More Integrals with

Exponentials \& Logarithms

Jess H. Brewer

INTEGRALS

It is described in terms of adding up many vertical "slices" of infinitesimal width $d x$ and height $y(x)$.

INTEGRALS

The Indefinite Integral (a.k.a. Antiderivative) of $y(x)$ is better thought of as the function whose derivative is $y(x)$.
Just ask,
"What Function Has This Derivative?"

$$
\begin{gathered}
\text { If } g(x)=a=d f / d x \text {, what is } f(x) ? \\
\text { Answer: } f(x)=\int a d x=a x+\text { const. } \\
\text { If } g(x)=2 b x=d f / d x \text {, what is } f(x) ? \\
\text { Answer: } f(x)=\int 2 b x d x=b x^{2}+\text { const. }
\end{gathered}
$$

More Examples

of Indefinite Integrals (Antiderivatives)

$$
\begin{gathered}
\text { If } g(x)=e^{x}=d f / d x \text {, what is } f(x) ? \\
\text { Answer: } f(x)=\int e^{x} d x=e^{x}+\text { const. }
\end{gathered}
$$

$$
\text { If } g(x)=1 / e^{k x} \equiv e^{-k x}=d f / d x, \text { what is } f(x) ?
$$

$$
\text { Answer: } f(x)=\int e^{-k x} d x=\frac{e^{-k x}}{-k}+\text { const. }
$$

Wait... How do we know that?
Answer: Substitution of Variables...

Substitution of Variables

Suppose $u(x)$ is a familiar function and $u^{\prime}(x)$ is its familiar derivative. ${ }^{1}$ Then if $y(x) d x$ can be expressed in the form $f[u(x)] u^{\prime}(x) d x$, we can replace $u^{\prime}(x) d x$ by $d u$ so that ${ }^{2}$

$$
\int_{x_{0}}^{x_{1}} y(x) d x=\int_{u\left(x_{0}\right)}^{u\left(x_{1}\right)} f(u) d u
$$

[^0]
Substitution of Variables

$$
f(x)=\int g[u(x)] d x=\frac{\int g(u) d u}{d u / d x}
$$

$$
\text { If } g(x)=1 / e^{k x} \equiv e^{-k x}=d f / d x \text {, what is } f(x) ?
$$

$$
\text { Let } u=-k x \text { so that } d u / d x=-k
$$

$$
f(x)=\int e^{u(x)} d x=\int \frac{e^{u} d u}{d u / d x}=\frac{e^{u}}{-k}+\text { const. }
$$

$$
\text { or } f(x)=\int e^{-k x} d x=\frac{e^{-k x}}{-k}+\text { const. } \quad(Q E D)
$$

INTEGRALS

The Definite Integral

$$
\int_{x_{0}}^{x_{1}} y(x) d x
$$

is defined as
the area under the curve $y(x)$ between x_{0} and x_{1}.

But it is equal to the difference between the Antiderivative $\boldsymbol{f}(x)$ of $y(x)$ at the endpoints:

$$
\int_{x_{0}}^{x_{1}} y(x) d x=\boldsymbol{f}\left(x_{1}\right)-\boldsymbol{f}\left(x_{0}\right)
$$

More Examples

of Definite Integrals

$$
\text { If } y(x)=x^{-1}, x_{0}=1 \text { and } x_{1}=2, \text { what is } \int_{x_{0}}^{x_{1}} y(x) d x \text { ? }
$$

Answer: $\quad \ln \left(x_{1} / x_{0}\right)=\ln (2 / 1)=\ln (2)=0.6931478 \ldots$

$$
\text { If } y(x)=x e^{x}, x_{0}=2 \text { and } x_{1}=4, \text { what is } \int_{x_{0}}^{x_{1}} y(x) d x ?
$$

$$
\text { Answer: } 4 e^{4}-2 e^{2}-\left(e^{4}-e^{2}\right)=3 e^{4}-e^{2} \simeq 156.40539
$$

Wait... How do we know that?
Answer: Integration by Parts...

Integration by Parts

Sometimes there are two functions of $x, u(x)$ and $v(x)$, with familiar derivatives such that $\int f(x) d x$ can be expressed in the form $\int u d v$ where $d v \equiv v^{\prime}(x) d x$. Then

$$
\int_{x_{0}}^{x_{1}} f(x) d x=[u v]_{x_{0}}^{x_{1}}-\int_{u\left(x_{0}\right)}^{u\left(x_{1}\right)} v d u
$$

where $[u v]_{x_{0}}^{x_{1}} \equiv u\left(x_{1}\right) v\left(x_{1}\right)-u\left(x_{0}\right) v\left(x_{0}\right)$.

Integration by Parts

If $y(x)=x e^{x}, x_{0}=2$ and $x_{1}=4$, what is $\int_{x_{0}}^{x_{1}} y(x) d x ?$
Let $u=x$ and $v=e^{x}$ so that $d u=d x$ and $d v=e^{x} d x$

$$
\begin{gathered}
\int_{x_{0}}^{x_{1}} u d v=u\left(x_{1}\right) v\left(x_{1}\right)-u\left(x_{0}\right) v\left(x_{0}\right)-\int_{x_{0}}^{x_{1}} v d u \\
=x_{1} e^{x_{1}}-x_{0} e^{x_{0}}-\left(e^{x_{1}}-e^{x_{0}}\right) \\
=4 e^{4}-2 e^{2}-\left(e^{4}-e^{2}\right)=3 e^{4}-e^{2} \simeq 156.40539 \\
(Q E D)
\end{gathered}
$$

[^0]: ${ }^{1}$ Remember, $u^{\prime}(x)$ is Mathematician's notation for $d u / d x$.
 ${ }^{2}$ Note the use of the differential $d u \equiv u^{\prime}(x) d x$. It looks almost as if $d u$ and $d x$ were regular quantities that we could do algebra with at will. We Physicists play fast and loose with differentials, while Real Mathematicians wince the way you might when observing someone riding a bicycle "no hands" down a busy street, blindfolded. (We're not really unable to see where we're going; our blindfolds are just translucent, not opaque. :-)

