"SOLVING" QUADRATIC EQUATIONS

of the form

$$
a x^{2}+b x+c=0
$$

where x is the "unknown"
and $a, b \& c$ are "constants"
A "solution" is a formula with x on the left by itself and a function involving only $a, b \& c$ on the right.

But first, a little practice...

Geometrical Tricks with AREAS:

$$
(x+a)^{2}=x^{2}+2 a x+a^{2}
$$

Geometrical Trick with AREAS:

$$
(x-a)^{2}=x^{2}-2 a(x-a)-a^{2}=x^{2}-2 a x+a^{2}
$$

Same Thing with just Algebra:

$$
\begin{aligned}
&(x-a)^{2} \equiv(x-a)(x-a) \quad \text { (definition of "squared") } \\
&=x(x-a)-a(x-a) \quad \text { (expand) } \\
&=x^{2}-x a-\left(a x-a^{2}\right) \quad \text { (distributive law) } \\
&=x^{2}-2 a x+a^{2}
\end{aligned}
$$

Back to the Quadratic Equation:

$$
\begin{array}{r}
a x^{2}+b x+c=0 \\
-(c=c) \\
\hline a x^{2}+b x=-c \\
\div(a \quad=\quad a) \\
\hline x^{2}+(b / a) x=-c / a
\end{array}
$$

Now, what can we add to both sides that will make the left side the square of something?

$x^{2}+(b / a) x:$

compare

$$
(x+d)^{2}=x^{2}+2 d x+d^{2}
$$

or $(x+d)^{2}-d^{2}=x^{2}+2 d x$
so if $2 d=b / a$, or $d=b / 2 a$,

$$
x^{2}+(b / a) x=(x+b / 2 a)^{2}-(b / 2 a)^{2}
$$

and $x^{2}+(b / a) x=-c / a$ becomes

$$
(x+b / 2 a)^{2}-(b / 2 a)^{2}=-c / a
$$

or $\quad(x+b / 2 a)^{2}=(b / 2 a)^{2}-c / a$

$$
(x+b / 2 a)^{2}=(b / 2 a)^{2}-c / a
$$

Take square root of both sides:

$$
x+b / 2 a= \pm \sqrt{(b / 2 a)^{2}-c / a}
$$

or

$$
x=-b / 2 a \pm \sqrt{(b / 2 a)^{2}-c / a}
$$

or

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The Quadratic Theorem

EXAMPLE:

$$
\begin{gathered}
x^{2}+2 x+1=0 \\
a=1, b=2 \& c=1 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-2 \pm \sqrt{4-4}}{2}=-1
\end{gathered}
$$

EASY CHECK:

$$
\begin{gathered}
x^{2}+2 x+1=0 \\
=(x+1)^{2} \\
x+1=0 \\
x=-1
\end{gathered}
$$

EXAMPLE:

$$
\begin{aligned}
& x^{2}+3 x+2=0 \\
& a=1, b=3 \& c=2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-3 \pm \sqrt{9-8}}{2}=-1 \text { or }-2
\end{aligned}
$$

EXAMPLE:

$$
\begin{aligned}
& x^{2}+x+1 / 2=0 \\
& a=1, b=1 \& c=1 / 2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-1 \pm \sqrt{1-2}}{2}=\frac{-1 \pm \boldsymbol{i}}{2}
\end{aligned}
$$

Some Generalizations:

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

If $b^{2}=4 a c$, there is only one root.

If $b^{2}-4 a c$ is negative, the roots are complex.

