
y that goes with x = whatever-it-is.”

This is most easily understood by working
through a few examples, which we will do
shortly.

1.4.1 Formulae vs Graphs

In Physics we often prefer the image of the
GRAPH, because the easiest way to compare
data with a theoretical function in a holistic
manner is to plot both on a common graph.
(The right hemisphere is best at holistic percep-
tion, so we go right in through the visual cor-
tex.) Fortunately, the issue of whether a graph
or an equation is “better” is entirely subjective,
because for every function there is a graph —
although sometimes the interesting features are
only obvious when small regions are blown up,
or when one or the other variable is plotted on
a logarithmic scale, or suchlike.

Nevertheless, this process of translating be-
tween left and right hemispheres has far-
reaching significance to the practice of Physics.
When we draw a graph, we cathect the pattern
recognition skills of our visual cortex, a large
region of the brain devoted mainly to forming
conceptual models of the “meaning” of visual
stimuli arriving through the optic nerve. This
is the part that learned to tell the difference
between a leaf fluttering in the breeze and the
tip of a leopard’s tail flicking in anticipation; it
performs such pattern recognition without our
conscious intervention, and thus falls into the
“intuitive” realm of mental functions. It is fan-
tastically powerful, yet not entirely reliable (re-
call the many sorts of “optical illusions” you
have seen).

The mere fact that many (not all) physicists
like to display their results in graphical form
offers a hint of our preferred procedure for hy-
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Figure 1.1 A typical graph of y(x) [read “y as
a function of x”].

pothesis formation (Karl Popper’s conjectures).
Namely, the data are “massaged” [not the same
as “fudged” — massaging is strictly legitimate
and all the steps are required to be explained
clearly] until they can be plotted on a graph in
a form that “speaks for itself” — i.e. that ex-
cites the strongest pattern-recognition circuit in
the part of our visual cortex that we use on sci-
ence — namely, the straight line. Then the au-
thor/speaker can enlist the collaboration of the
audience in forming the hypothesis that there
is a linear relationship between the two “mas-
saged” variables.

For a simple example, imagine that a force F
actually varies inversely with the square of dis-
tance r: F (r) = k/r2 with k some appropriate
constant. A graph of measured values of F vs. r
will not be very informative to the eye except to
show that, yes, F sure gets smaller fast as r in-
creases. But if the ingenious experimenter dis-
covers by hook or by crook that a plot of F vs.

1/r2 (or 1/F vs. r2 or
√

F vs. 1/r or. . . ) comes
out looking like a straight line, you can be sure
that the data will be presented in that form in
the ensuing talk or paper. The rigourous valid-
ity of this technique may be questionable, but
it works great.

You may have perceived an
alarmingly liberal use of algebra
(or at least algebraic notation) in
this last section. I have “pulled
no punches” here, showing the
“proper” Physics notation for func-
tions and derivatives right at the be-
ginning, for several reasons. First
is simple intellectual honesty: this
is the mathematical notation used
in Physics; why pretend other-
wise? Eventually you want to be
able to translate this notation into
your own favourite representation
(words, graphs, whatever) so why
not start getting used to it as soon
as possible? Second, this is a sort
of “implosion therapy” whereby I
treat any math phobias by satu-
rating the fear response: once you
know it can’t get any worse, it starts
getting better. Be advised that we
will spend the next few chapters (off
and on) getting used to algebraic
representations and their graphical
counterparts.
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Chapter 2

Basic Math Topics

2.1 Arithmetic

We have already dwelt upon the formalism
of Number Systems in the previous Chapter,
where we reminded ourselves that just counting
to ten on paper involves a rather sophisticated
and elaborate representational scheme that we
all learned as children and which is now tacit in
our thought processes until we go to the trou-
ble of dismantling it and considering possible
alternatives.

Arithmetic is the basic algebra of Numbers and
builds upon our tacit understanding of their
conventional representation. However, it would
be emphatically wrong to claim that, “Arith-
metic is made up of Numbers, so there is noth-
ing to Arithmetic but Numbers.” Obviously
Arithmetic treats a new level of understanding
of the properties of (and the relationships be-
tween) Numbers — something like the Frank
Lloyd Wright house that was not there in the
bricks and mortar of which it is built.1

We learn Arithmetic at two levels: the actual
level (“If I have two apples and I get three more
apples, then I have five apples, as long as noth-
ing happens to the first two in the meantime.”)
and the symbolic level (“2 + 3 = 5”). The for-
mer level is of course both concrete (as in all
the examples) and profoundly abstract in the

1 One can argue that in fact the conceptual framework
of Number Systems implicitly contains intimations of Arith-
metic, but this is like arguing that the properties of atoms
are implicit in the behaviour of electrons; let’s leave that
debate for later.

sense that one learns to understand that two
of anything added to three of the same sort of
thing will make five of them, independent of
words or numerical symbols. The latter level is
more for communication (remember, we have to
adopt and adapt to a notational convention in
order to express our ideas to each other) and for
technology — i.e. for developing manipulative
tricks to use on Numbers.

Skipping over the simple Arithmetic I assume
we all know tacitly, I will use long division
as an example of the conventional technology
of Arithmetic.2 We all know (today) how to
do long division. But can we explain how it
works? Suppose you were Cultural Attaché to
Alpha Centauri IV, where the local intelligent
life forms were interested in Earth Math and
had just mastered our ridiculous decimal nota-
tion. They understand addition, subtraction,
multiplication and division perfectly and have
developed the necessary skills in Earth-style

2No doubt the useful lifetime of this example is rapidly
dwindling, since many students now learn to divide by
punching the right buttons on a hand calculator, much to
the dismay of their aged instructors. I am not so upset
by this — one arithmetic manipulation technology is merely
supplanting another — except that “long division” is in prin-

ciple completely understood by its user, whereas few people
have any idea what actually goes on inside an electronic
calculator. This dependence on mysterious and unfamil-
iar technology may have unpleasant long-term psychological
impact, perhaps making us all more willing to accept the
judgements of authority figures without question. . . . But
in Mathematics, as long as you have once satisfied yourself
completely that some technology is indeed trustworthy and
reliable, of course you should make use of it! (Do you know

that your calculator always gives the right answers. . . ?)
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gimmicks (carrying, etc.) for the first three, but
they have no idea how we actually go about di-
viding one multi-digit number by another. Try
to imagine how you would explain the long divi-
sion trick. Probably by example, right? That’s
how most of us learn it. Our teacher works
out beaucoup examples on the blackboard and
then gives us beaucoup homework problems to
work out ourselves, hopefully arrayed in a se-
quence that sort of leads us through the process
of induction (not a part of Logic, according to
Karl Popper, but an important part of human
thinking nonetheless) to a bootstrap grasp of
the method. Nowhere, in most cases, does any-
one give us a full rigourous derivation of the
method, yet we all have a deep confidence in
its universality and reliability — which, I has-
ten to add, I’m sure can be rigourously derived
if we take the trouble. Still, we are awfully
trusting. . . .

The point is, as Michael Polanyi has said, “We
know more than we can tell.” The tacit knowl-
edge of Arithmetic that you possess represents
an enormous store of

• sophisticated abstract understanding

• arbitrary conventions of representational
notation

• manipulative technology

that have already coloured your thought pro-
cesses in ways that neither you nor anyone else
will ever be able to fathom. We are all brain-
washed by our Grammar school teachers!3 This
little book, if it is of any use whatsoever, will
have the same sort of effect: it will “warp”

3It occurs to me that Grammar school is called Gram-
mar school because it is where we learn grammar — i.e. the
conventional representations for things, ideas and the rela-
tionships between them, whether in verbal language, written
language, mathematics, politics, science or social behaviour.
These are usually called “rules” or even (when a particularly
heavy-handed emphasis is desired) “laws” of notation or ma-
nipulation or behaviour. We also pick up a little technology,
which in this context begins to look pretty innocuous!

your thinking forever in ways that cannot be
anticipated. So if you are worried about being
“contaminated” by Scientism (or whatever you
choose to label the paradigms of the scientific
community) then stop reading immediately be-
fore it’s too late! (While you’re at it, there are
a few other activities you will also have to give
up. . . .)

2.2 Geometry

In Grammar school we also learn to recognize
(and learn the grammar of) geometrical shapes.
Thus the “Right Hemisphere”4 also gets early
training. Later on, in High School, we get a bit
more insight into the intrinsic properties of Eu-
clidean space (i.e. the “flat” kind we normally
seem to be occupying).

2.2.1 Areas of Plane Figures

• The area A of a square is the square of
the length ℓ of any one of its 4 sides:
A = ℓ 2. In fact the question of which
word “square” is named after which is a
sort of chicken vs. egg problem for which
there is no logical resolution (even though
there may be an historically correct ety-
mological answer).

• The area A of a rectangle (a bit more gen-
eral) is the product of the length b of a
long side (“base”) and the length h of a
short side (“height”): A = bh.

• The area A of a triangle with base b and
height h (measured from the opposite ver-
tex down perpendicular to the base) is
A = 1

2
bh. (This is easy to see for a right

triangle, which is obviously half a rectan-
gle, sliced down the diagonal. You may

4 The idea that the brain’s Left Hemisphere does rational
analysis and its Right Hemisphere does intuitive leaps is now
considered an incorrect generalization, but I’ll use it anyway,
just for fun.
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want to convice yourself that it is also true
for “any old triangle.”)

• The area A of a circle of radius r is given
by A = πr2 where π is a number, ap-
proximately 3.1415978 [it takes an infinite
number of decimal digits to get it exactly;
this is because π is an irrational number5

— i.e. one which cannot be expressed as
a ratio of integers], defined in turn to be
the ratio of the circumference ℓ of a circle
to its diameter d: π = ℓ/d or ℓ = πd.

Were you able to visualize all these simple plane
(2-dimensional) shapes “in your head” without
resort to actual drawings? If so, you may have
a “knack” for geometry, if not Geometry. If
it was confusing without the pictures, they are
provided in Fig. 2.1 with the appropriate labels.

Figure 2.1 A few plane geometrical shapes,
with labels.

2.2.2 The Pythagorean Theorem:

The square of the length of the hy-
potenuse of a right triangle is equal to
the sum of the squares of the lengths
of the two shorter sides.

I.e. for the Left Hemisphere we have

c2 = a2 + b2 (1)

5I do not know the proof that π is an irrational number,
but I have been told by Mathematicians that it is, and I
have never had any cause to question them. In principle,
this is reprehensible (shame on me!) but I am not aware of
any practical consequences one way or the other; if anyone
knows one, please set me straight!

where a, b and c are defined by the labelled pic-
ture of a right triangle, shown in Fig. 2.2, which
cathects the Right Hemisphere and gets the two
working together.

Figure 2.2 A right triangle with hypotenuse
c and short sides a and b. The right angle is
indicated and the angle θ is defined as shown.
Note that a is always the (length of the) side
“across from” the vertex forming the angle θ.
This convention is essential in the trigonometric
definitions to follow.

2.2.3 Solid Geometry

Most of us learned how to calculate the vol-
umes of various solid or 3-dimensional objects
even before we were told that the name for
the system of conventions and “laws” govern-
ing such topics was “Solid Geometry.” For in-
stance, there is the cube, whose volume V is the
cube (same chicken/egg problem again) of the
length ℓ of one of its 8 edges: V = ℓ 3. Similarly,
a cylinder has a volume V equal to the prod-
uct of its cross-sectional area A and its height
h perpendicular to the base: V = Ah. Note
that this works just as well for any shape of
the cross-section — square, rectangle, triangle,
circle or even some irregular oddball shape.

If you were fairly advanced in High School
math, you probably learned a bit more ab-
stract or general stuff about solids. But the
really deep understanding that (I hope) you
brought away with you was an awareness of the
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qualitative difference between 1-dimensional
lengths, 2-dimensional areas and 3-dimensional
volumes. This awareness can be amazingly
powerful even without any “hairy Math details”
if you consider what it implies about how these
things change with scale.6

Figure 2.3 Triangular, square and circular
right cylinders.

2.3 Trigonometry

Trigonometry is a specialized branch of Geome-
try in which we pay excruciatingly close atten-
tion to the properties of triangles, in particu-
lar right triangles. Referring to Fig. 2.2 again,
we define the sine of the angle θ (abbreviated
sin θ) to be the ratio of the “far side” a to the
hypotenuse c and the cosine of θ (abbreviated
cos θ) to be the ratio of the “near side” b to the
hypoteneuse c:

sin θ ≡ a

c
cos θ ≡ b

c
(2)

6For instance, it explains easily why the largest animals
on Earth have to live in the sea, why insects can lift so
many times their own weight, why birds have an easier time
flying than airliners, why bubbles form in beer and how the
American nuclear power industry got off to a bad start. All
in due time. . . .

The other trigonometric functions can easily be
defined in terms of the sin and cos:

tangent: tan θ ≡ a

b
=

sin θ

cos θ

cotangent: cot θ ≡ b

a
=

sin θ

cos θ
=

1

tan θ

secant: sec θ ≡ c

b
=

1

cos θ

cosecant: csc θ ≡ c

a
=

1

sin θ

For the life of me, I can’t imagine why any-
one invented the cotangent, the secant and the
cosecant — as far as I can tell, they are totally
superfluous baggage that just slows you down
in any actual calculations. Forget them. [Ah-
hhh. I have always wanted to say that! Of
course you are wise enough to take my advice
with a grain of salt, especially is you want to
appear clever to Mathematicians. . . .]

The sine and cosine of θ are our trigonometric
workhorses. In no time at all, I will be wanting
to think of them as functions — i.e. when you
see “cos θ” I will want you to say, “cosine of
theta” and think of it as cos(θ) the same way
you think of y(x). Whether as simple ratios or
as functions, they have several delightful prop-
erties, the most important of which is obvious
from the Pythagorean Theorem:7

cos2 θ + sin2 θ = 1 (3)

where the notation sin2 θ means the square of
sin θ — i.e. sin2 θ ≡ (sin θ) × (sin θ) — and
similarly for cos θ. This convention is adopted
to avoid confusion, believe it or not. If we wrote
“sin θ 2” it would be impossible to know for sure
whether we meant sin(θ2) or (sin θ)2; we could
always put parentheses in the right places to

7Surely you aren’t going to take my word for this! Con-

vince yourself that this formula is really true!
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remove the ambiguity, but in this case there
is a convention instead. (People always have
conventions when they are tired of thinking!)

I will need other trigonometric identities later
on, but they can wait — why introduce math
until we need it? [I have made an obvious
exception in this Chapter as a whole only
to “jump start” your Mathematical language
(re)training.]
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Chapter 3

Easy Algebra

Okay, now that you’ve read the first chapter
on Symbols and Abstractions, we’re ready to
dive into Algebra. I’m going to pretend you
are a bright 10-year-old who has never heard of
Algebra, since I used exactly this approach on
my son when he was 8.1

3.1 Adding and Subtracting

I’m thinking of a number, and its name is “x”.
If x + 1 = 3 then what is x? (That is, if we
add 1 to x we get 3. What number is one
less than three?) Write your answer like this:

x = 2 (That is, x is two!)

OK, now I’m thinking of another number, and
its name is “y”. If y + 2 = 4, what is y?

y =

Now I’m thinking of a number whose name is
“A”. If A− 1 = 2, what is A? (That is, if we
subtract 1 from A we get 2. What number

is one more than two?) A =

I’ll stop saying, “I’m thinking of a number, and
its name is. . . ” now. Any symbol I use like
x or y or A or z or anything that is
obviously not a word in a sentence will be meant
as a “symbol” for an unknown number that you
are supposed to figure out.

If Z − 3 = 2, what is Z?

1 Don’t be insulted! He now has a Mathematics degree
and is working as a Data Scientist, so I reckon something
like this works.

If x + 4 = 9, what is x?

You can do lots of these by yourself. It gets
easy fast, if it’s not already.

The next step (when I am doing this in person)
is to ask, “How do you know?” The first an-
swer is usually, “I don’t know. It’s obvious.” I
say, “Yes it is, but suppose you were trying to
explain it to someone who didn’t believe you:
how would you prove you were right?” For this
we need to agree on some rules.

The “algebra rule” for doing this kind of prob-
lem is that you can add or subtract the same
thing from both sides of an equation and the
equation is still true. (An equation is one of
these things with an “equal sign” [ = ] in the
middle, like x + 4 = 9.) Go back and check the
problems you have done so far and notice that
you can get the answer just by adding or sub-
tracting the right number from both sides. For
instance, in the first problem (x + 1 = 3) we
subtract 1 from both sides (x + 1− 1 = 3− 1)
and the +1 and −1 on the left side cancel each
other out so that both disappear and we have
(x = 3 − 1). But 3 − 1 = 2 on the right side,
so we have (x = 2) which is the answer! You
probably can solve these easily “by inspection”
without worring about the algebra rule, but it
is interesting to know another way.

This works just as well for other symbols as it
does for numbers: If x + y = y − 1, I can
subtract y from both sides to get x = −1 .
Simple, eh?

Here’s an example of how you would use algebra
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to solve a practical problem: if you have ten
video games after just buying three, how many
did you have before you bought the new ones?
Let the answer be x. Then the equation that
describes what happened is x + 3 = 10, and
the solution is x = 7 .

3.2 Multiplying and Dividing

Now let’s do some multiplying and dividing.
The algebra convention for multiplication is
that any two symbols placed side by side with
nothing in between are deemed to be multiplied
together.2 Another convention is that numbers
go to the left of algebraic symbols. (Thus x2 is
bad notation, while 2x is two times x.)

Suppose 2x = 4. What is x? (That is, two
times x is four. What number do we multiply

by 2 to get 4?)

If 3y = 9, what is y?

If 5A = 20, what is A?

The trick here (other than just figuring it out
by thinking, “Hmm, what number do I have to
multiply by 5 to get 20?”) is the algebra rule
that you can divide both sides of an equation by
the same thing and the resulting equation is still
true. So if I have 2x = 4, I can divide both
sides by 2 which cancels the 2 multiplying
x on the left side (leaving just x) and turns
the 4 into a 2 on the right side: x = 2, the
answer!

This also works fine for symbols as well as num-
bers: Suppose ax+ b = b+a. Then first I sub-
tract b from both sides, to get ax = a. (We
always try to use single characters for symbols,
so that “ax” means a times x or the product
of a and x.) From ax = a we get the answer
by dividing both sides by a, which cancels the

2 Note that this is not the convention in computer
programming, partly because many variables have multi-
character names, but also because the compiler needs to see
some kind of explicit instruction for an operation.

a multiplying x on the left side and turns the
a on the right side into a 1: x = 1 is the
answer!

Note that anything3 divided by itself is 1, as
in a/a = 1. (The way we write “B divided by
C” is B/C, just as for numbers, like 4/2 = 2.)

Try one for yourself: If 2XY +1 = 2Y +1, what
is X? (This is a little harder because X is
multiplied by both the number 2 and the sym-
bol Y , but you can do it the same way, either
by dividing by 2 and then by Y or by dividing

by 2Y all at once.)

Note that we don’t have to know what Y is !
It “drops out” of this equation! (The answer is
X = 1 again. Did you get it right?) There are
other cases where it won’t drop out and you get
an answer for X “in terms of Y ”. An example
would be xY = 1, for which x = 1/Y is
the answer for x in terms of Y . (We could
also “solve” the equation for Y in terms of
x: Y = 1/x.)

The same thing works backwards, for equations
like X/2 = 3. There the rule is that you can
multiply both sides of an equation by the same
thing and the resultant equation is still true. In
this case we multiply both sides by 2. This
cancels the /2 on the left side and turns the
3 on the right side into a 6. The answer is
X = 6 , which you could probably get just as
easily by inspection (“Half of what is 3?”), but
again it is nice to know the “rigorous” way of
doing it, especially if you want to solve a more
difficult equation like

(X − 1)

3
= 1

where the parentheses “(. . . )” indicate that
what is inside them (X − 1) is all divided
by 3.

Can you do this one? First multiply both sides
by 3, then add 1 to both sides. What is your

answer?

3 (other than zero)
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How about this? If (aX + b)/2 = a, what is

X in terms of b?

Here’s how this might be applied to another
simple practical problem: Suppose your friend
put some money in the bank at 10% interest.
This means that for every dollar he gives the
bank to keep for one year, at the end of the
year the bank gives him back the dollar plus
ten cents “interest” on his dollar. Let’s suppose
that, at the end of the year, the bank gives him
$220. How much did he “deposit” [put in the
bank] originally? Let’s let D be the number of
dollars he deposited a year ago. For each dollar
he put in, he gets back one dollar plus 1/10 of
another dollar. But there are D dollars to start
with, so we must have D(1+1/10) = 220. Now
we can play a little trick with 1 + 1/10: Since
1 = 10/10 [any number divided by itself is
1], 1 + 1/10 = 10/10 + 1/10 = 11/10 and
so our equation reads 11D/10 = 220. Now
we multiply both sides by 10 to get 11D =
2200 and then divide both sides by 11 to get
D = 200 , which is the answer. Your friend put
$200 in the bank a year ago!

3.3 Square Roots

The square of a number means the number mul-
tiplied by itself. It is written with a little 2 just
above and to the right, like this: 32 = 3×3 = 9.
(Three threes are nine, right?) The reason it is
called the square is because that is how we cal-
culate the area [size] of a square, flat surface
from the length of a side. The area A is equal
to the square of the length ℓ of a side:

A = ℓ × ℓ = ℓ 2

You can see this easily by looking at a picture
of four square pizzas of different sizes.4

Suppose we want to order one of these square
pizzas big enough to feed five kids who each

4 Round pizzas obey a similar rule, but it is easier to do
the arithmetic for square ones. This is probably why the
people who sell pizzas like to sell round ones, to make it
harder to figure out how much you are really getting!

Figure 3.1 Four square pizzas. The first, on
the left, is one inch on a side, making one small
bite. The second is two inches on a side, making
four small bites. How many bites in the third,

which is three inches on a side?

How about the last one, on the right, which is

four inches on a side?

want 20 bites. How long should its sides be,
if one square inch makes a bite? Well, if each
side is ℓ inches long then the total area is
ℓ 2 square inches, or ℓ 2 bites. We can make
up an equation: ℓ 2 = 5 × 20 = 100. What
number multiplied by itself is 100? The answer

is ℓ = 10 — the pizza should be ten inches on
a side.

3.4 Positive and Negative Roots

Suppose we have the equation x2 = 4 and we
want to know what x is. The equation tells
us that x × x = 4. What number multiplied
by itself makes 4? Well, 2 × 2 = 4, so x =
2 is one answer. But there is another one!
Suppose you multiply (−2) × (−2). the rules
about multiplying positive numbers (like +2)
and negative numbers (like −2) are as follows:

• A positive times a positive is a positive.
[+ × + = +]

• A positive times a negative is a negative.
[+ ×− = −]

• A negative times a positive is a negative.
[−× + = −]
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• A negative times a negative is a positive.
[−×− = +]

Thus (−2)× (−2) = (+4) [the square of (−2)
is 4] so there are two correct solutions to the
equation x2 = 4, x = 2 and x = −2. A
short way of writing this is to put the “+” and
“−” signs together into a “±” [“plus-or-minus”]

sign: x = ±2 which reads, “x is plus or minus
two.”

Now you try one: if Y 2 = 9, what is Y ?

How about this: if A2 = 16, what is A?

Now let’s put together all we have learned so

far. If x2 − 1 = 15, what is x?

What if 2x2 = 8? [Note that 2x2 means

2 × (x2), not (2 × x)2.]

There is a special name for “the number which
gives a when you multiply it by itself:” it is
called the square root of a, and it has a special
symbol too:

√
a. Thus

√
a ×√

a = a and of

course
√

x2 = x. So what we are doing in
these problems is using the algebra rule that
says you can take the square root of both sides
of an equation and the resultant equation is still
true.

This will also work on a number whose square
root is not an integer. [Integers are whole num-
bers like 1, 2, 3, 4, . . . , as opposed to fractions or
“irrational” numbers, which we will see later.]
For instance,

√
25 = 5, but

√
2 is not an inte-

ger. This does not mean it is not a real number,
but it is a very complicated one. In “decimal”
notation it is

√
2 = 1.414213562373 . . . , where

the “ . . . ” represents an infinite number of sig-
nificant decimal places. This is what we call
an irrational number, but it is still a perfectly
good number. If you run across it, just leave it
in the form

√
2. That is as good an answer as

any. Same for
√

3,
√

5,
√

7 and so on.

Thus if x2 = 3, then x = ±
√

3 . [Note that
we still have to remember those ± signs!]

You try one: if x2 = b, what is x in terms of

b?

Now try this: if a x2 − b = 0, what is x in

terms of a and b?

3.5 Quadratic Equations

A quadratic equation “in x” means one with
x2 and maybe x in it, but no “higher powers”
of x like x × x × x = x3. For instance,
x2 − 1 = 0 is a quadratic equation in x but
3x − 1 = 8 is not. A quadratic equation in
x must contain x2 (possibly multiplied or
divided by some number) but it may or may not
include x or some constant. Let’s look at some
of the different kinds of quadratic equations in
x.

The first kind we have already seen. These are
quadratic equations that have x2 and some
constant (like 3 or b) but no term in x. All
the examples so far are of this form. A trivial
but important case is x2 = 0, for which the
solution is x = 0 . [Note that we don’t have to
say ±0 because +0 and −0 are the same
thing!]

The second kind has a term proportional to x,
as in 3x2 − 6x = 0. First we can divide both
sides by 3 to get x2 − 2x = 0. [Zero multi-
plied or divided by anything is still zero!] This
“simplifies” the equation a bit. Then we ask
ourselves the question, “How can this equation
be true?” [That is, for what values of x is this
equation correct?] Well, there are two ways:
first, x can be zero. Then both of the terms on
the left side are zero, so they add up to zero and
the equation reads 0 = 0, which is certainly
true. This is often called the “trivial solution,”
x = 0 , because it is not very interesting; but it
is a “true” solution anyway. To see the other so-
lution, suppose we add 2x to both sides of the
latest equation, to get x2 = 2x. We can then
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divide both sides by x to get x = 2 , which
is the second solution. [x2/x = (x× x)/x = x.]
Note that this time there is no ± sign because
we are never taking a square root! But there
are two answers, just as before.

We call the solutions to a quadratic equation
the “roots” of the equation, to suggest the sim-
ilarity to square roots. You try a few:

What are the roots of the equation x2 −x = 0?

x = and x =

What are the roots of the equation 5y2 = 25y?

y = and y =

How about the equation ax2 − bx = 0?

and

The most complicated type of quadratic equa-
tion in x is one that has a term proportional to
x2, another term proportional to x and a third
nonzero constant term. An example would be
x2−2x+1 = 0. [When they get complicated, we
like to put all the nonzero terms on the left side
of the equation and keep a zero on the right.]
The trick to solving an equation like this is to
see if it can be written as the product of two
pairs of terms. In this case,

(x − 1) × (x − 1) = x × (x − 1) − 1 × (x − 1)
= x2 − x − x + 1 = x2 − 2x + 1

which means that our original equation is the
same as (x− 1)(x− 1) = 0. [We can leave out
the × (“times”) symbol when we multiply to-
gether two things in parentheses: (. . . )(. . . ) =
(. . . ) × (. . . ).] So the equation will be true

only if (x − 1) = 0 or if x = 1 . Note that
x = −1 is not a right answer in this case!

A tougher example would be this:

x2 − 3x + 2 = 0

This has two answers; can you find them?

x = and x =

A really tough example would be

2y2 − 5y + 2 = 0

This also has two answers; can you find them?

and

Unlike the other kinds of algebra problems we
have done before, these kind rely on “seeing
the answer” or making a good guess. There is
nothing wrong with this — seeing the answer is
always the quickest and easiest way to solve a
problem, as long as your guess is right ! Some-
times the best approach to a problem is to make
a guess and then check it to see if it works; you
can do this a few times before it gets to be a
waste of time. But if after a while your guesses
aren’t working, you need a more rigourous ap-
proach to the problem. Fortunately, this kind
of problem has a general solution, which is a
little complicated, but if you memorize it you
can always solve any quadratic equation just by
“plugging in the parameters” that make it spe-
cial. We will derive this below, but for now let’s
think about some more pieces to the puzzle.

3.6 Imaginary Numbers

OK, now you have solved problems where the
answer was an integer (like 1 or 0 or −7)
and problems where the answer was the ratio of
two integers [the ratio of two things means one
divided by the other] — which we call a “ratio-
nal number” because it seems so reasonable —
and you have even solved problems where the
answer was an “irrational number” [one that
cannot be expressed as the ratio of any two in-
tegers], like

√
2. All these different kinds of

numbers are real numbers, even if they seem
pretty unusual, because you can do arithmetic
with them in the usual way. You have also seen
that symbols like A or b can be used in an-
swers just as if they were numbers, which lets
you solve a whole bunch of different problems
“formally” at the same time. Now it’s time to
tackle something really weird.

A long time ago, someone was telling her friends
about this algebra stuff, showing that both
x = +1 and x = −1 were solutions to the
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equation x2 = 1, and someone said, “What
about x2 = −1? What would be the solu-
tion to that equation?” Well, all the other
mathematicians laughed and said, “Boy, are
you dumb! There isn’t any real number that
gives −1 when you multiply it by itself!” The
first mathematician thought about it for a mo-
ment and said, “That is true, but wouldn’t it
be nice if there were such a number? You could
solve any quadratic equation then!”

Her friends all laughed again and said, “Boy,
do you have a great imagination!” And as
they walked off laughing, she thought to her-
self, “OK, maybe I do; why not call the square
root of −1 an imaginary number? I can even
give it a special name “i” to signify that it is
imaginary!” And she started figuring out how
i would behave.

[This isn’t really how i was invented, but it
makes a good story!]

Anyway, if we have a solution to the equa-
tion x2 = −1, then we can indeed solve any
quadratic equation. For instance, because the
square root of a product is the product of the
square roots, like
√

36 =
√

4 × 9 =
√

4 ×
√

9 = ±2 ×±3 = ±6

we can separate out i like this:

√
−4 =

√

4 × (−1) =
√

4 ×
√
−1 = ±2 i

where 2 i means 2 × i just as for any other
symbol like 2x ≡ 2 × x. [The symbol “ ≡ ”
is used as shorthand for “. . . means the same
thing as. . . .”]

Let’s try a few. If x2 = −9, what is x?

x = ±

If y2 = −16, what is y? y =

What if z2 − 1 = −37?

Great! Now (with a lot of work) we can actually
write down the answer to all possible quadratic
equations in one formula !

3.7 The Quadratic Theorem

The most general possible quadratic equation
(after we have put all the terms on the lefthand
side) looks like this:

a x2 + b x + c = 0

where a, b and c are symbols representing
some numbers that go into the equation. For
instance, 4x2 + 3x + 1 = 0 would be a case
where a = 4, b = 3 and c = 1. For another
example, x2−1 = 0, would be a case with a =
1, b = 0 and c = −1. So if we can “solve” this
equation for x in terms of a, b and c, then
we will be able to quickly convert the result
into the specific solution for whatever quadratic
equation we want to solve, just by substituting
a, b and c into the result! Let’s try.

First let’s divide through by a to get

x2 +
b

a
x +

c

a
= 0

Next we subtract c
a

from both sides to get

x2 +
b

a
x = − c

a

Now we play an important trick known as
“completing the square:” consider the equation
(x + d)2 = x2 + 2dx + d 2. If we subtract
d 2 from both sides we get (x + d)2 − d 2 =
x2 + 2dx, which looks a lot like the left side
of our previous equation, if only 2d were the
same thing as b

a
— that is, if only d = b

2a
.

Well, let’s put that in!

x2 +
b

a
x =

(

x +
b

2a

)2

−
(

b

2a

)2

But the right side of this equation must be
equal to the right side of the old equation:

(

x +
b

2a

)2

−
(

b

2a

)2

= − c

a
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and if we add
(

b
2a

)2
to both sides we get

(

x +
b

2a

)2

=

(

b

2a

)2

− c

a
.

Now we can take the square root of both sides
[remembering our ± sign] and get

x +
b

2a
= ±

√

(

b

2a

)2

− c

a

— from both sides of which we subtract b
2a

to
get

x = − b

2a
±

√

(

b

2a

)2

− c

a
,

which is the answer, but still sort of messy. We
can simplify a little by noting that

c

a
=

4ac

4a2
and

(

b

2a

)2

=
b2

4a2
,

so

(

b

2a

)2

− c

a
=

b2 − 4ac

4a2

and therefore
√

(

b

2a

)2

− c

a
=

√
b2 − 4ac√

4a2
=

√
b2 − 4ac

2a

so that our answer now reads

x = − b

2a
±

√
b2 − 4ac

2a

or just

x =
−b ±

√
b2 − 4ac

2a

which is known as The Quadratic Theo-

rem.

This formula, messy as it may look, is worth re-
membering, because you can use it to solve any
quadratic equation! First you put your equa-
tion into the form ax2 + bx + c = 0 and figure
out what the values of a, b and c are. then

you plug those values of a, b and c into
the Quadratic Theorem and out pops the
answer!

Let’s do an example. Suppose we want to solve
2y2 −5y +2 = 0 for y. This is in the standard
form with a = 2, b = −5 and c = 2. The
answer is thus

y =
+5 ±

√
25 − 4 × 2 × 2

2 × 2

=
5 ±

√
25 − 16

4
=

5 ±
√

9

4

=
5 ± 3

4

so there are two answers, y = 8
4

= 2 and

y = 2
4

= 1
2

.

You can go back over all the examples men-
tioned so far and show that each one is a case
of the Quadratic Theorem for some values
of a, b and c.

Go ahead and think up lots of cases on your
own! As long as you put them in the standard
form ax2 + bx + c = 0, you can always get the
answer!

Note that if 4ac is larger than b2 you will have
imaginary numbers in the answer — that makes
it a “complex number”.
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Chapter 4

“Formal” Algebra

Now that you’ve seen a highly informal intro-
duction to most of Algebra, let’s cover exactly
the same material the way you might see it from
someone with a more pedantic respect for the
subject. . . .

In Algebra we learn to “solve” equations. What
does that mean? Usually it means that we
are to take a (relatively) complicated equation
that has the “unknown” (often, but not always,
called “x”) scattered all over the place and turn
it into a (relatively) simple equation with x on
the left-hand side by itself and a bunch of other
symbols (not including x) on the right-hand
side of the “=” sign. Obviously this particu-
lar format is “just” a convention. But the idea
is independent of the representation: we want
to “solve” for the “unknown” quantity, in this
case x, in terms of whatever else is in the equa-
tion: numbers like 1, 2, 3. . . or named constants
like a, b, c. . . .

4.1 Operations and Notation

Most algebra involves only a few simple opera-
tions:

• Equality: If we write a = b we are
saying that a and b are the same kind of
thing and are exactly the same size.

• Equivalence: If we write a ≡ b, we are
saying that a and b are the same thing.
This may sound like the same thing as
equality, but it’s actually much stronger.

Below it will be applied to equivalent no-
tations.1

• Addition: If a and b are entities of the
same type (usually just numbers), we can
add them together as a + b to get a new
number or entity of the same type, called
their sum. Example: 1 + 2 = 3.

• Subtraction: By the same token, we
can subtract b from a to get their dif-

ference, a − b. Example: 3 − 1 = 2.

• Multiplication: The product of a and
b is written as either a × b or a · b or just
ab, with the understanding that each en-
tity is represented by a single character.
Example: 2 × 3 = 6.

• Division: Just as subtraction is sort of
the opposite of addition, division (written
a
b

or a/b or a ÷ b) is sort of the opposite

of multiplication. Example: 6
2
≡ 6/2 ≡

6 ÷ 2 = 3.

• Powers: We can multiply a by itself n
times (also called “raising a to the power

1 The above operations are described using formal Math-
ematical notation and symbols that are easy to write long-
hand or typeset using LATEX, but are notoriously difficult
to express neatly in HTML or in the restricted ASCII char-
acter set used by computers. Most computer programming
languages have ASCII conventions equivalent to the Mathe-
matical symbols and operations. For instance, equivalence

(a ≡ b) is expressed A == B in most programming languages;
multiplication (a × b) is written A*B; division is simply A/B;
powers are almost universally expressed as A**N and roots

as B**(1/N). The Algebra tutorial is (of necessity) expressed
in these forms.

http://jick.net/tut/Algebra/Algebra.html
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n) to get an. Example: 25 = 16.

• Roots: In something like the opposite
of raising a to the power n, we can find
the nth root of b, written n

√
b ≡ b1/n. Ex-

ample: 161/5 ≡ 5
√

16 = 2.

4.2 LAWS

There are a few basic rules we use to “solve”
problems in Algebra; these are called “laws” by
Mathematicians who want to emphasize that
you are not to question their content or repre-
sentation.

• Definition of Zero:

a − a = 0 (1)

• Negative Values: Along with the def-
inition of zero, the subtraction operation
allows us to assign a negative value to
the expression −a taken as a separate en-
tity. That means we can think of a − a
as a + (−a); i.e. if we add −a to a we
get zero again. Note that −(−a) = a: in
mathematics, a double negative really is

positive. Thus if a itself has a negative
value, −a is positive, and a − a = 0 still
holds.2

• Definition of Unity:

a

a
= 1 (2)

• Commutative Laws:3

a + b = b + a (3)

and ab = ba (4)
2 Does this seem a bit circular? Right you are! It is!
3Note that division is not commutative: a/b 6= b/a! Nei-

ther is subtraction, for that matter: a−b 6= b−a. The Com-
mutative Law for multiplication, ab = ba, holds for ordinary
numbers (real and imaginary) but it does not necessarily
hold for all the mathematical “things” for which some form
of “multiplication” is defined! For instance, the group of ro-

tation operators in 3-dimensional space is not commutative
— think about making two successive rotations of a rigid ob-
ject about perpendicular axes in different order and you will
see that the final result is different! This seemingly obscure
property turns out to have fundamental significance.

• Distributive Law:

a(b + c) = ab + ac (5)

• Sum or Difference of Two Equa-

tions: Adding (or subtracting) the same
thing from both sides of an equation gives
a new equation that is still OK.

+ (
x

x

−a =
a =

=

b
a
b + a

)
(6)

− (
x

x

+c =
c =

=

d
c
d − c

)
(7)

• Product or Ratio of Two Equations:

Multiplying (or dividing) both sides of an
equation by the same thing also gives a
new equation that is still OK.

× (
x/a =

a =
x =

b
a
ab

)
(8)

÷ (
cx =
c =
x =

d
c

d/c
)

(9)

• Imaginary and Complex Numbers:

So far we have limited ourselves to the
real numbers. In that domain,

√
−1 is

undefined: there is no real number that
will yield −1 when squared. One imag-
ines a particularly persistent student in-
sisting, “But what if there were such a
number?” The teacher would grumble,
“You certainly have an active imagina-
tion!” And the student would say, ‘Fine.
Let’s call it an imaginary number, and
call it “i” for short!’ The inclusion of mul-
tiples of i more than doubles the domain
of algebra, since it means we can also have
combinations of real and imaginary num-
bers, z = a+ib. These are called complex
numbers.
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These “laws” may seem pretty trivial (espe-
cially the first two) but they define the rules
of Algebra whereby we learn to manipulate the
form of equations and “solve” Algebra “prob-
lems.” We quickly learn equivalent shortcuts
like “moving a factor from the bottom of the
left-hand-side [often abbreviated LHS] to the
top of the right-hand side [RHS]:”

x − a

b
= c + d ⇒ x − a = b(c + d) (10)

and so on; but each of these is just a well-
justified concatenation of several of the funda-
mental steps.

You may ask, “Why go to so much trouble
to express the obvious in such formal terms?”
Well, as usual the obvious is not necessarily
the truth. While the real, imaginary and com-
plex numbers may all obey these simple rules,
there are perfectly legitimate and useful fields
of “things” (usually some sort of operators)
that do not obey all these rules, as we may see
later. It is generally a good idea to be aware of
your own assumptions; we haven’t the time to
keep reexamining them constantly, so we try to
state them as plainly as we can and keep them
around for reference “just in case. . . .”

4.3 The Quadratic Theorem

“I’m thinking of a number, and its name is ‘x’
. . . ” So if

ax2 + bx + c = 0, (11)

what is x? Well, we can only say, “It depends.”
Namely, it depends on the values of a, b and c,
whatever they are. Let’s suppose the dimen-
sions of all these “parameters” are mutually
consistent4 so that the equation makes sense.
Then “it can be shown” (a classic phrase if

4In Mathematics we never worry about such things; all
our symbols represent pure numbers; but in Physics we usu-

ally have to express the value of some physical quantity in
units which make sense and are consistent with the units of
other physical quantities symbolized in the same equation!

there ever was one!) that the “answer” is gen-
erally5

x =
−b ±

√
b2 − 4ac

2a
(12)

This formula (and the preceding equation that
defines what we mean by a, b and c) is known as
the Quadratic Theorem, so called because
it offers “the answer” to any quadratic equa-
tion (i.e. one containing powers of x up to and
including x2). The power of such a general so-
lution is prodigious. (Work out a few examples!
There is a limited version implemented in the
Algebra tutorial.)

It also introduces an interesting new way of
looking at the relationship between x and
the parameters a, b and c that determine its
value(s). Having x all by itself on one side of
the equation and no x’s anywhere on the other
side is what we call a “solution” in Algebra.
Let’s make a compact version of this sort of
equation:

“I’m thinking of a number, and its name is ‘y’
. . . ” So if y = f(x), what is y? The answer
is again, “It depends!” [In this case, upon the
value of x and the detailed form of the function
f(x)] . . . and that leads us into a new subject:
Calculus!

5The ± symbol means that both signs (+ and −) should
represent legitimate answers.

http://jick.net/tut/Algebra/Algebra.html
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Chapter 5

Easy Calculus

In a stylistic sense, Algebra starts to become
Calculus when we write the preceding example,
y = x2, in the form

y(x) = x2

which we read as “y of x equals x squared.”
This is how we signal that we mean to think
of y as a function of x, and right away we are
leading into the terminology of Calculus. Recall
the final sections of the preceding Chapter.

However, Calculus really begins when we start
talking about the rate of change of y as x varies.

5.1 Rates of Change

One thing that is easy to “read off a graph” of
y(x) is the slope of the curve at any given point
x. Now, if y(x) is quite “curved” at the point of
interest, it may seem contradictory to speak of
its “slope,” a property of a straight line. How-
ever, it is easy to see that as long as the curve
is smooth it will always look like a straight line
under sufficiently high magnification. This is
illustrated in Fig. 5.1 for a typical y(x) by a
process of successive magnifications.

We can also prescribe an algebraic method for
calculating the slope, as illustrated in Fig. 5.2:
the definition of the “slope” is the ratio of the
increase in y to the increase in x on a van-
ishingly small interval. That is, when x goes
from its initial value x0 to a slightly larger value
x0+∆x, the curve carries y from its initial value
y0 = y(x0) to a new value y0+∆y = y(x0+∆x),

Figure 5.1 A series of “zooms” on a segment of
the curve y(x) showing how the curved line begins
to look more and more like a straight line under
higher and higher magnification.

and the slope of the curve at x = x0 is given
by ∆y/∆x for a vanishingly small ∆x. When
a small change like ∆x gets really small (i.e.
small enough that the curve looks like a straight
line on that interval, or “small enough to satisfy
whatever criterion you want,” then we write it
differently, as dx, a “differential” (vanishingly
small) change in x. Then the exact definition
of the SLOPE of y with respect to x at some
particular value of x, written in conventional
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Figure 5.2 A graph of the function y(x) showing
how the average slope ∆y/∆x is obtained on a
finite interval of the curve. By taking smaller and
smaller intervals, one can eventually obtain the
slope at a point, dy/dx.

Physics1 language, is

dy

dx
≡ lim

∆x→0

∆y

∆x
≡ lim

∆x→0

y(x + ∆x) − y(x)

∆x
(1)

This is best understood by an example: con-
sider the simple function y(x) = x2. Then

y(x + ∆x) = (x + ∆x)2 = x2 + 2x∆x + (∆x)2

and y(x + ∆x) − y(x) = 2x∆x + (∆x)2.

Divide this by ∆x and we have

∆y

∆x
= 2x + ∆x.

Now let ∆x shrink to zero, and all that remains
is

∆y

∆x
−→
∆x→0

dy

dx
= 2x.

Thus the slope [or derivative, as mathemati-
cians are wont to call it] of y(x) = x2 is

1 Real Mathematicians prefer the “primed” notation,
dy/dx ≡ y′(x), for several reasons: first, it reminds us that
dy/dx is also a function of x; the second reason will be
obvious a little later. . . .

dy/dx = 2x. That is, the slope increases lin-
early with x. The slope of the slope — which
we call2 the curvature, for obvious reasons —
is then trivially d(dy/dx)/dx ≡ d2y/dx2 = 2,
a constant. Make sure you can work this part
out for yourself.

We have defined all these algebraic solutions
to the geometrical problem of finding the slope
of a curve on a graph in completely abstract
terms — “x” and “y” indeed! What are x and
y? Well, the whole idea is that they can be any-
thing you want! The most common examples
in Physics are when x is the elapsed time, usu-
ally written t, and y is the distance travelled,
usually (alas) written x. Thus in an elementary
Physics context the function you are apt to see
used most often is x(t), the position of some
object as a function of time. This particular
function has some very well-known derivatives,
namely dx/dt = v, the speed or (as long as the
motion is in a straight line!) velocity of the ob-
ject; and dv/dt ≡ d2x/dt2 = a, the acceleration
of the object. Note that both v and a are them-
selves (in general) functions of time: v(t) and
a(t). This example so beautifully illustrates the
“meaning” of the slope and curvature of a curve
as first and second derivatives that many intro-
ductory Calculus courses and virtually all intro-
ductory Physics courses use it as the example
to explain these Mathematical conventions. I
just had to be different and start with some-
thing a little more formal, because I think you
will find that the idea of one thing being a func-
tion of another thing, and the associated ideas
of graphs and slopes and curvatures, are handy
notions worth putting to work far from their
traditional realm of classical kinematics.

2This differs from the conventional mathematical defini-
tion of curvature, κ ≡ dφ/ds, where φ is the tangential angle
and s is the arc length, but I like mine better, because it’s
simple, intuitive and useful. (OK, I’m a Philistine. So shoot
me. ;-) Thanks to Mitchell Timin for pointing this out.
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5.2 Second Derivatives

How about the rate of change of the rate of
change? I slipped this in surreptitiously above
when I defined the curvature,

d

dx

dy

dx
≡ d2y

dx2

where the left hand side now explicitly displays
the operator d/dx which means, “take the
derivative with respect to x of whatever appears
immediately to the right.” (We will encounter
other operators later on, so it’s important to
get used to this idea.)

Figure 5.3 A graph of two functions, y−(x) [left]
and y+(x) [right], having negative and positive
curvature d2y/dx2, respectively. The frivolous
cartoon format is an easy way to remember that
a negative second derivative “curves downward”
to make a convex “frowney face” whereas a pos-
itive second derivative “curves upward” to make
a concave “smiley face”.

In the prime Physics example where the verti-
cal axis is distance and the horizontal axis is
time, the concave graph corresponds to accel-
eration (speeding up of the speed) and the con-
vex graph corresponds to deceleration (slowing
down).

5.3 Higher Derivatives

One can, of course, take the derivative of the
derivative of the derivative,

d

dt

d

dt

dx

dt
≡ d3x

dt3
,

a.k.a. (in Physics) as the “jerk”. (No, I’m not
kidding.) In Physics we rarely go this far, be-
cause Newton’s Second Law relates the second
time derivative of distance (the acceleration) to
the mass of a body and the force applied to
it. But Mathematicians know no such restraint.
They will happily refer to the nth derivative,

dny

dxn

which has the d/dx operator applied n times to
y(x). Later on we will encounter a function for
which the nth derivative of y(x) is both nonzero
and as simple as y(x) itself — in fact, for which

dny

dxn
= y(x).

Stay tuned. . . .3

5.4 Integrals

Suppose that y is the number of new COVID-
19 cases per day and x is time in units of days.
We have all seen many curves like this in 2020.
Then the total number of COVID-19 cases be-
tween day x0 and day x1 is given by

∫ x1

x0

y(x)dx

(read “the integral of y(x) with respect to x
from x0 to x1”), whose rigorous, formal mean-
ing is simply the area under the curve of
y(x) from x0 to x1.

The usual approach to evaluating this quan-
tity is to break the area up into a large num-
ber of very skinny vertical rectangles of very
narrow width ∆x and height y(x) and then let
∆x → 0 as the number of tall skinny rectangles

3 This would be a good time to remind you that Real
Mathematicians prefer the notation y′(x) instead of dy/dx.
What do they use for the second derivative, d2y/dx2? Not
surprisingly, they use y′′(x). For higher derivatives, I think
the Physics notation d5y/dx5 is clearly preferable to the
Mathematics notation y′′′′′(x).
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Figure 5.4 What is the area under the curve

of y(x)?

becomes infinite. Although this formulation is
easy to evaluate numerically on a computer, it
does not lend itself to fun handwaving explana-
tions that yield simple algebraic answers, so I’ll
be using the idea of antiderivatives — generally
disdained by Real Mathematicians — to make
it easier. Stay tuned.
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Chapter 6

Derivatives

6.1 Definition

Recall the definition of the derivative: the rate
of change [slope] of a function at a point is the
limiting value of its average slope over an in-
terval including that point, as the width of the
interval shrinks to zero:

dy

dx
≡ lim

∆x→0

y(x + ∆x) − y(x)

∆x

All the remaining Laws and Rules can be
proven by algebraic manipulation of this def-
inition.

6.2 Operator Notation

The symbol d
dx

(read “derivative with respect to
x”) can be thought of as a mathematical “verb”
(called an operator) which “operates on” what-
ever we place to its right. Thus1

d

dx
[y] ≡ dy

dx
1 I should take this opportunity to emphasize the dif-

ference between the “=” equals sign (meaning the thing on
the left is the same size as the thing on the right) and the
“≡” equivalence sign (meaning the thing on the left is by
definition the same thing as that on the right). The latter
is like the “==” definition operator in many programming
languages.

6.3 Product Rule

The derivative of the product of two functions
is not the product of their derivatives! Instead,

d

dx
[f(x) · g(x)] =

df

dx
· g(x) + f(x) · dg

dx

Proof (Physicist’s notation):

If y(x) = f(x) · g(x) then

y(x + ∆x) = f(x + ∆x) · g(x + ∆x)

=

[

f(x) +
df

dx
∆x

] [

g(x) +
dg

dx
∆x

]

= f(x) · g(x) +

[

df

dx
· g(x) + f(x) · dg

dx

]

∆x

+[∆x]2
df

dx
· dg

dx

Divide this through by ∆x and we have

y(x + ∆x)

∆x
=

y(x)

∆x
+

df

dx
· g(x) + f(x) · dg

dx

+∆x · df

dx
· dg

dx

Note that y(x + ∆x) − y(x) = ∆y and let ∆x
shrink to zero, and all that remains is

∆y

∆x
−→
∆x→0

dy

dx
=

df

dx
· g(x) + f(x) · dg

dx
. QED

Now, you may find the expression for the
change in f(x),

∆f =
df

dx
· ∆x,
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a little confusing: there’s a ∆x in the numerator
and a dx in the denominator — which is which,
and if we’re going to make ∆x → 0 later, why
not do it now and just cancel the two? We
can’t do that, and rather than try to explain
why, I’ll switch to Mathematician’s notation,
for the same reason they do!

Proof (Mathematician’s notation):

If y(x) = f(x) · g(x) then

y(x + ∆x) = f(x + ∆x) · g(x + ∆x)

= [f(x) + f ′(x) · ∆x] [g(x) + g′(x) · ∆x]

= f(x) · g(x) + [f ′(x) · g(x) + f(x) · g′(x)] ∆x

+[∆x]2f ′(x) · g′(x)

Divide this through by ∆x and we have

y(x + ∆x)

∆x
=

y(x)

∆x
+ f ′(x) · g(x) + f(x) · g′(x)

+∆x · f ′(x) · g′(x)

Note that y(x + ∆x) − y(x) = ∆y and let ∆x
shrink to zero, and all that remains is

∆y

∆x
−→
∆x→0 y′(x) = f ′(x) · g(x) + f(x) · g′(x) .

So it’s true, whichever way you express it!

6.4 Examples

• Constant times a Function: Since
the derivative of a constant is always zero
(it doesn’t change), the Product Rule

gives

d

dx
[a · y(x)] = a · dy

dx

where a is any constant (i.e. not a func-
tion of x). This is sometimes referred to
as “pulling the constant factor outside the
derivative.”

• Power Law: The simplest class of
derivatives are those of power-law func-
tions, y(x) = xp. We have derived the
result for p = 2 earlier; for p = 3 we have
y(x) = x · x2, and since dx/dx = 1, the
Product Rule gives

d

dx

[

x3
]

= x · 2 x + 1 · x2 = 3x2

Using the same trick, you can easily show
that dy/dx = 4x3 for y(x) = x4, dy/dx =
5x4 for y(x) = x5, and so on for all integer
values of p. It turns out that the general
result

d

dx
[xp] = p xp−1

is valid for all powers p, whether positive,
negative, integer, rational, irrational,
real, imaginary or complex. That’s a lit-
tle harder to prove, but you can look it
up on Wikipedia.

• Function of a Function: Suppose y is
a function of x and x is in turn a function
of t. Then if t changes by ∆t, x changes
by

∆x =
dx

dt
· ∆t

and y changes by

∆y =
dy

dx
· ∆x =

dy

dx
· dx

dt
· ∆t.

Dividing both sides by ∆t gives

∆y

∆t
=

dy

dx
· dx

dt

and if we let ∆t → 0 we get

d

dt
{y[x(t)]} =

dy

dx
· dx

dt

(Chain Rule)
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Chapter 7

The Exponential Function

Having dabbled in derivatives,1 before we go
on to integrals, I’d like to introduce a pecu-
liar function that figures centrally in most of
Physics and is (IMNERHO) a Mathematical
Miracle. I’m going to approach it from a de-
cidedly non-Physicist perspective.

Suppose the newspaper headlines read, “The
cost of living went up 10% this year.” Can
we translate this information into an equation?
Let “V ” denote the value of a dollar, in terms
of the “real goods” it can buy — whatever
economists mean by that. Let the elapsed time
t be measured in years (y). Then suppose that
V is a function of t, V (t), which function we
would like to know explicitly. Call now “t = 0”
and let the initial value of the dollar (now) be
V0, which we could take to be $1.00 if we dis-
regard inflation at earlier times.2

Then our news item can be written

V (0) = V0

and
V (1 y) = (1 − 0.1) V0 = 0.9 V0.

This formula can be rewritten in terms of the
changes in the dependent and independent vari-
ables, ∆V = V (1 y) − V (0) and ∆t = 1 y:

∆V

∆t
= −0.1 V0, (1)

1 (the mathematical kind, not the bogus financial “in-
struments” that brought on the Global Financial Crisis of
2008!)

2 Since our dollar will be worth less a year from now, we
should really call it deflation!

where it is now to be understood that V is
measured in “1998 dollars” and t is mea-
sured in years. That is, the average time rate of
change of V is proportional to the value of V at
the beginning of the time interval, and the con-
stant of proportionality is −0.1 y−1. (By y−1

or “inverse years” we mean the per year rate of
change.)

This is almost like a derivative. If only ∆t were
infinitesimally small, it would be a derivative.
Since we’re just trying to describe the quali-
tative behaviour, let’s make an approximation:
assume that ∆t = 1 year is “close enough” to an
infinitesimal time interval, and that the above
formula (1) for the inflation rate can be turned
into an instantaneous rate of change:3

dV

dt
= −0.1 V. (2)

This means that the dollar in your pocket right
now will be worth only $0.99999996829 in one
second.

Well, this is interesting, but we cannot go any
further with it until we ask a crucial question:
“What will happen if this goes on?” That is,
suppose we assume that equation (2) is not just
a temporary situation, but represents a consis-
tent and ubiquitous property of the function
V (t), the “real value” of your dollar bill as a
function of time.4

3 The error introduced by this approximation is not very
serious.

4Banks, insurance companies, trade unions, and govern-
ments all pretend that they don’t assume this, but they
would all go bankrupt if they didn’t assume it.
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Applying the d/dt “operator” to both sides of
Eq. (2) gives

d

dt

(

dV

dt

)

=
d

dt
(−0.1 V )

or
d2V

dt2
= −0.1

dV

dt
. (3)

But dV/dt is given by (2). If we substitute that
formula into the above equation (3), we get

d2V

dt2
= (−0.1)2 V = 0.01 V. (4)

That is, the rate of change of the rate of change
is always positive, or the (negative) rate of
change is getting less negative all the time.5

In general, whenever we have a positive second
derivative of a function (as is the case here), the
curve is concave upwards. Similarly, if the sec-
ond derivative were negative, the curve would
be concave downwards.

So by noting the initial value of V , which is
formally written V0 but in this case equals
$1.00, and by applying our understanding of
the “graphical meaning” of the first derivative
(slope) and the second derivative (curvature),
we can visualize the function V (t) pretty well.
It starts out with a maximum downward slope
and then starts to level off as time increas-
es. This general trend continues indefinitely.
Note that while the function always decreas-
es, it never reaches zero. This is because, the
closer it gets to zero, the slower it decreases
[see Eq. (2)]. This is a very “cute” feature that
makes this function especially fun to imagine
over long times.

We can also apply our analytical understanding
to the formulas (2) and (4) for the derivatives:
every time we take still another derivative, the
result is still proportional to V — the constant
of proportionality just picks up another factor
of (−0.1). This is a really neat feature of this

5A politician trying to obfuscate the issue might say,
“The rate of decrease is decreasing.”

function, namely that we can write down all its
derivatives with almost no effort:

dV

dt
= −0.1 V (5)

d2V

dt2
= (−0.1)2 V = +0.01 V (6)

d3V

dt3
= (−0.1)3 V = −0.001 V (7)

d4V

dt4
= (−0.1)4 V = +0.0001V (8)

...
dnV

dtn
= (−0.1)n V for any n. (9)

This is a pretty nifty function. What is it?
That is, can we write it down in terms of famil-
iar things like t, t2, t3, and so on?

First, note that Eq. (9) can be written in the
form

dnV

dtn
= kn V, where k = −0.1 (10)

A simpler version would be where k = 1, giving

dnW

dtn
= W, (11)

W (t) being the function satisfying this crite-
rion. We should perhaps try figuring out this
simpler problem first, and then come back to
V (t).

Let’s try expressing W (t), then, as a linear com-
bination6 of such terms. For starters we will try
a “third order polynomial” (i.e. we allow terms
up to t3):

W (t) = a0 + a1t + a2t
2 + a3t

3.

Then

dW

dt
= a1 + 2a2t + 3a3t

2

follows by simple “differentiation” [a single
word for “taking the derivative”]. Now, these

6“Linear combination” means we multiply each term by
a simple constant and add them up.
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two equations have similar-looking right-hand
sides, provided that we pretend not to notice
that term in t3 in the first one, and provided
the constants an obey the rule an−1 = nan [i.e.
a0 = a1, a1 = 2a2 and a2 = 3a3]. But we
can’t really neglect that t3 term! To be sure,
its “coefficient” a3 is smaller than any of the
rest, so if we had to neglect anything it might
be the best choice; but we’re trying to be pre-
cise, right? How precise? Well, precise enough.
In that case, would we be precise enough if we
added a term a4t

4, preserving the rule about
coefficients [a3 = 4a4]? No? Then how about
a5t

5? And so on. No matter how precise an
agreement with Eq. (11) we demand, we can al-
ways take enough terms, using this procedure,
to achieve the desired precision. Even if you
demand infinite precision, we just [just?] take
an infinite number of terms:

W (t) =
∞

∑

n=0

an tn, where an−1 = n an (12)

or an =
an−1

n
. (13)

Now, suppose we give W (t) the initial value 1.
[If we want a different initial value we can just
multiply the whole series by that value, without
affecting Eq. (11).] Well, W (0) = 1 tells us
that a0 = 1. In that case, a1 = 1 also, and
a2 = 1

2
, and a3 = 1

2
× 1

3
, and a4 = 1

2
× 1

3
× 1

4
,

and so on. If we define the factorial notation,

n! ≡ n×(n−1)×(n−2)×· · ·×3×2×1 (14)

(read, “n factorial”) and define 0! ≡ 1, we can
express our function W (t) very simply:

W (t) =
∞

∑

n=0

tn

n!
(15)

We could also write a more abstract version of
this function in terms of a generalized variable
“x”:

W (x) =
∞

∑

n=0

xn

n!
(16)

Let’s do this, and then define x ≡ k t and set
V (t) = V0 W (x). Then, by the Chain Rule

for derivatives,

dV

dt
= V0

dW

dx

dx

dt
(17)

and since d
dt

(k t) = k, we have

dV

dt
= k V0 W = k V. (18)

By repeating this we obtain Eq. (10). Thus

V (t) = V0 W (kt) = V0

∞
∑

n=0

(kt)n

n!
(19)

where k = −0.1 in the present case.

This is a nice description; we can always cal-
culate the value of this function to any desired
degree of accuracy by including as many terms
as we need until the change produced by adding
the next term is too small to worry us.7 But it
is a little clumsy to keep writing down such an
unwieldy formula every time you want to refer
to this function, especially if it is going to be
as popular as we claim. After all, mathematics
is the art of precise abbreviation. So we give
W (x) [from Eq. (16)] a special name, the “ex-

ponential” function, which we write as either8

exp(x) or ex. (20)

In FORTRAN it is represented as EXP(X). It is
equal to the number9

e = 2.71828182845904509 · · · (21)

raised to the xth power.10 In our case we have
x ≡ −0.1 t, so that our “answer” is

V (t) = V0 e−0.1 t (22)

7This is exactly what a “scientific” hand calculator does
when you push the function key whose name will be revealed
momentarily.

8Now you know which key it is on a calculator.
9 I’m betting you can easily figure out how to calculate

the value of e to any desired precision. Am I wrong?
10 You are probably wondering what it could possibly

mean to raise a constant to a power that is not an integer.
Stay tuned. . . . It gets a lot weirder!
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which is a lot easier to write down than
Eq. (19).

Now, the choice of notation ex is not arbitrary.
There are a lot of rules we know how to use on
a number raised to a power. One is that

e−x ≡ 1

ex
(23)

You can easily determine that this rule also
works for the definition in Eq. (16).

The “inverse” of this function (the power to
which one must raise e to obtain a specified
number) is called the “natural logarithm” or
“ln” function. We write

if W = ex, then x = ln(W )

or
x = ln(ex) (24)

A handy application of this definition is the rule

yx = ex ln(y) or yx = exp[x ln(y)]. (25)

Before we return to our original function, is
there anything more interesting about the “nat-
ural logarithm” than that it is the inverse of
the “exponential” function? And what is so
all-fired special about e, the “base” of the
natural log? Well, it can easily be shown11 that
the derivative of ln(x) is a very simple and
familiar function:

d[ln(x)]

dx
=

1

x
. (26)

This is perhaps the most useful feature of ln(x),
because it gives us a direct connection between
the exponential function and a function whose
derivative is 1/x. [The handy and versatile

rule d(xr)
dx

= rxr−1 is valid for any value of r,
including r = 0, but it doesn’t help us with
this task. Why?] It also explains what is so
special about the number e.

11Watch for this phrase! Whenever someone says “It can
easily be shown. . . ,” they mean, “This is possible to prove,
but I haven’t got time; besides, I might want to assign it as
homework.”

Summary: Exponential Functions

Figure 7.1 The functions ex, e−x, ln(x) and 1/x
plotted on the same graph over the range from
x = 0 to x = 4. Note that ln(0) is undefined.
[There is no finite power to which we can raise
e and get zero.] Similarly, 1/x is undefined at
x = 0, while 1/(−x) = −1/x. Also, ln(1) = 0
[because any number raised to the zeroth power
equals 1 — you can easily check this against the
definitions] and ln(ξ) [where ξ any positive num-
ber less than 1] is negative. However, there is no
such thing as the natural logarithm of any nega-
tive number.

Our formula (22) for the real value of your dol-
lar as a function of time is the only function
which will satisfy the differential equation (2)
from which we started. The exponential func-
tion is one of the most useful of all for solving a
wide variety of differential equations. For now,
just remember this:

Whenever you have dy
dx

= k y, you

can be sure that y(x) = y0 ekx

where y0 is the “initial value” of y
[when x = 0]. Note that k can be
either positive or negative.
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Chapter 8

Integrals

8.1 Antiderivatives

One way to think of an integral is as sort of
the opposite of a derivative — sometimes called
(to the dismay of Real Mathematicians) “an-
tiderivatives”. We can “solve” antiderivatives
the same way we “solve” long division prob-
lems: by trial and error guessing! Suppose we
are given an explicit function f(x) [for example,
f(x) = x2] and told that f(x) is the derivative
of a function y(x) which we would like to know
— that is,

If
dy

dx
= x2, what is y(x) ?

Well, we know that

d

dx

[

x3
]

= 3 x2,

so we must divide by 3 to get

y(x) = 1
3
x3 + y0

where the constant term y0 (the value of y when
x = 0) cannot be determined from the informa-
tion given — the derivative of any constant is
zero, so such an integral is always undetermined
to within such a constant of integration.

But what about the range of integration? The
procedure described above actually defines the
indefinite integral,

y(x) =

∫

x2dx.

What about the definite integral,

A =

∫ x1

x0

x2dx.

The prescription in that case is to just “plug
in” the values of x at the upper and lower limits
to the expression obtained as the antideriva-

tive and calculate their difference:

A =

(

1

3
x3

1 + y0

)

−
(

1

3
x3

0 + y0

)

=
1

3

(

x3
1 − x3

0

)

(Note how the constant of integration cancels
out in the definite integral.)

8.2 Constant times a Function

∫

a · f(x)dx = a ·
∫

f(x)dx

(the integral of a constant times a function is
the constant times the integral of the function).
This is easy to see in terms of the area under
the curve: if the curve is raised by a factor of a,
the area under it is raised by that same factor.

8.3 Power of x

The same reasoning that gave us the integral of
x2 can be extended to the integral of xp,

If y(x) = xp,

∫

y(x)dx =
xp+1

p + 1
+ y0
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with one important exception: p 6= −1. What
does x−1 mean? It’s the thing you multiply
x+1 = x by to get x0 = 1. (Any number raised
to the zeroth power is 1.) So x−1 = 1/x and in
fact x−p = 1/xp. What, then, is

∫

dx

x
?

You can make a plot of the curve y(x) = 1/x
and see by inspection that the area under that
curve is not zero; so the result we’re specifically
excluding is

∫

x−1dx 6= x−1+1

−1 + 1
=

x0

0
=

1

0
→ ∞.

So what is
∫

x−1dx ? As stated in the chap-
ter on Exponentials, it is the natural loga-

rithm of x,

∫ x1

x0

dx

x
= ln x1 − ln x0 = ln

(

x1

x0

)

8.4 Exponentials

The derivative of exp(kx) (where k is a con-
stant) is

d

dx
ekx = kekx

so the antiderivative of exp(kx) is just

∫ x1

x0

ekxdx =
1

k

[

ekx1 − ekx0
]

8.5 Substitution of Variables

Suppose u(x) is a familiar function and u′(x) is
its familiar derivative.1 Then if y(x)dx can be
expressed in the form f [u(x)]u′(x)dx, we can

1 Remember, u′(x) is Mathematician’s notation for
du/dx.

replace u′(x)dx by du so that2

∫ x1

x0

y(x) dx =

∫ u(x1)

u(x0)

f(u) du

A trivial example is when u(x) = kx (a con-
stant times x). Then we substitute u/k for x
and du/k for dx. This is helpful when integrat-
ing (for example)3

∫

ekxdx =
1

k

∫

eudu =
1

k
eu =

1

k
ekx

8.6 Integration by Parts

Sometimes there are two functions of x, u(x)
and v(x), with familiar derivatives such that
∫

f(x)dx can be expressed in the form
∫

u dv
where dv ≡ v′(x) dx. Then

∫ x1

x0

f(x)dx = [u v]x1

x0
−

∫ v(x1)

v(x0)

v du

where [u v]x1
x0

≡ u(x1)v(x1) − u(x0)v(x0).

See if you can use integration by parts to
find the definite integral

∫ 1

0

xe−kxdx

2 Note the use of the differential du ≡ u′(x) dx. It
looks almost as if du and dx were regular quantities that we
could do algebra with at will. We Physicists play fast and
loose with differentials, while Real Mathematicians wince
the way you might when observing someone riding a bicycle
“no hands” down a busy street, blindfolded. (We’re not re-
ally unable to see where we’re going; our blindfolds are just
translucent, not opaque. :-)

3 Remember, exp(u) is its own derivative and therefore
also its own integral!
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Chapter 9

Calculus “Cheat Sheet ”

9.1 Derivatives

• Definition: The rate of change [slope]
of a function at a point is the limiting
value of its average slope over an interval
including that point, as the width of the
interval shrinks to zero:

dy

dx
≡ lim

∆x→0

y(x + ∆x) − y(x)

∆x

All the remaining Laws and Rules can be
proven by algebraic manipulation of this
definition.

• Operator Notation: The symbol
d

dx
(read “derivative with respect to x”) can
be thought of as a mathematical “verb”
(called an operator) which “operates on”
whatever we place to its right. Thus

d

dx
[y] ≡ dy

dx

• Power Law: The simplest class of
derivatives are those of power-law func-
tions:

d

dx
[xp] = p xp−1

valid for all powers p, whether pos-
itive, negative, integer, rational, irra-
tional, real, imaginary or complex.

• Product Law: The derivative of the
product of two functions is not the prod-
uct of their derivatives! Instead,

d

dx
[f(x) · g(x)] =

df

dx
· g(x) + f(x) · dg

dx

• Constant times a Function: The
Product Law gives

d

dx
[a · y(x)] = a · dy

dx

where a is a constant (i.e. not a func-
tion of x). This is often referred to as
“pulling the constant factor outside the
derivative.”

• Function of a Function: Suppose y is
a function of x and x is in turn a function
of t.

Then
d

dt
{y[x(t)]} =

dy

dx
· dx

dt

(Chain Rule)

• Exponentials:

d

dx

[

ekx
]

= k · ekx

where k is any constant.

• Natural Logarithms:

d

dx
[ln x] =

1

x

9.2 Integrals

I’m going to mix definite and indefinite inte-
grals together, but not really indiscriminately.
Some are more obvious as indefinite integrals
and others as definite ones. My goal is to be as
obvious as possible! :-)
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• Constant times a Function:
∫

a · f(x)dx = a ·
∫

f(x)dx

• Power of x:

∫

xpdx =
xp+1

p + 1
+ const

• Exponentials:

∫ x1

x0

ekxdx =
1

k

[

ekx1 − ekx0
]

• Substitution of Variables:

∫ x1

x0

f [u(x)]u′(x) dx =

∫ u(x1)

u(x0)

f(u) du

• Integration by Parts:

∫ x1

x0

f(x)dx = [u v]x1

x0
−

∫ v(x1)

v(x0)

v du
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Chapter 10

Differential Equations

The defining property of the exponential

function exp(x) ≡ ex is that it is its own
derivative:

d

dx
ex = ex (1)

and therefore its own nth derivative and its own
integral,

∫

ex dx = ex + const.

If we add a factor to the exponent, like x →
u = −λx, we can use the Chain Rule

d

dx
f [u(x)] =

df

du
× du

dx

to “bring down a factor of −λ” when we take
the derivative:

d

dx
e−λx = −λ e−λx ;

otherwise it’s still the same “derivative of it-
self”.

We actually used this differential equa-

tion (1) to find the necessary coefficients in
the expansion of exp(x) as a power series,

ex =
∞

∑

n=0

xn

n!
(2)

and thereby introduced what may be the most
useful function in all of science. (A sreong
statement, but one I stand by!)

Having solved what is perhaps the simnplest
nontrivial differential equation, we can go

on to some trickier cases. Unsurprisingly, most
of the examples I can offer come from Physics.
The first and most obvious case deserves its own
Chapter. . . .
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Chapter 11

Simple Harmonic Motion

In the previous chapter we observed that the
defining property of the exponential func-

tion exp(x) ≡ ex, the fact that it is its own
derivative,

d

dx
ex = ex ,

is a simple, but very important, example of a
differentiual equation. We now turn to
Physics to add another paradigm to our reper-
toire.

11.1 Periodic Behaviour

Nature shows us many “systems” which re-
turn periodically to the same initial state, pass-
ing through the same sequence of intermediate
states every period. Life is so full of periodic
experiences, from night and day to the rise and
fall of the tides to the phases of the moon to the
annual cycle of the seasons, that we all come
well equipped with “common sense” tailored to
this paradigm.1 It has even been suggested that
the concept of time itself is rooted in the cyclic

1Many people are so taken with this paradigm that they
apply it to all experience. The I Ching, for instance, is said
to be based on the ancient equivalent of “tuning in” to the
“vibrations” of Life and the World so that one’s awareness
resonates with the universe. By New Age reckoning, culti-
vating such resonances is supposed to be the fast track to
enlightenment. Actually, Physics relies very heavily on the
same paradigm and in fact supports the notion that many
apparently random phenomena are actually superpositions
of regular cycles; however, it offers little encouragement for
expecting “answers” to emerge effortlessly from such a tun-
ing of one’s mind’s resonances. Too bad. But I’m getting
ahead of myself here.

Figure 11.1 Some periodic functions.

phenomena of Nature.

In Physics, of course, we insist on narrowing the
definition just enough to allow precision. For
instance, many phenomena are cyclic without
being periodic in the strict sense of the word.2

2Examples of cyclic but not necessarily periodic phenom-
ena are the mass extinctions of species on Earth that seem
to have occurred roughly every 24 million years, the “seven-
year cycle” of sunspot activity, the return of salmon to the
river of their origin and recurring droughts in Africa. In
some cases the basic reason for the cycle is understood and
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Here cyclic means that the same general pat-
tern keeps repeating; periodic means that the
system passes through the same “phase” at ex-
actly the same time in every cycle and that all
the cycles are exactly the same length. Thus
if we know all the details of one full cycle of
true periodic behaviour, then we know the sub-
sequent state of the system at all times, future
and past. Naturally, this is an idealization; but
its utility is obvious.

Of course, there is an infinite variety of possible
periodic cycles. Assuming that we can reduce
the “state” of the system to a single variable
“q” and its time derivatives, the graph of q(t)
can have any shape as long as it repeats after
one full period. Fig. 11.1 illustrates a few ex-
amples. In (a) and (b) the “displacement” of
q away from its “equilibrium” position [dashed
line] is not symmetric, yet the phases repeat
every cycle. In (c) and (d) the cycle is symmet-
ric with the same “amplitude” above and below
the equilibrium axis, but at certain points the
slope of the curve changes “discontinuously.”
Only in (e) is the cycle everywhere smooth and
symmetric.

11.2 Dot Notation

In Physics we are obsessed with time. We
are most likely to think of every quantity as
a funtion of time, t. Therefore, being lazy, we
thought of a compact way to express time rates
of change — derivatives with respact to t: in-
stead of dx/dt, we just write ẋ and instead of

it is obvious why it only repeats approximately; in other
cases we have no idea of the root cause; and in still others
there is not even a consensus that the phenomenon is truly
cyclic — as opposed to just a random fluctuation that just
happens to mimic cyclic behaviour over a short time. Ob-
viously the resolution of these uncertainties demands “more
data,” i.e. watching to see if the cycle continues; with the
mass extinction “cycle,” this requires considerable patience.
When “periodicity debates” rage on in the absence of ad-
ditional data, it is usually a sign that the combatants have
some other axe to grind.

d2x/dt2 we write ẍ:

ẋ ≡ dx

dt
and ẍ ≡ d2x

dt2
(1)

Now, you might ask, “What about higher
derivatives? Do you just keep adding more
dots?” No, for three reasons: first, there is no
LATEXcommand for putting 3 or more dots over
a symbol; second, we very rarely have to deal
with derivatives higher than the second deriva-
tive in Physics;3 and third, it would begin to
look ridiculous, like more than two “primes” in
the Mathematician’s notation y ′′′(x).

11.3 Sinusoidal Motion

There is one sort of periodic behaviour that
is mathematically the simplest possible kind.
This is the “sinusoidal” motion shown in
Fig. 11.1(e), so called because one realization
is the sine function, sin(x). It is easiest to see
this by means of a crude mechanical example.

11.3.1 Projecting the Wheel

Imagine a rigid wheel rotating at constant an-
gular velocity about a fixed central axle. A bolt
screwed into the rim of the wheel executes uni-
form circular motion about the centre of the
axle.4 For reference we scribe a line on the
wheel from the centre straight out to the bolt
and call this line the radius vector. Imagine
now that we take this apparatus outside at high
noon and watch the motion of the shadow of the
bolt on the ground. This is (naturally enough)
called the projection of the circular motion onto
the horizontal axis. At some instant the radius
vector makes an angle θ = ωt+φ with the hor-
izontal, where ω is the angular frequency of
the wheel (2π times the number of full revolu-
tions per unit time) and φ is the initial angle

3 this falls out from Newton’s Second Law, which “guides
our thinking”, but it does seem almost mystical sometimes.

4Note the frequency with which we periodically recycle
our paradigms!
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Figure 11.2 Projected motion of a point on the
rim of a wheel.

(at t = 0) between the radius vector and the
horizontal.5 From a side view of the wheel we
can see that the distance x from the shadow
of the central axle to the shadow of the bolt
[i.e. the projected horizontal displacement of
the bolt from the centre, where x = 0] will be
given by trigonometry on the indicated right-
angle triangle:

cos(θ) ≡ x

r

⇒ x = r cos(θ) = r cos(ωt + φ) (2)

The resultant amplitude of the displacement as
a function of time is shown in Fig. 11.3.

5The inclusion of the “initial phase” φ makes this de-
scription completely general.

Figure 11.3 The cosine function.

The horizontal velocity vx of the projected
shadow of the bolt on the ground can also be
obtained by trigonometry if we recall that the
vector velocity ~v is always perpendicular to the
radius vector ~r. I will leave it as an exercise
for the reader to show that the result is

vx = − v sin(θ) = − r ω sin(ωt + φ) (3)

where v = rω is the constant speed of the bolt
in its circular motion around the axle. It also
follows (by the same sorts of arguments) that
the horizontal acceleration ax of the bolt’s
shadow is the projection onto the x̂ direction
of ~a, which we know is back toward the centre
of the wheel — i.e. in the −x̂ direction; its
value at time t is given by

ax = − a cos(θ) = − r ω2 cos(ωt + φ) (4)

where a =
v2

r
= rω2 is the magnitude of the

centripetal acceleration of the bolt.

11.4 Simple Harmonic Motion

The above mechanical example serves to intro-
duce the idea of cos(θ) and sin(θ) as functions
in the sense to which we have (I hope) now be-
come accustomed. In particular, if we realize
that (by definition) vx ≡ ẋ and ax ≡ ẍ, the
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formulae for vx(t) and ax(t) represent the
derivatives of x(t):

x = r cos(ωt + φ) (5)

ẋ = − r ω sin(ωt + φ) (6)

ẍ = − r ω2 cos(ωt + φ) (7)

— which in turn tell us the derivatives of the
sine and cosine functions:

d

dt
cos(ωt + φ) = −ω sin(ωt + φ) (8)

d

dt
sin(ωt + φ) = ω cos(ωt + φ) (9)

So if we want we can calculate the nth deriva-
tive of a sine or cosine function almost as easily
as we did for our “old” friend the exponential
function. I will not go through the details this
time, but this feature again allows us to express
these functions as series expansions:

exp(z) = 1 +z +1
2
z2 + 1

3!
z3 + 1

4!
z4 + · · ·

cos(z) = 1 −1
2
z2 + 1

4!
z4 − · · ·

sin(z) = z − 1
3!
z3 + · · ·

(10)
where I have shown the exponential function
along with the sine and cosine for reasons that
will soon be apparent.

It is definitely worth remembering the small

angle approximations

For θ ≪ 1, cos(θ) ≈ 1 − 1
2
θ2

and sin(θ) ≈ θ.
(11)

11.4.1 The Spring Pendulum

Another mecahnical example will serve to es-
tablish the paradigm of Simple Harmonic

Motion (SHM) as a solution to a particular
type of equation of motion.6

6Although we have become conditioned to expect such
mathematical formulations of relationships to be more re-
moved from our intuitive understanding than easily visual-
ized concrete examples like the projection of circular mo-

Figure 11.4 Successive “snapshots” of a mass
bouncing up and down on a spring.

As discussed in a previous chapter, the spring
embodies one of Physics’ premiere paradigms,
the linear restoring force. That is, a force which
disappears when the system in question is in its
“equilibrium position” x0 [which we will define
as the x = 0 position (x0 ≡ 0) to make the
calculations easier] but increases as x moves
away from equilibrium, in such a way that the
magnitude of the force F is proportional to
the displacement from equilibrium [F is linear
in x] and the direction of F is such as to
try to restore x to the original position. The
constant of proportionality is called the spring
constant, always written k. Thus F = −kx
and the resultant equation of motion is

ẍ = −
(

k

m

)

x (12)

Note that the mass plays a rôle just as essential

tion, this is a case where the mathematics allows us to draw
a sweeping conclusion about the detailed behaviour of any

system that exhibits certain simple properties. Furthermore,
these conditions are actually satisfied by an incredible vari-
ety of real systems, from the atoms that make up any solid
object to the interpersonal “distance” in an intimate rela-
tionship. Just wait!
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as the linear restoring force in this paradigm.
If m → 0 in this equation, then the accelera-
tion becomes infinite and in principle the spring
would just return instantaneously to its equilib-
rium length and stay there!

In the leftmost frame of Fig. 11.4 the mass m is
at rest and the spring is in its equilibrium posi-
tion (i.e. neither stretched nor compressed) de-
fined as x = 0. In the second frame, the spring
has been gradually pulled down a distance xmax

and the mass is once again at rest. Then the
mass is released and accelerates upward under
the influence of the spring until it reaches the
equilibrium position again [third frame]. This
time, however, it is moving at its maximum ve-
locity vmax as it crosses the centre position; as
soon as it goes higher, it compresses the spring
and begins to be decelerated by a linear restor-
ing force in the opposite direction. Eventually,
when x = −xmax, all the kinetic energy has
been been stored back up in the compression of
the spring and the mass is once again instanta-
neously at rest [fourth frame]. It immediately
starts moving downward again at maximum ac-
celeration and heads back toward its starting
point. In the absence of friction, this cycle will
repeat forever.

I now want to call your attention to the acute
similarity between the above differential equa-
tion and the one we solved for exponential de-
cay:

ẋ = −κx (13)

and, by extension,

ẍ = κ2 x (14)

the solution to which equation of motion (i.e.
the function which “satisfies” the differential
equation) was

x(t) = x0 e−κ t (15)

Now, if only we could equate κ2 with −k/m,
these equations of motion (and therefore their
solutions) would be exactly the same! The
problem is, of course, that both k and m are

intrinsically positive constants, so it is tough to
find a real constant κ which gives a negative
number when squared.

Imaginary Exponents

Mathematics, of course, provides a simple so-
lution to this problem: just have κ be an
imaginary number, say

κ ≡ i ω where i ≡
√
−1

and ω is a positive real constant. Let’s see if
this trial solution “works” (i.e. take its second
derivative and see if we get back our equation
of motion):

x(t) = x0 ei ω t (16)

ẋ = i ω x0 ei ω t (17)

ẍ = −ω2 x0 ei ω t (18)

or ẍ = −ω2 x (19)

so ω ≡
√

k

m
(20)

OK, it works. But what does it describe? For
this we go back to our series expansions for the
exponential, sine and cosine functions and note
that if we let z ≡ iθ, the following mathemat-
ical identity holds:7

ei θ = cos(θ) + i sin(θ) (21)

Thus, for the case at hand, if θ ≡ ω t [you
probably knew this was coming] then

x0 ei ω t = x0 cos(ωt) + i x0 sin(ωt)

— i.e. the formula for the projection of uni-
form circular motion, with an imaginary part
“tacked on.” (I have set the initial phase φ to
zero just to keep things simple.) What does
this mean?

7You may find this unremarkable, but I have never gotten
over my astonishment that functions so ostensibly unrelated
as the exponential and the sinusoidal functions could be so
intimately connected! And for once the mathematical oddity
has profound practical applications.
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I don’t know.

What! How can I say, “I don’t know,” about
the premiere paradigm of Mechanics? We’re
supposed to know everything about Mechan-
ics! Let me put it this way: we have happened
upon a nice tidy mathematical representation
that works — i.e. if we use certain rules to ma-
nipulate the mathematics, it will faithfully give
correct answers to our questions about how this
thing will behave. The rules, by the way, are as
follows:

Keep the imaginary components
through all your calculations un-
til the final “answer,” and then
throw away any remaining imagi-
nary parts of any actual measurable
quantity.

The point is, there is a difference between un-
derstanding how something works and knowing
what it means. Meaning is something we put
into our world by act of will, though not al-
ways conscious will. How it works is there be-
fore us and after we are gone. No one asks the
“meaning” of a screwdriver or a carburetor or
a copy machine; some of the conceptual tools
of Physics are in this class, though of course
there is nothing to prevent anyone from putting
meaning into them.8

11.5 Damped Harmonic Motion

Let’s take stock. In the previous chapter we
found that

x(t) = [constant] − v0

κ
e−κ t

satisfies the basic differential equation

ẍ = −κẋ or a = −κv
8I am reminded of a passage in one of Kurt Vonnegut’s

books, perhaps Sirens of Titan, in which the story of cre-
ation is told something like this: God creates the world; then
he creates Man, who sits up, looks around and says, “What’s
the meaning of all this?” God answers, “What, there has
to be a meaning?” Man: “Of course.” God: “Well then, I
leave it to you to think of one.”

defining damped motion (e.g. motion under the
influence of a frictional force proportional to
the velocity). We now have a solution to the
equation of motion defining SHM,

ẍ = −ω2 x ⇒ x(t) = x0 ei ω t,

where

ω =

√

k

m

and I have set the initial phase φ to zero just
to keep things simple. Can we put these to-
gether to “solve” the more general (and realis-
tic) problem of damped harmonic motion? The
differential equation would then read

ẍ = −ω2 x − κ ẋ (22)

which is beginning to look a little hard. Still,
we can sort it out: the first term on the RHS
says that there is a linear restoring force and an
inertial factor. The second term says that there
is a damping force proportional to the velocity.
So the differential equation itself is not all that
fearsome. How can we “solve” it?

As always, by trial and error. Since we have
found the exponential function to be so useful,
let’s try one here: Suppose that

x(t) = x0 eK t (23)

where x0 and K are unspecified constants.
Now plug this into the differential equation and
see what we get:

ẋ = K x0 eK t = K x

and
ẍ = K2 x0 eK t = K2 x

The whole thing then reads

K2 x = −ω2 x − κK x

which can be true “for all x” only if

K2 = −ω2 − κK or K2 + κK + ω2 = 0
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which is in the standard form of a general
quadratic equation for K, to which there are
two solutions:

K =
−κ ±

√
κ2 − 4ω2

2
(24)

Either of the two solutions given by substitut-
ing Eq. (24) into Eq. (23) will satisfy Eq. (22)
describing damped SHM. In fact, generally any
linear combination of the two solutions will also
be a solution. This can get complicated, but we
have found the answer to a rather broad ques-
tion.

11.5.1 Limiting Cases

Let’s consider a couple of “limiting cases” of
such solutions. First, suppose that the linear
restoring force is extremely weak compared to

the “drag” force — i.e.9 κ ≫ ω =
√

k
m

. Then
√

κ2 − 4ω2 ≈ κ and the solutions are K ≈ 0
[i.e. x ≈ constant, plausible only if x = 0]
and K ≈ −κ, which gives the same sort of
damped behaviour as if there were no restoring
force, which is what we expected.

Now consider the case where the linear restor-
ing force is very strong and the “drag” force

extremely weak — i.e. κ ≪ ω =
√

k
m

.

Then
√

κ2 − 4ω2 ≈ 2 i ω and the solutions
are K ≈ −1

2
κ ± i ω, or10

x(t) = x0 eK (25)

≈ x0 exp(±i ωt − γt) (26)

= x0 e±i ωt · e−γt (27)

where γ ≡ 1
2
κ. We may then think of [i K] as

9The “≫” symbol means “. . . is much greater than. . . ”
— there is an analogous “≪” symbol that means “. . . is much
less than. . . .”

10There is a general rule about exponents that says, “A
number raised to the sum of two powers is equal to the prod-
uct of the same number raised to each power separately,” or

ab+c = ab
· ac.

a complex frequency11 whose real part is ±ω
and whose imaginary part is γ. What sort
of situation does this describe? It describes a
weakly damped harmonic motion in which the
usual sinusoidal pattern damps away within an
“envelope” whose shape is that of an exponen-
tial decay. A typical case is shown in Fig. 11.5.

Figure 11.5 Weakly damped harmonic motion.
The initial amplitude of x (whatever x is) is
x0, the angular frequency is ω and the damping
rate is γ. The cosine-like oscillation, equivalent
to the real part of x0 ei ω t, decays within the
envelope function x0 e−γ t.

11.6 Generalization of SHM

As for all the other types of equations of mo-
tion, SHM need not have anything to do with
masses, springs or even Physics. Even within
Physics, however, there are so many different
kinds of examples of SHM that we go out of
our way to generalize the results: using “q”
to represent the “coordinate” whose displace-
ment from the equilibrium “position” (always

11The word “complex” has, like “real” and “imaginary,”
been ripped off by Mathematicians and given a very explicit
meaning that is not entirely compatible with its ordinary
dictionary definition. While a complex number in Math-
ematics may indeed be complex — i.e. complicated and
difficult to understand — it is defined only by virtue of its
having both a real part and an imaginary part, such as
z = a + i b, where a and b are both real. I hope that
makes everything crystal clear. . . .
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taken as q = 0) engenders some sort of restor-
ing “force” Q = −k q and “µ” to represent an
“inertial factor” that plays the rôle of the mass,
we have

q̈ = −
(

k

µ

)

q (28)

for which the solution is the real part of

q(t) = q0 ei ω t where ω =

√

k

µ
(29)

When some form of “drag” acts on the system,
we expect to see the qualitative behaviour pic-
tured in Fig. 11.5 and described by Eqs. (23)
and (24). Although one might expect virtually
every real example to have some sort of fric-
tional damping term, in fact there are numer-
ous physical examples with no damping what-
soever, mostly from the microscopic world of
solids.

11.7 The Universality of SHM

If two systems satisfy the same equation of mo-
tion, their behaviour is the same. Therefore the
motion of the mass on the spring is in every re-
spect identical to the horizontal component of
the motion of the peg in the rotating wheel,
even though these two systems are physically
quite distinct. In fact, any system exhibiting
both a linear restoring “force” and an
inertial factor analogous to mass will ex-
hibit SHM.12 Moreover, since these arguments
may be used equally well in reverse, the hori-
zontal component of the force acting on the peg
in the wheel must obey Fx = −kx, where k
is an “effective spring constant.”

12Examples are plentiful, especially in view of the fact that
any potential energy minimum is approximately quadratic
for small enough displacements from equilibrium. A prime
example from outside Mechanics is the electrical circuit, in
which the charge Q on a capacitor plays the rôle of the
displacement variable x and the inertial factor is provided
by an inductance, which resists changes in the current I =
dQ/dt.

Why is SHM characteristic of such an enor-
mous variety of phenomena? Because for suf-
ficiently small displacements from equilibrium,
every system with an equilibrium configuration
satisfies the first condition for SHM: the linear
restoring force. Here is the simple argument:
a linear restoring force is equivalent to a po-
tential energy of the form U(q) = 1

2
k q2 —

i.e. a “quadratic minimum” of the potential
energy at the equilibrium configuration q = 0.
But if we “blow up” a graph of U(q) near
q = 0, every minimum looks quadratic un-
der sufficient magnification! That means any
system that has an equilibrium configuration
also has some analogue of a “potential energy”
which is a minimum there; if it also has some
form of inertia so that it tends to stay at rest (or
in motion) until acted upon by the analogue of
a force, then it will automatically exhibit SHM

for small-amplitude displacements. This makes
SHM an extremely powerful paradigm.

11.7.1 Equivalent Paradigms

We have established previously that a linear

restoring force F = −kx is completely
equivalent to a quadratic minimum in po-

tential energy U = 1
2
kx2. We now find

that, with the inclusion of an inertial fac-

tor (usually just the mass m), either of these
physical paradigms will guarantee the mathe-
matical paradigm of SHM — i.e. the displace-
ment x from equilibrium will satisfy the equa-
tion of motion

x(t) = xmax cos(ωt + φ) (30)

where xmax is the amplitude of the oscilla-
tion. Any x(t) of this form automatically sat-
isfies the definitive equation of motion of SHM,
namely

d2x

dt2
= −ω2 x (31)

and vice versa — whenever x satisfies Eq. (31),
the explicit time dependence of x will be given
by Eq. (30).
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Figure 11.6 Equivalent paradigms of SHM.

11.8 Resonance

No description of SHM would be complete with-
out some discussion of the general phenomenon
of resonance, which has many practical con-
sequences that often seem very counterintu-
itive.13 I will, however, overcome my zeal for
demonstrating the versatility of Mathematics
and stick to a simple qualitative description of

13It is, after all, one of the main purposes of this book to
dismantle your intuition and rebuild it with the faulty parts
left out and some shiny new paradigms added.

resonance. Just this once.

The basic idea is like this: suppose some system
exhibits all the requisite properties for SHM,
namely a linear restoring “force” Q = −k q
and an inertial factor µ. Then if once set in
motion it will oscillate forever at its “resonant
frequency” ω =

√

k/µ, unless of course there
is a “damping force” D = −κµq to dissipate
the energy stored in the oscillation. As long

as the damping is weak
[

κ ≪
√

k/m
]

, any

oscillations will persist for many periods. Now
suppose the system is initially at rest, in equi-
librium, ho hum. What does it take to “get it
going?”

The hard way is to give it a great whack to start
it off with lots of kinetic energy, or a great tug
to stretch the “spring” out until it has lots of
potential energy, and then let nature take its
course. The easy way is to give a tiny push to
start up a small oscillation, then wait exactly
one full period and give another tiny push to
increase the amplitude a little, and so on. This
works because the frequency ω is independent
of the amplitude q0. So if we “drive” the
system at its natural “resonant” frequency ω,
no matter how small the individual “pushes”
are, we will slowly build up an arbitrarily large
oscillation.14

Such resonances often have dramatic results.
A vivid example is the famous movie of the
collapse of the Tacoma Narrows bridge, which
had a torsional [twisting] resonance15 that
was excited by a steady breeze blowing past
the bridge. The engineer in charge antici-
pated all the other more familiar resonances
[of which there are many] and incorporated de-
vices specifically designed to safely damp their

14Of course, this assumes κ = 0. If damping occurs at
the same time, we must put at least as much energy in with
our driving force as friction takes out through the damping
in order to build up the amplitude. Almost every system has
some limiting amplitude beyond which the restoring force is
no longer linear and/or some sort of losses set in.

15(something like you get from a blade of grass held be-
tween the thumbs to create a loud noise when you blow past
it)
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oscillations, but forgot this one. As a result,
the bridge developed huge twisting oscillations
[mistakes like this are usually painfully obvious
when it is too late to correct them] and tore
itself apart.

A less spectacular example is the trick of get-
ting yourself going on a playground swing by
leaning back and forth with arms and legs in
synchrony with the natural frequency of oscil-
lation of the swing [a sort of pendulum]. If your
kinesthetic memory is good enough you may re-
call that it is important to have the “driving”
push exactly π

2
radians [a quarter cycle] “out of

phase” with your velocity — i.e. you pull when
you reach the motionless position at the top of
your swing, if you want to achieve the maxi-
mum result. This has an elegant mathematical
explanation, but I promised. . . .
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Chapter 12

Vectors

12.1 Cartesian Vectors

A vector quantity is one that has both magni-
tude and direction. Another (equivalent) way
of putting it is that a vector quantity has sev-
eral components in orthogonal (perpendicular)
directions. The idea of a vector is very abstract
and general; one can define useful vector spaces
of many sorts, some with an infinite number of
orthogonal basis vectors, but the most familiar
types are simple 3-dimensional quantities like
position, speed, momentum and so on.

12.1.1 Vector Notation

The conventional notation for a vector is ~A,
sometimes written ~A or A but most clearly rec-
ognizable when both in boldface and a little
arrow over the top.

12.1.2 Unit Vectors

In Cartesian coordinates (x, y, z) a vector ~A
can be expressed in terms of its three scalar
components Ax, Ay, Az and the corresponding

unit vectors ı̂, ̂, k̂ (sometimes written as x̂, ŷ, ẑ
or occasionally as x̂1, x̂2, x̂3) thus:

~A = ı̂Ax + ̂Ay + k̂Az (1)

where the little “hat” over a symbol means (in
this context) that it has unit magnitude and
thus imparts only direction to a scalar like Ax.

1

1 There are many choices of coordinates and unit vec-
tors, such as cylindrical (r, θ, z) and spherical (r, θ, φ) co-

A unit vector â can be formed from any vector
~a by dividing it by its own magnitude a:

â =
~a

a
where a = |~a| =

√

a2
x + a2

y + a2
z .

(2)

Already we have used a bunch of concepts be-
fore defining them properly, the usual chicken-
egg problem with mathematics. Let’s try to
catch up:

12.1.3 Multiplying a Vector by a Scalar

Multiplying a vector ~A by a scalar b has no ef-
fect on the direction of the result (unless b = 0)
but only on its magnitude and/or the units in
which it is measured — if b is a pure number,
the units stay the same; but multiplying a ve-
locity by a mass (for instance) produces an en-
tirely new quantity, in that case the momen-
tum.

This type of product always commutes: ~Ab =
b~A.

12.1.4 Dividing a Vector by a Scalar

Dividing a vector by a scalar c is the same as
multiplying it by 1/c.

ordinates, but only in the simple Cartesian coordinates are
the directions of the unit vectors permanently fixed.
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12.1.5 Adding or Subtracting Vectors

In two dimensions one can draw simple dia-
grams depicting “tip-to-tail” or “parallelogram
law” vector addition (or subtraction); this is
not so easy in 3 dimensions, so we fall back

Figure 12.1 Vector addition.

on the algebraic method of adding components.
Given ~A from Eq. (1) and

~B = ı̂Bx + ̂By + k̂Bz (3)

we write

~A+ ~B = ı̂(Ax +Bx)+ ̂(Ay +By)+ k̂(Az +Bz) .
(4)

Subtracting ~B from ~A is the same thing as
adding −~B (a vector of the same length as ~B
but pointing in the opposite direction).

12.1.6 Multiplying Two Vectors . . .

. . . to get a Scalar: we just add together
the products of the components,

~A · ~B = AxBx

+ AyBy

+ AzBz , (5)

also known as the “dot product”, which
commutes: ~A · ~B = ~B · ~A. Note that the
square of the magnitude of ~A is just the
scalar product of ~A with itself :

A2 = ~A · ~A .

. . . to get a Pseudovector:

~A × ~B = ı̂(AyBz − AzBy)
+ ̂(AzBx − AxBz)

+ k̂(AxBy − AyBx) . (6)

This “cross product” is actually a pseu-
dovector (or, more generally, a tensor), be-
cause (unlike the nice dot product) it has
the unsettling property of not commut-

ing
(

~A × ~B = −~B × ~A
)

— but we of-

ten treat it like just another vector.

Figure 12.2 Vector Product.

12.2 Orthogonality

The definition of a vector as an entity with both
magnitude and direction can be generalized if
we realize that “direction” can be defined in
more dimensions than the usual 3 spatial di-
rections, “up-down, left-right, and back-forth,”
or even other dimensions excluding these three.
The more general definition would read,

A vector quantity is one which
has several independent attributes
which are all measured in the same
units so that “transformations” are
possible. (This last feature is only
essential when we want the advan-
tages of mathematical manipula-
tion; it is not necessary for the con-
cept of multi-dimensional entities.)
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We can best illustrate this generalization with
an example of a vector that has nothing to do
with 3-D space:

Example: the Cost of Living,
~C, is in a sense a true vector quan-
tity (although the Cost of Living in-
dex may be properly thought of as
a scalar, as we can show later).

To construct a simple version, the Cost of Liv-
ing can be taken to include:

• C1 = housing (e.g., monthly rent);

• C2 = food (e.g., cost of a quart of milk);

• C3 = medical service (e.g., cost of a bot-
tle of aspirin);

• C4 = entertainment (e.g., cost of a
movie ticket);

• C5 = transportation (e.g., bus fare);

• C6 . . . C7 . . . etc. (a finite number of
“components.”)

Thus we can write ~C as an ordered sequence of
numbers representing the values of its respec-
tive “components”:

~C = (C1, C2, C3, C4, C5, . . . ) (1)

We would normally go on until we had a rea-
sonably “complete” list – i.e., one with which
the cost of any additional item we might imag-
ine could be expressed in terms of the ones we
have already defined. The technical mathemat-
ical term for this condition is that we have a
“complete basis set” of components of the Cost
of Living.

Now, we can immediately see an “inefficiency”
in the way ~C has been “composed:” As recently
as 1975, it was estimated to take approximately
one pound of gasoline to grow one pound of
food in the U.S.A.; therefore the cost of food

and the cost of transportation are obviously
not independent! Both are closely tied to the
cost of oil. In fact, a large number of the com-
ponents of the cost of living we observe are in-
timately connected to the cost of oil (among
other things). On the other hand (before we
jump to the fashionable conclusion that these
two components should be replaced by oil prices
alone), there is some measure of independence
in the two components. How do we deal with
this quantitatively?

To reiterate the question more formally, how do
we quantitatively describe the extent to which
certain components of a vector are superfluous
(in the sense that they merely represent com-
binations of the other components) vs. the ex-
tent to which they are truly “independent?” To
answer, it is convenient to revert to our old
standby, the (graphable) analogy of the dis-

tance vector in two dimensions.

Suppose we wanted to describe the position of
any point P in the “x − y plane.” We could
draw the two axes “a” and “b” shown above.
The position of an arbitrary point P is uniquely
determined by its (a, b) coordinates, defined by
the prescription that to change a we move par-
allel to the a-axis and to change b we move
parallel to the b-axis. This is a unique and
quite legitimate way of specifying the position
of any point (in fact it is often used in crystal-
lography where the orientation of certain crys-
tal axes is determined by nature); yet there is
something vaguely troubling about this choice
of coordinate axes. What is it? Well, we have
an intuitive sense of “up-down” and “sideways”
as being perpendicular, so that if something
moves “up” (as we normally think of it), in the
above description the values of both a and b will
change. But isn’t our intuition just the result
of a well-entrenched convention? If we got used
to thinking of “up” as being in the “b” direc-
tion shown, wouldn’t this cognitive dissonance
dissolve?

No. In the first place, nature provides us with
an unambiguous characterization of “down:” it
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is the direction in which things fall when re-
leased; the direction a string points when tied
to a plumb bob. “Sideways,” similarly, is the
direction defined by the surface of an undis-
turbed liquid (as long as we neglect the cur-
vature of the Earth’s surface). That is, grav-
ity fixes our notions of “appropriate” geome-
try. But is this in turn arbitrary (on nature’s
part) or is there some good reason why “in-
dependent” components of a vector should be
perpendicular? And what exactly do we mean
by “perpendicular,” anyway? Can we define
the concept in a way which might allow us to
generalize it to other kinds of vectors besides
space vectors?

The answer is bound up in the way Euclid
found to express the geometrical properties of
the world we live in; in particular, the “met-
ric” of space – the way we define the magni-

tude (length) of a vector. Suppose you take
a ruler and turn it at many angles; your idea
of the length of the ruler is independent of its
orientation, right? Suppose you used the ruler
to make off distances along two perpendicular
axes, stating that these were the horizontal and
vertical components (x, y) of a distance vector.
Then you use the usual “parallelogram rule” to
locate the tip of the vector, draw in a line from
the origin to that point, and put an arrowhead
on the line to indicate that you have a vector.
Call it “~r”. You can use the same ruler, held at
an angle, to measure the length r of the vector.
Pythagoras gave us a formula for this length.
It is

r =
√

x2 + y2. (2)

This formula is the key to Euclidean geometry,
and is the working definition of perpendicular
axes: x and y are perpendicular if and only if
Eq. (2) holds. It does not hold for “a” and “b”
described earlier!

You may feel that this “metric” is obvious and
necessary from first principles; it is not. If you
treat this formula as correct using the Earth’s
surface as the “x − y plane” you will get good

results until you start measuring off distances
in the thousands of miles; then you will be
’way off! Imagine for instance the perpendicu-
lar lines formed by two longitudes at the North
Pole: these same “perpendicular” lines cross
again at the South Pole!

Well, of course, you say; that is because the
Earth’s surface is not a plane; it is a sphere;
it is curved. If we didn’t feign ignorance of
that fact, if we did our calculations in three
dimensions, we would always get the right an-
swers. Unfortunately not. The space we live in
is actually four-dimensional, and it is not flat,
not “Euclidean,” in the neighborhood of large
masses. Einstein helped open our eyes to this
fact, and now we are stuck with a much more
cognitively complex understanding.

But we have to start somewhere, and the space
we live in from day to day in “pretty Eu-
clidean,” and it is only in the violation of sen-
sible approximations that modern physics is
astounding, so we will pretend that only Eu-
clidean vector spaces are important. (Do you
suppose there is a way to generalize our def-
inition of “perpendicularity” to include non-
Euclidean space as well?)

Finally returning to our original exam-
ple, we would like to have ~C expressed
in an “orthogonal, complete basis”, ~C =
(C1, C2, C3, C4, C5, . . . ), so that we can define

the magnitude of ~C by

C = |~C| =
√

C2
1 + C2

2 + C2
3 + . . . (3)

(“Orthogonal” and “normal” are just synonyms

for “perpendicular.”) We could call ~C the
“Cost of Living Index” if we liked. There is
a problem now. Our intuitive notion of “inde-
pendent” components is tied up with the idea
that one component can change without affect-
ing another; yet as soon as we attempt to be
specific about it, we find that we cannot even
define a criterion for formal and exact indepen-
dence (orthogonality) without generating a new
notion: the idea of a magnitude as defined by
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Eq. (3). Does this definition agree with out in-
tuition, the way the “ruler” analogy did? Most
probably we have no intuition about the “mag-
nitude” of the “cost of living vector.” So we
have created a new concept – not an arbitrary
concept, but one which is guaranteed to have
a large number of “neat” consequences, one we
will be able to do calculations with, make trans-
formations of, and so on. In short, a “rich”
concept.

There is another problem, though; while we can
easily test our space vectors with a ruler, there
is no unambiguous “ruler” for the “cost of living
index.” Furthermore, we may make the approx-
imation that the cost of tea bags is orthogonal
to the cost of computer maintenance, but in so
“messy” a business as economics we will never
be able to prove this rigorously. There are too
many “hidden variables” influencing the results
in ways we do not suspect. This is too bad, but
we can still live with the imperfections of an
approximate model if it serves us well.
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Chapter 13

Complex Numbers

Imaginary numbers were mentioned in the Al-
gebra chapter and again in the chapters on Dif-
ferential Equations and Simple Harmonic Mo-
tion, but here I’d like to build a bridge to
a nominally “different” discipline: Literary

Criticism.

Back in the mid-1960s when I was in college,
Along with Physics and Mathematics courses
I took one on “Structural Conventiuons in Po-
etry” where I learned about Northrup Frye and
his theory of Genres, famously represented by
a diagram something like this:

Figure 13.1 Diagram of Frye’s Genres.

I immediately translated this into the complex
plane, which I’d just learned about in Physics
and Math courses (see below). So I re-drew
Frye’s diagram in the Literary Complex Plane:

Figure 13.2 TOP: The complex plane.
BOTTOM: Genres.
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