Exponential

GROWTH and DECAY

Guess the Function:

Guess the Function:

Guess the Function:

Finite vs. Infinitesimal Differences

Finite vs. Infinitesimal Differences

- Let B be the balance in your savings account.

Finite vs. Infinitesimal Differences

- Let B be the balance in your savings account.
- Let t be the elapsed time in years.

Finite vs. Infinitesimal Differences

- Let B be the balance in your savings account.
- Let t be the elapsed time in years.
- Let the function $B(t)$ be the recipe for how B changes with t :

Finite vs. Infinitesimal Differences

- Let B be the balance in your savings account.
- Let t be the elapsed time in years.
- Let the function $B(t)$ be the recipe for how B changes with t :
- After $\Delta t=1$ year, $B(t+\Delta t)=B(t)+0.1 B(t)=B(t)+\Delta B$

Finite vs. Infinitesimal Differences

- Let B be the balance in your savings account.
- Let t be the elapsed time in years.
- Let the function $B(t)$ be the recipe for how B changes with t :
- After $\Delta t=1$ year, $B(t+\Delta t)=B(t)+0.1 B(t)=B(t)+\Delta B$
- Thus $\Delta B / \Delta t=0.1 B$

Finite vs. Infinitesimal Differences

- Let B be the balance in your savings account.
- Let t be the elapsed time in years.
- Let the function $B(t)$ be the recipe for how B changes with t :
- After $\Delta t=1$ year, $B(t+\Delta t)=B(t)+0.1 B(t)=B(t)+\Delta B$
- Thus $\Delta B / \Delta t=0.1 B$
- What if this were still true as $\Delta t \rightarrow 0$? $\mathrm{d} B / \mathrm{d} t=0.1 B$

Finite vs. Infinitesimal Differences

- Let B be the balance in your savings account.
- Let t be the elapsed time in years.
- Let the function $B(t)$ be the recipe for how B changes with t :
- After $\Delta t=1$ year, $B(t+\Delta t)=B(t)+0.1 B(t)=B(t)+\Delta B$
- Thus $\Delta B / \Delta t=0.1 B$
- What if this were still true as $\Delta t \rightarrow 0$? $\mathrm{d} B / \mathrm{d} t=0.1 B$
- Or, more generally, $\mathrm{d} B / \mathrm{d} t=k B \quad$ where k is in inverse time units.

What is this simpler function?

What is this simpler function?

$$
\mathrm{d} B / \mathrm{d} t=B \quad \text { (i.e. } k=1)
$$

(B is its own derivative!)

What is this simpler function?

$$
\mathrm{d} B / \mathrm{d} t=B \quad \text { (i.e. } k=1)
$$

(B is its own derivative!)
Then it's also its own second derivative... and third derivative... and $n^{\text {th }}$ derivative:

$$
\mathrm{d}^{2} B / \mathrm{d} t^{2}=\mathrm{d}^{3} B / \mathrm{d} t^{3}=\mathrm{d}^{n} B / \mathrm{d} t^{n}=B
$$

What is this simpler function?

$$
\mathrm{d} B / \mathrm{d} t=B \quad \text { (i.e. } k=1)
$$

(B is its own derivative!)
Then it's also its own second derivative... and third derivative... and $n^{\text {th }}$ derivative:

$$
\mathrm{d}^{2} B / \mathrm{d} t^{2}=\mathrm{d}^{3} B / \mathrm{d} t^{3}=\mathrm{d}^{n} B / \mathrm{d} t^{n}=B
$$

Can we express $B(t)$ as a simple polynomial?

$$
B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots
$$

What is this simpler function?

$$
\mathrm{d} B / \mathrm{d} t=B \quad(\text { i.e. } k=1)
$$

(B is its own derivative!)
Then it's also its own second derivative... and third derivative... and $n^{\text {th }}$ derivative:

$$
\mathrm{d}^{2} B / \mathrm{d} t^{2}=\mathrm{d}^{3} B / \mathrm{d} t^{3}=\mathrm{d}^{n} B / \mathrm{d} t^{n}=B
$$

Can we express $B(t)$ as a simple polynomial?

$$
B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots
$$

Let's check!

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$
Defining Condition: $\mathrm{d} B / \mathrm{d} t=B$
(B is its own derivative)

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\quad \mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\quad \mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$
Differentiate: $\mathrm{d} B / \mathrm{d} t=0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots$

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\quad \mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$
Differentiate: $\mathrm{d} B / \mathrm{d} t=0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots$

$$
\begin{aligned}
= & B=1+a_{1} t+a_{2} t^{2} \\
& +a_{3} t^{3}+\ldots
\end{aligned}
$$

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\quad \mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$
Differentiate: $\mathrm{d} B / \mathrm{d} t=0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots$

$$
\begin{aligned}
= & B=1+a_{1} t+a_{2} t^{2} \\
& +a_{3} t^{3}+\ldots
\end{aligned}
$$

For this to be true, we need $2 a_{2}=a_{1}=1$ or $a_{2}=1 / 2$

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\quad \mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$
Differentiate: $\mathrm{d} B / \mathrm{d} t=0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots$

$$
\begin{aligned}
= & B=1+a_{1} t+a_{2} t^{2} \\
& +a_{3} t^{3}+\ldots
\end{aligned}
$$

For this to be true, we need $2 a_{2}=a_{1}=1$ or $a_{2}=1 / 2$ and $3 a_{3}=a_{2}=1 / 2$ or $a_{3}=1 /(2 \times 3)$ and so on...

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$
Differentiate: $\mathrm{d} B / \mathrm{d} t=0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots$

$$
\begin{aligned}
= & B=1+a_{1} t+a_{2} t^{2} \\
& +a_{3} t^{3}+\ldots
\end{aligned}
$$

For this to be true, we need $2 a_{2}=a_{1}=1$ or $a_{2}=1 / 2$ and $3 a_{3}=a_{2}=1 / 2$ or $a_{3}=1 /(2 \times 3)$ and so on...

$$
B(t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

where $n!\equiv n(n-1)(n-2) \ldots(3)(2)(1)$.

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$
Differentiate: $\mathrm{d} B / \mathrm{d} t=0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots$

$$
\begin{aligned}
= & B=1+a_{1} t+a_{2} t^{2} \\
& +a_{3} t^{3}+\ldots
\end{aligned}
$$

For this to be true, we need $2 a_{2}=a_{1}=1$ or $a_{2}=1 / 2$ and $3 a_{3}=a_{2}=1 / 2$ or $a_{3}=1 /(2 \times 3)$ and so on...

$$
B(t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

$$
\equiv \exp (t)
$$

where $n!\equiv n(n-1)(n-2) \ldots(3)(2)(1)$.

Hypothesis: $\quad B(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots$

Defining Condition: $\mathrm{d} B / \mathrm{d} t=B$

(B is its own derivative)
Initial Condition: $B=1$ at $t=0 \Rightarrow a_{0}=1$
Differentiate: $\mathrm{d} B / \mathrm{d} t=0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots$

$$
\begin{aligned}
= & B=1+a_{1} t+a_{2} t^{2} \\
& +a_{3} t^{3}+\ldots
\end{aligned}
$$

For this to be true, we need $2 a_{2}=a_{1}=1$ or $a_{2}=1 / 2$ and $3 a_{3}=a_{2}=1 / 2$ or $a_{3}=1 /(2 \times 3)$ and so on...

$$
\begin{equation*}
B(t)=\sum_{n=0}^{\infty} t^{n} / n! \tag{0!=1}
\end{equation*}
$$

where $n!\equiv n(n-1)(n-2) \ldots(3)(2)(1)$.

GRAPHICALLY:

Another View:

Properties of the Exponential Function

$$
\exp (t)=\sum t^{n} / n!
$$

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

- It grows faster than any power law!

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

- It grows faster than any power law!
- $\exp (1)=1+1+1 / 2+1 / 6+1 / 24+\ldots \equiv e=2.718281828459045 \ldots$

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

- It grows faster than any power law!
- $\exp (1)=1+1+1 / 2+1 / 6+1 / 24+\ldots \equiv e=2.718281828459045 \ldots$
- It can be written as e raised to the t power: $\exp (t) \equiv e^{t}$

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

- It grows faster than any power law!
- $\exp (1)=1+1+1 / 2+1 / 6+1 / 24+\ldots \equiv e=2.718281828459045 \ldots$
- It can be written as e raised to the t power: $\exp (t) \equiv e^{t}$
- $e^{a+b}=e^{a} \times e^{b} \quad$ just as (e.g.) $x^{2+3}=x^{2} \times x^{3}=x^{5}$

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

- It grows faster than any power law!
- $\exp (1)=1+1+1 / 2+1 / 6+1 / 24+\ldots \equiv e=2.718281828459045 \ldots$
- It can be written as e raised to the t power: $\exp (t) \equiv e^{t}$
- $e^{a+b}=e^{a} \times e^{b} \quad$ just as (e.g.) $x^{2+3}=x^{2} \times x^{3}=x^{5}$
- $\exp (-t) \equiv e^{-t} \equiv 1 / e^{t}$ shrinks faster than any inverse power law.

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

- It grows faster than any power law!
- $\exp (1)=1+1+1 / 2+1 / 6+1 / 24+\ldots \equiv e=2.718281828459045 \ldots$
- It can be written as e raised to the t power: $\exp (t) \equiv e^{t}$
- $e^{a+b}=e^{a} \times e^{b} \quad$ just as (e.g.) $\quad x^{2+3}=x^{2} \times x^{3}=x^{5}$
- $\exp (-t) \equiv e^{-t} \equiv 1 / e^{t}$ shrinks faster than any inverse power law.
- $e^{i t}=1+i t-1 / 2 t^{2}-(1 / 6) i t^{3}+(1 / 24) t^{4} \ldots=\cos t+i \sin t$

Properties of the Exponential Function

$$
\exp (t)=\sum_{n=0}^{\infty} t^{n} / n!
$$

- It grows faster than any power law!
- $\exp (1)=1+1+1 / 2+1 / 6+1 / 24+\ldots \equiv e=2.718281828459045 \ldots$
- It can be written as e raised to the t power: $\exp (t) \equiv e^{t}$
- $e^{a+b}=e^{a} \times e^{b} \quad$ just as (e.g.) $\quad x^{2+3}=x^{2} \times x^{3}=x^{5}$
- $\exp (-t) \equiv e^{-t} \equiv 1 / e^{t}$ shrinks faster than any inverse power law.
- $e^{i t}=1+i t-1 / 2 t^{2}-(1 / 6) i t^{3}+(1 / 24) t^{4} \ldots=\cos t+i \sin t$
(Euler's Theorem)

Natural Logarithm $\ln (x)$:

The Inverse of the Exponential Function

(the power to which one must raise e to obtain x)

$$
e^{\ln (x)}=x
$$

Natural Logarithm $\ln (x)$:

The Inverse of the Exponential Function

(the power to which one must raise e to obtain x)

$$
e^{\ln (x)}=x
$$

By the same token,

$$
\ln \left(e^{x}\right)=x
$$

Natural Logarithm $\ln (x)$:

The Inverse of the Exponential Function

(the power to which one must raise e to obtain x)

$$
e^{\ln (x)}=x
$$

By the same token,

$$
\ln \left(e^{x}\right)=x
$$

SWOP: if $y(x)=\ln (x), \quad \mathrm{d} y / \mathrm{d} x=1 / x \equiv x^{-1}$

Natural Logarithm $\ln (x)$:

The Inverse of the Exponential Function

(the power to which one must raise e to obtain x)

$$
e^{\ln (x)}=x
$$

By the same token,

$$
\ln \left(e^{x}\right)=x
$$

SWOP: if $y(x)=\ln (x), \quad \mathrm{d} y / \mathrm{d} x=1 / x \equiv x^{-1}$
So if $y(x)=1 / x \equiv x^{-1}, \quad \int_{x_{0}}^{x_{1}} y(x) d x=\ln \left(x_{1} / x_{0}\right)$

Applications of the Exponential Function $e^{k x}$ and its siblings $e^{-\lambda x} \& \ln (x)$:

Applications of the Exponential Function $e^{k x}$ and its siblings $e^{-x x} \& \ln (x)$:

- Growth of savings vs. decay of value of $\$ 1$ [inflation]: $k=$ interest rate (e.g. $k=0.1$ for 10%); $\lambda=k$

Applications of the Exponential Function $e^{k x}$ and its siblings $e^{-x x} \& \ln (x)$:

- Growth of savings vs. decay of value of $\$ 1$ [inflation]: $k=$ interest rate (e.g. $k=0.1$ for 10%); $\lambda=k$
- Propagation of a pandemic: $k=R_{0} / T_{\text {incub }}$

Applications of the Exponential Function $e^{k x}$ and its siblings $e^{-\lambda x} \& \ln (x):$

- Growth of savings vs. decay of value of $\$ 1$ [inflation]: $k=$ interest rate (e.g. $k=0.1$ for 10%); $\lambda=k$
- Propagation of a pandemic: $k=R_{0} / T_{\text {incub. }}$
- Radioactive decay: $\lambda=1 / \tau=\ln 2 / T / 1 / 2 \quad(\ln 2=0.6931478 \ldots)$

Applications of the Exponential Function $e^{k x}$ and its siblings $e^{-\lambda x} \& \ln (x)$:

- Growth of savings vs. decay of value of $\$ 1$ [inflation]: $k=$ interest rate (e.g. $k=0.1$ for 10%); $\lambda=k$
- Propagation of a pandemic: $k=R_{0} / T_{\text {incub. }}$
- Radioactive decay: $\lambda=1 / \tau=\ln 2 / T_{1 / 2} \quad(\ln 2=0.6931478 \ldots)$
- Complex exponentials: if $\kappa=-\gamma+i \omega$,

$$
e^{\kappa t}=e^{-\gamma t}(\cos \omega t+i \sin \omega t) \quad \text { [damped oscillations] }
$$

Damped Harmonic Motion:

Damped Harmonic Motion:

$$
x(t)=x_{0} e^{\kappa t}=x_{0} e^{-\gamma t} \exp (\pm \boldsymbol{i} \omega t)
$$

Damped Harmonic Motion:

$$
x(t)=x_{0} e^{\kappa t}=x_{0} e^{-\gamma t} \exp (\pm \boldsymbol{i} \omega t)
$$

