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Finite vs. Infinitesimal Differences
• Let  B  be the balance in your savings account. 

• Let  t  be the elapsed time in years.  

• Let the function  B(t)  be the recipe for how  B  changes with  t :

• After  ∆t  = 1 year,  B(t + ∆t) =  B(t) + 0.1 B(t)  =  B(t) + ∆B

• Thus  ∆B/∆t = 0.1 B

• What if this were still true as  ∆t → 0 ?    dB/dt = 0.1 B

• Or, more generally,      dB/dt = k B    where  k  is in inverse time units.
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What is this simpler function?
dB/dt = B      (i.e.  k = 1)

(B  is its own derivative!)

Then it’s also its own second derivative…
and third derivative… and nth derivative:

d2B/dt 2  =  d3B/dt 3  =  dnB/dt n  =  B
Can we express  B(t)  as a simple polynomial?  

B(t)  =  a0  +  a1 t  +  a2 t 2  +  a3 t 3   + …

Let’s check!
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(Euler’s Theorem)
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Natural Logarithm  ℓn (x):

The Inverse of the Exponential Function  
(the power to which one must raise e to obtain x)

e ℓn 
(x)  =  x

By the same token, 

ℓn (e x )  =  x

SWOP:  if y (x) = ℓn (x),   dy / dx = 1 / x  ≡ x −1

So if y (x) = 1 / x  ≡ x −1,                      = ℓn (x1 / x0)
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Applications of the Exponential Function 
e kx  and its siblings  e -λx  &   ℓn (x) :

• Growth of savings vs. decay of value of $1 [inflation]:                   
k = interest rate (e.g.  k = 0.1  for 10%);   λ = k

• Propagation of a pandemic:   k = R0 / Tincub.

• Radioactive decay:   λ = 1/τ = ℓn 2 /T½      (ℓn 2 = 0.6931478…)

• Complex exponentials:  if   κ = -γ + iω,                                         
e κt  =  e -γt (cos ωt  + i sin ωt)            [damped oscillations] 
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Finis


