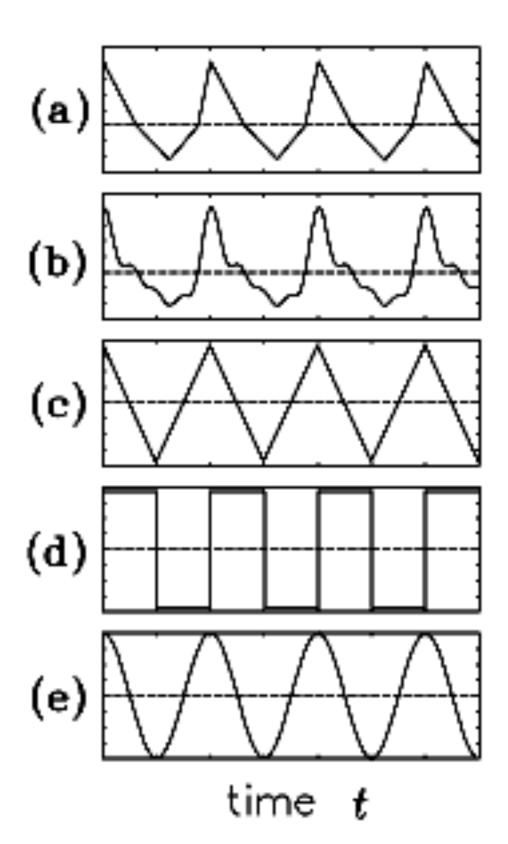
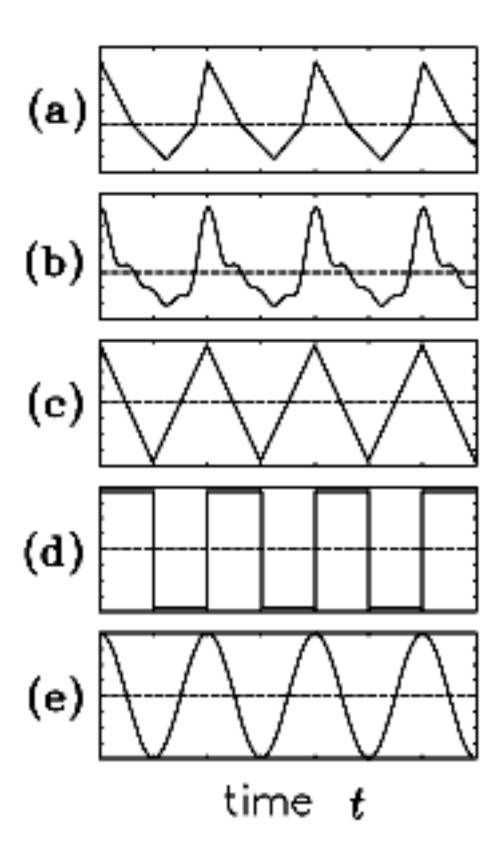


Many types of time-dependence are oscillatory,



Many types of time-dependence are oscillatory,

many are **periodic**,



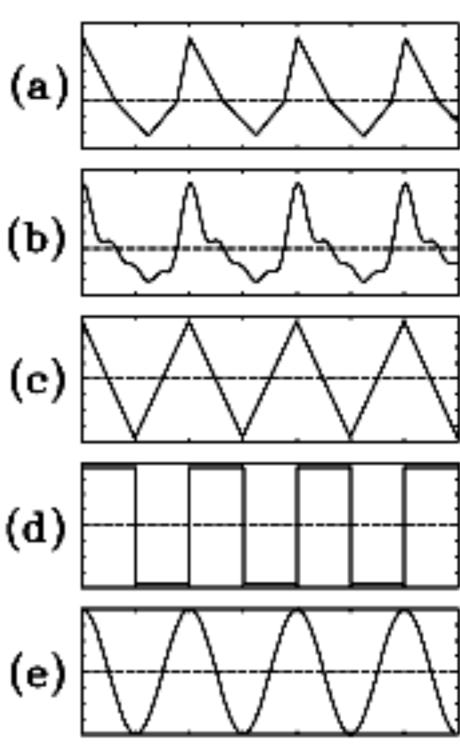
Many types of time-dependence are oscillatory,

many are **periodic**,

but only one type is "harmonic",

namely,

sinusoidal motion. —— (e



Many types of time-dependence are oscillatory,

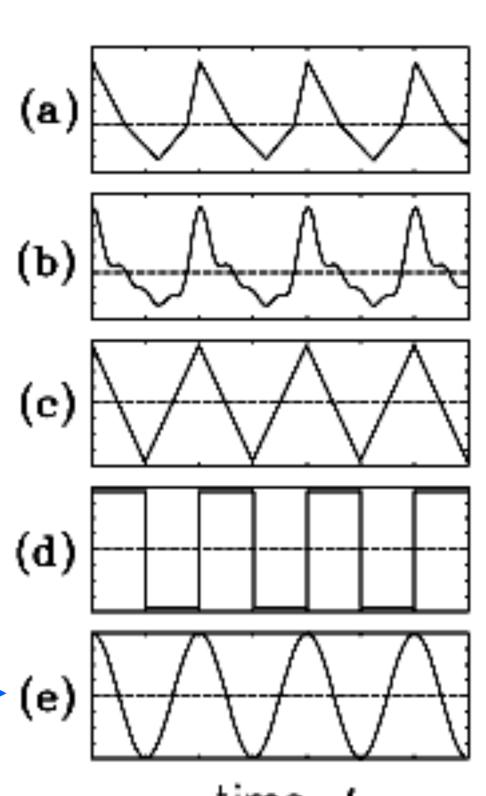
many are **periodic**,

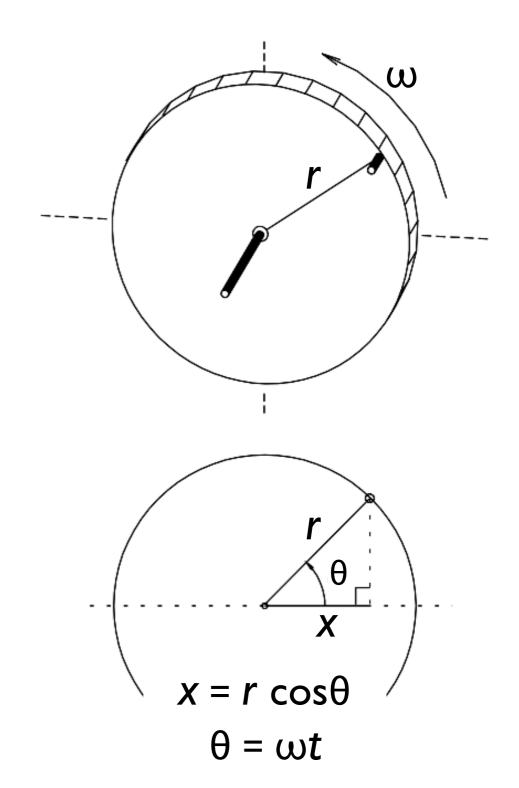
but only one type is "harmonic",

namely,

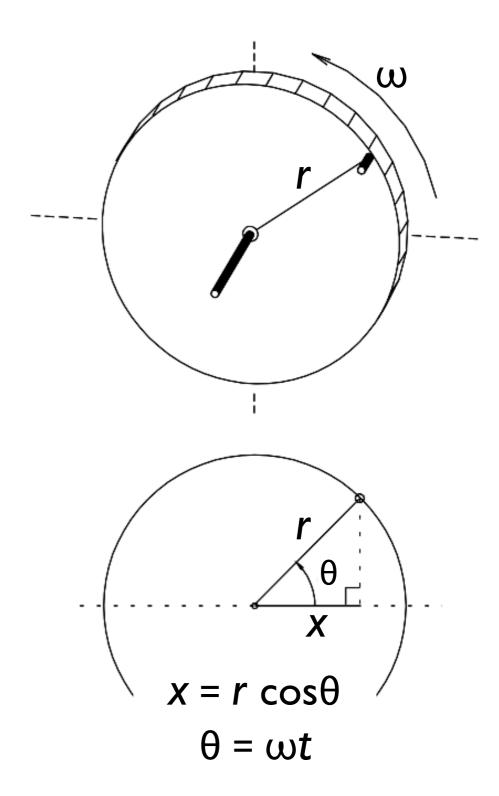
sinusoidal motion.

What are its properties?



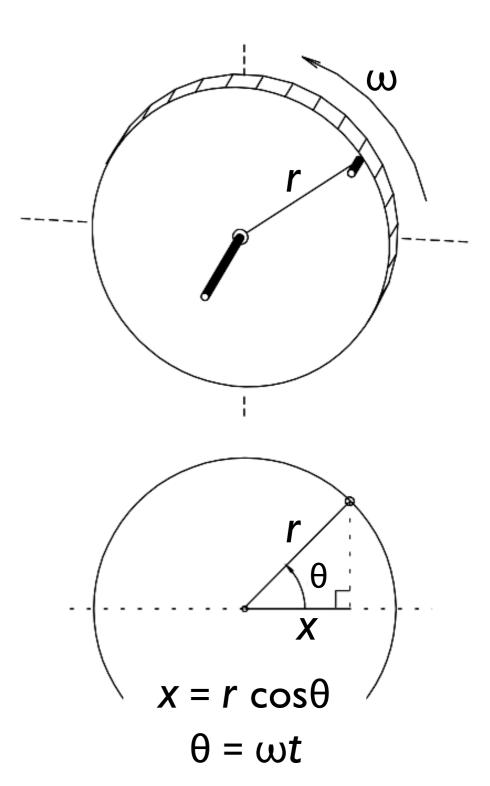


Picture a wheel spinning at constant angular velocity ω.



Picture a wheel spinning at constant angular velocity ω.

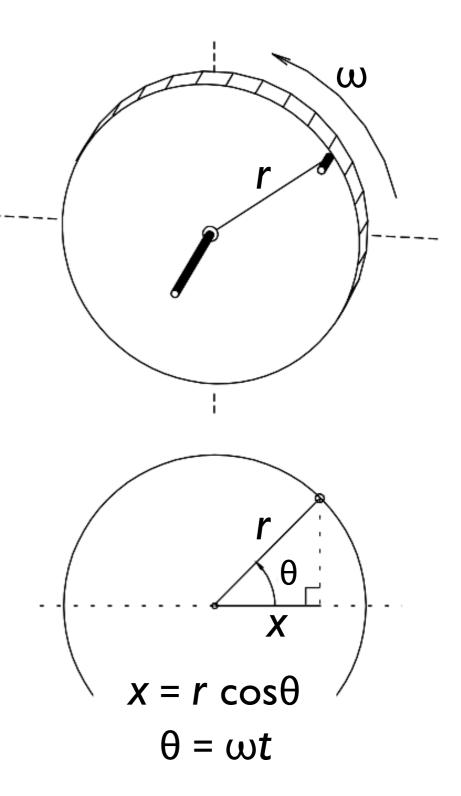
Now picture the motion of the **shadow** of a **pin** on the **rim** of the wheel (at high noon on the Equator).



Picture a wheel spinning at constant angular velocity ω.

Now picture the motion of the **shadow** of a **pin** on the **rim** of the wheel (at high noon on the Equator).

This is called (reasonably) the **projected** motion of the pin.



A Little Mathematics (SWOP):

A Little Mathematics (SWOP):

Small For
$$\theta \ll 1$$
, $\cos(\theta) \approx 1 - \frac{1}{2}\theta^2$ Angles: and $\sin(\theta) \approx \theta$.

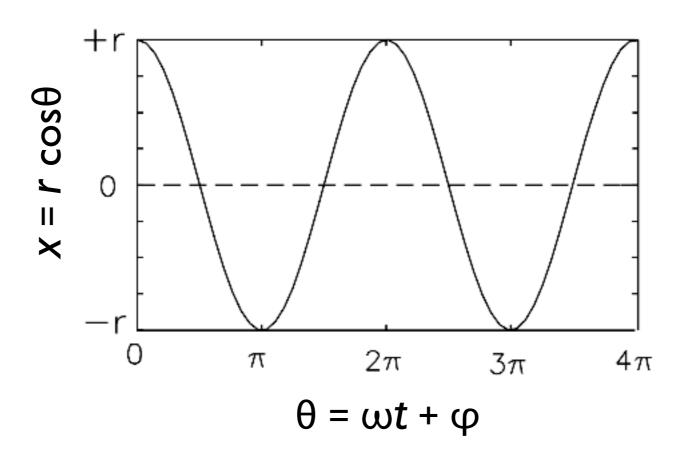
A Little Mathematics (SWOP):

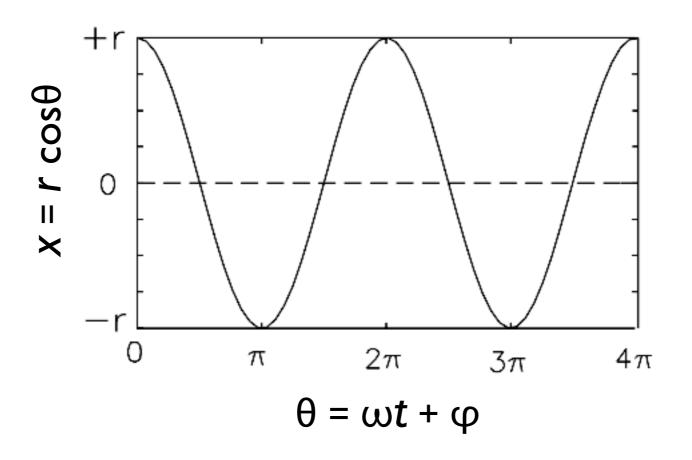
For
$$\theta \ll 1$$
, $\cos(\theta) \approx 1 - \frac{1}{2}\theta^2$
and $\sin(\theta) \approx \theta$.

$$\exp(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{3!}z^3 + \frac{1}{4!}z^4 + \cdots$$

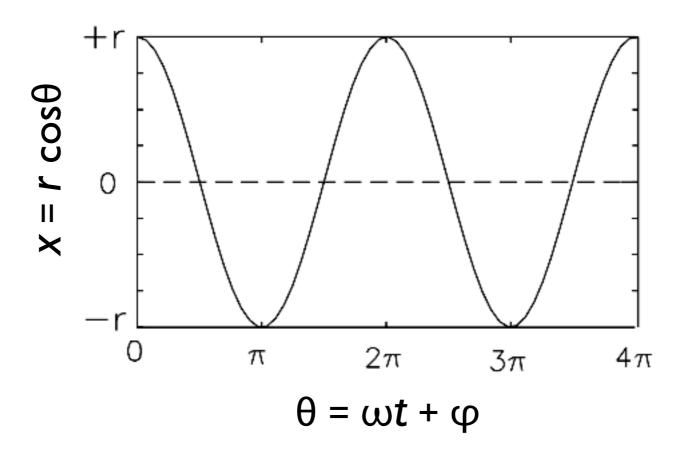
$$\cos(z) = 1$$
 $-\frac{1}{2}z^2$ $+\frac{1}{4!}z^4$ $-\cdots$

$$\sin(z) = z \qquad -\frac{1}{3!}z^3 \qquad + \cdots$$



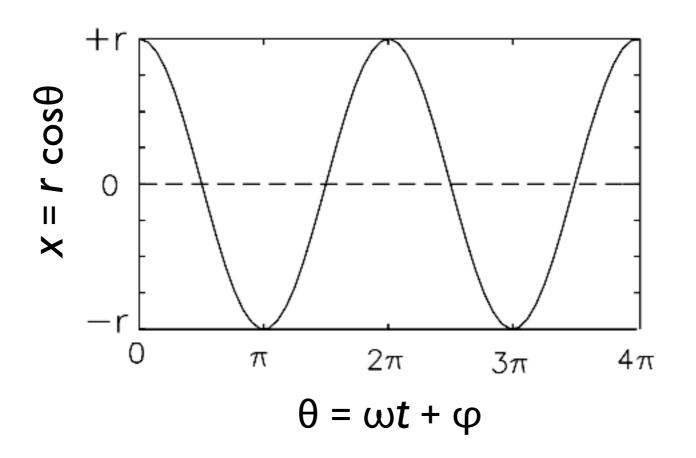


$$x = r \cos(\omega t + \varphi)$$



$$x = r \cos(\omega t + \varphi)$$

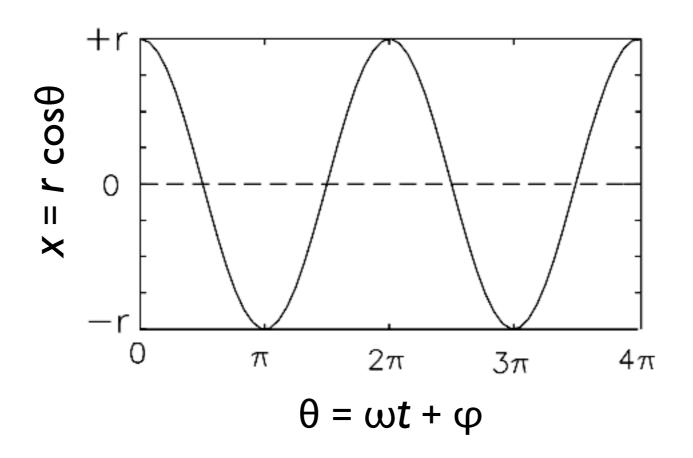
$$v = dx/dt = -\omega r \sin(\omega t + \varphi)$$



$$x = r \cos(\omega t + \varphi)$$

$$v = dx/dt = -\omega r \sin(\omega t + \varphi)$$

$$a = d^2x/dt^2 = -\omega^2 r \cos(\omega t + \varphi)$$



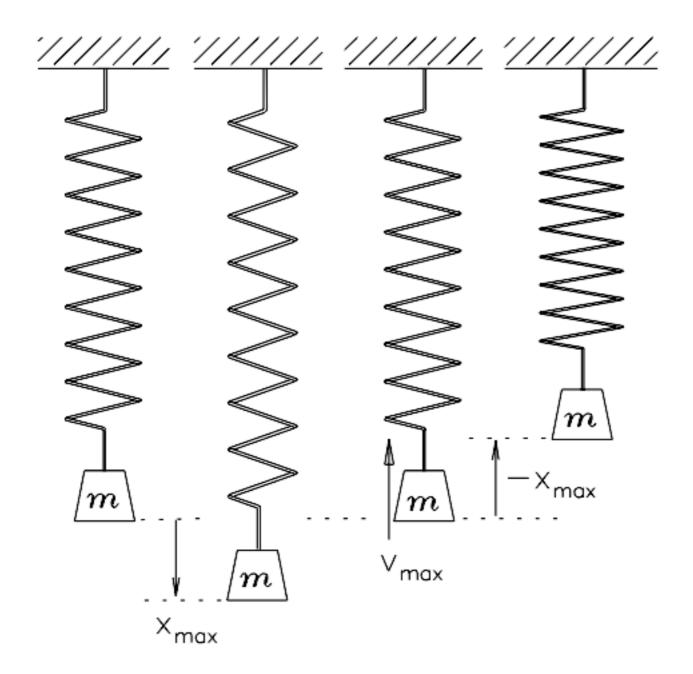
$$x = r \cos(\omega t + \varphi)$$

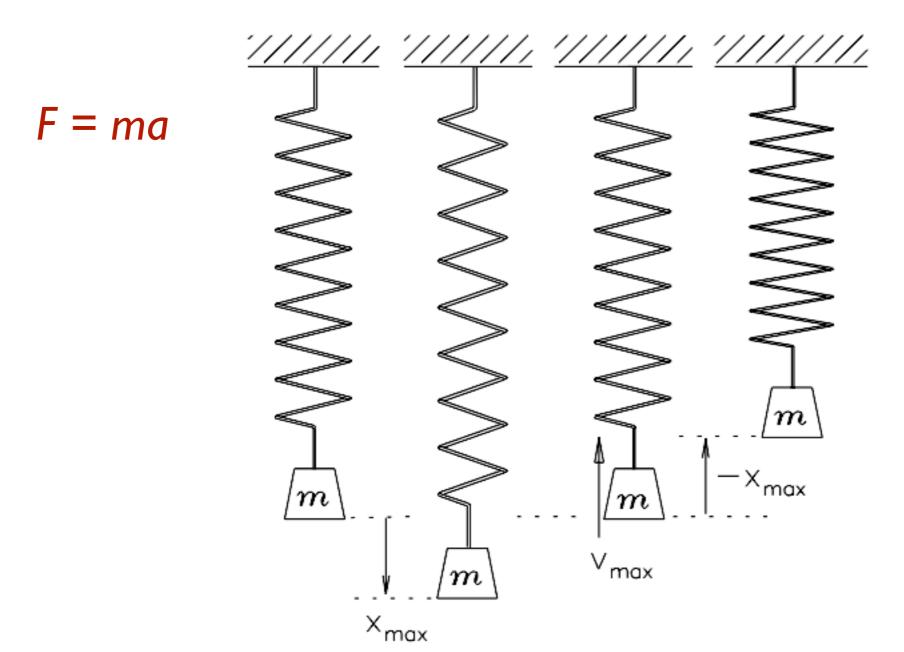
Note:

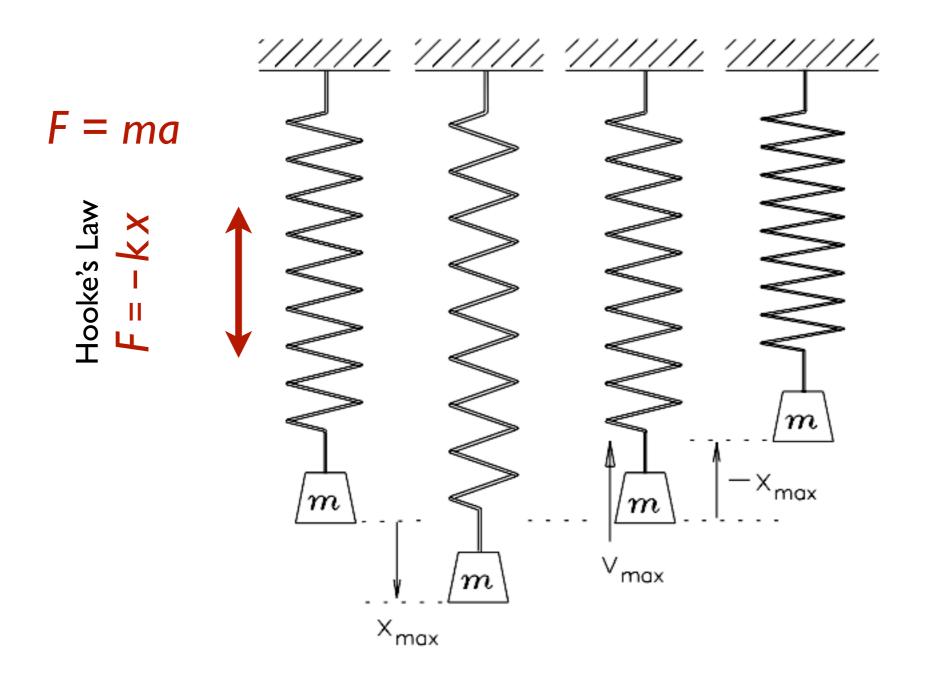
$$v = dx/dt = -\omega r \sin(\omega t + \varphi)$$

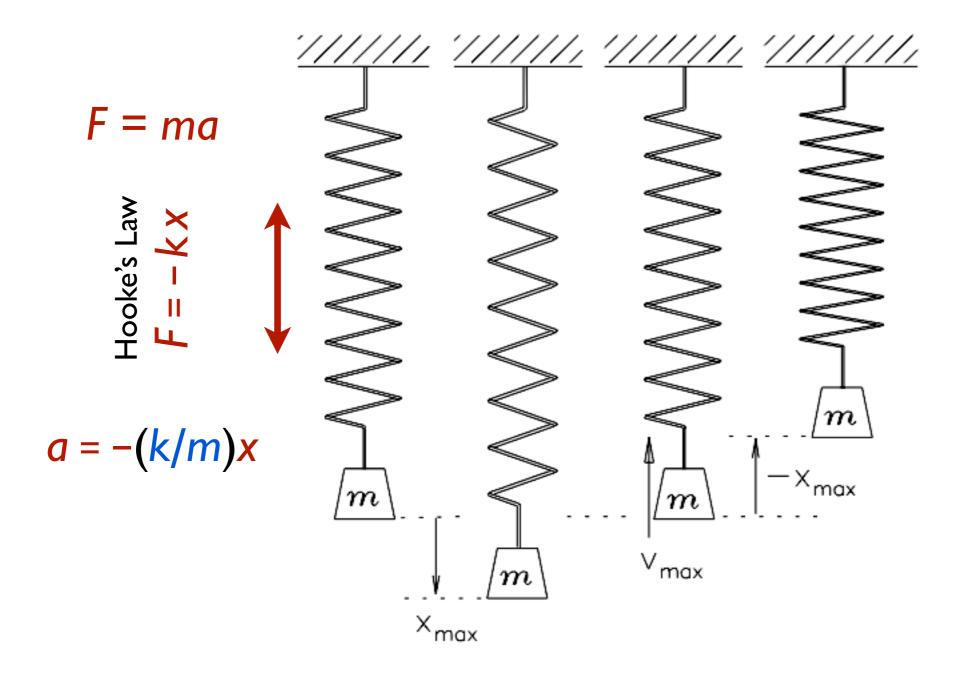
$$d^2x/dt^2 = -\omega^2 x$$

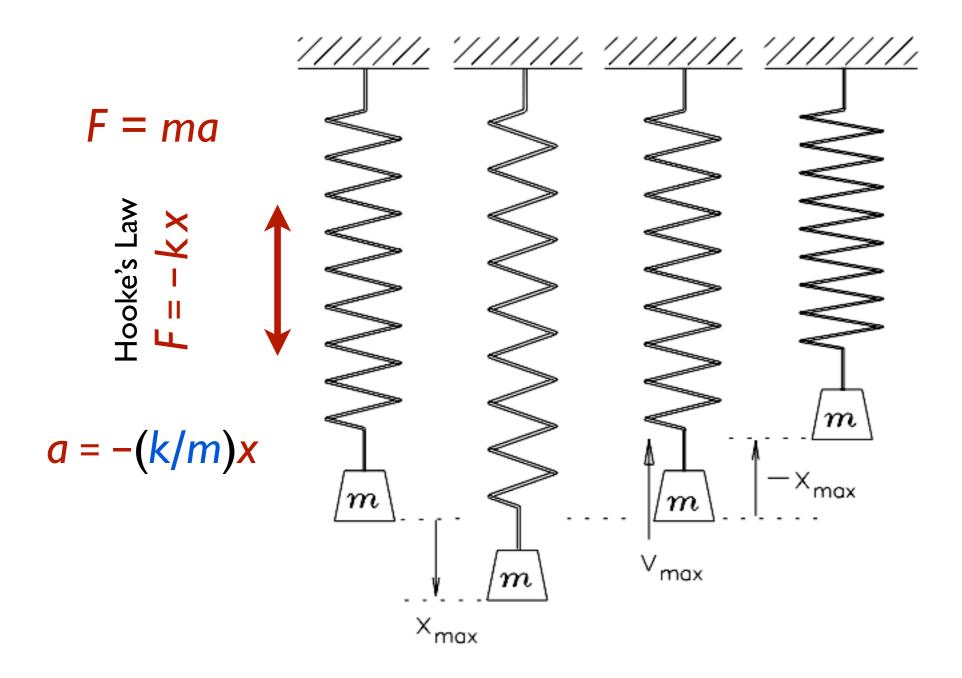
$$a = d^2x/dt^2 = -\omega^2 r \cos(\omega t + \varphi)$$



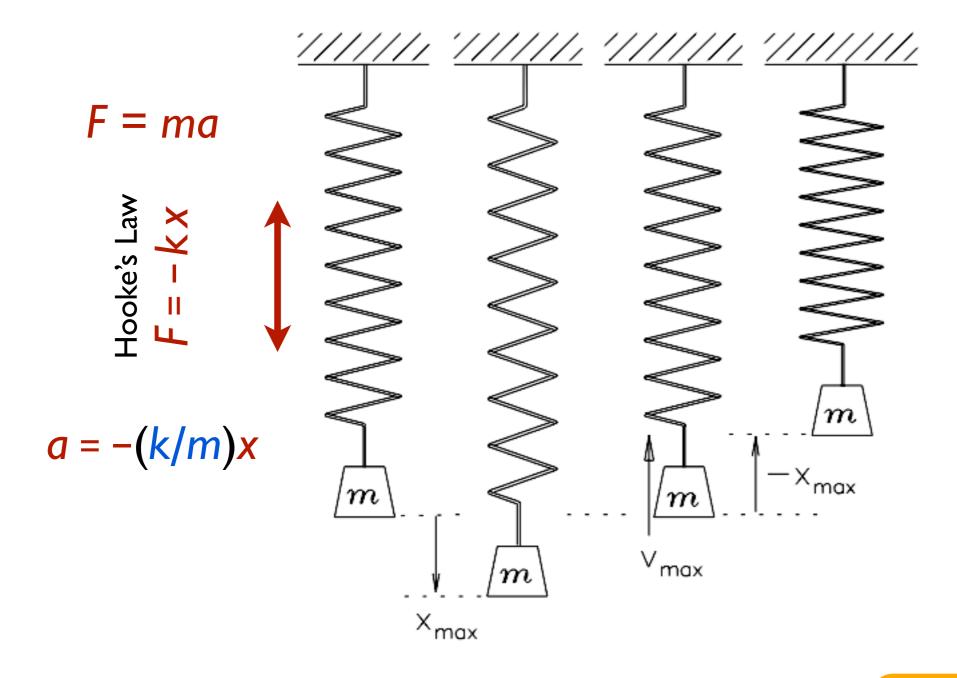








So
$$a = d^2x/dt^2 = -\omega^2x$$
 if $\omega^2 = k/m$ or $\omega = \sqrt{k/m}$



So
$$a = d^2x/dt^2 = -\omega^2x$$
 if $\omega^2 = k/m$ or

$$\omega = \sqrt{k/m}$$

Remember $dx/dt = -\kappa x \Leftrightarrow x(t) = x_0 \exp(-\kappa t)$?

Remember $dx/dt = -\kappa x \Leftrightarrow x(t) = x_0 \exp(-\kappa t)$?

The second derivative would be $\frac{d^2x}{dt^2} = \kappa^2 x$, right?

Remember $dx/dt = -\kappa x \Leftrightarrow x(t) = x_0 \exp(-\kappa t)$?

The second derivative would be $\frac{d^2x}{dt^2} = \kappa^2 x$, right?

Well, now we have a new equation $d^2x/dt^2 = -\omega^2 x$, which means the exponential function would be a solution if only we could have $\kappa^2 = -\omega^2$.

Remember $dx/dt = -\kappa x \Leftrightarrow x(t) = x_0 \exp(-\kappa t)$?

The second derivative would be $\frac{d^2x}{dt^2} = \kappa^2 x$, right?

Well, now we have a new equation $\frac{d^2x}{dt^2} = -\omega^2 x$, which means the exponential function would be a solution if only we could have $\kappa^2 = -\omega^2$.

Of course this is impossible. No real number is negative when squared.

Remember $dx/dt = -\kappa x \Leftrightarrow x(t) = x_0 \exp(-\kappa t)$?

The second derivative would be $\frac{d^2x}{dt^2} = \kappa^2 x$, right?

Well, now we have a new equation $\frac{d^2x}{dt^2} = -\omega^2 x$, which means the exponential function would be a solution if only we could have $\kappa^2 = -\omega^2$.

Of course this is impossible. No real number is negative when squared.

But what if there were such a number? Use your imagination! $i = \sqrt{-1}$

Remember $dx/dt = -\kappa x \Leftrightarrow x(t) = x_0 \exp(-\kappa t)$?

The second derivative would be $\frac{d^2x}{dt^2} = \kappa^2 x$, right?

Well, now we have a new equation $d^2x/dt^2 = -\omega^2 x$, which means the exponential function would be a solution if only we could have $\kappa^2 = -\omega^2$.

Of course this is impossible. No real number is negative when squared.

But what if there were such a number? Use your imagination! $i = \sqrt{-1}$

Then we could solve our differential equation in one step:

$$x(t) = x_0 \exp(i \omega t)$$

Remember
$$dx/dt = -\kappa x \Leftrightarrow x(t) = x_0 \exp(-\kappa t)$$
?

The second derivative would be $\frac{d^2x}{dt^2} = \kappa^2 x$, right?

Well, now we have a new equation $\frac{d^2x}{dt^2} = -\omega^2 x$, which means the exponential function would be a solution if only we could have $\kappa^2 = -\omega^2$.

Of course this is impossible. No real number is negative when squared.

But what if there were such a number? Use your imagination! $i = \sqrt{-1}$

Then we could solve our differential equation in one step:

$$x(t) = x_0 \exp(i \omega t)$$
 — but what does this **mean**?

$$\exp(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{3!}z^3 + \frac{1}{4!}z^4 + \cdots$$

$$\operatorname{Recall} \quad \cos(z) = 1 - \frac{1}{2}z^2 + \frac{1}{4!}z^4 - \cdots$$

$$\sin(z) = z - \frac{1}{3!}z^3 + \cdots$$

$$\exp(z) = 1 + z + \frac{1}{2}z^{2} + \frac{1}{3!}z^{3} + \frac{1}{4!}z^{4} + \cdots$$

$$\operatorname{Recall} \quad \cos(z) = 1 - \frac{1}{2}z^{2} + \frac{1}{4!}z^{4} - \cdots$$

$$\sin(z) = z - \frac{1}{3!}z^{3} + \cdots$$
What if $z = i\theta$?

$$\exp(z) = 1 + z + \frac{1}{2}z^{2} + \frac{1}{3!}z^{3} + \frac{1}{4!}z^{4} + \cdots$$

$$\operatorname{Recall} \quad \cos(z) = 1 - \frac{1}{2}z^{2} + \frac{1}{4!}z^{4} - \cdots$$

$$\sin(z) = z - \frac{1}{3!}z^{3} + \cdots$$
What if $z = i\theta$?

$$\exp(i\theta) = 1 + i\theta - \frac{1}{2!}\theta^2 - \frac{1}{3!}i\theta^3 + \frac{1}{4!}\theta^4 + \cdots$$

$$\exp(z) = 1 + z + \frac{1}{2}z^{2} + \frac{1}{3!}z^{3} + \frac{1}{4!}z^{4} + \cdots$$

$$\operatorname{Recall} \quad \cos(z) = 1 \quad -\frac{1}{2}z^{2} \quad +\frac{1}{4!}z^{4} - \cdots$$

$$\sin(z) = z \quad -\frac{1}{3!}z^{3} \quad + \cdots$$
What if $z = i\theta$?

$$\exp(i\theta) = 1 + i\theta - \frac{1}{2!}\theta^2 - \frac{1}{3!}i\theta^3 + \frac{1}{4!}\theta^4 + \cdots$$

$$\cos(\theta) = 1 - \frac{1}{2!}\theta^2 + \frac{1}{4!}\theta^4 + \cdots$$

Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:

$$\exp(z) = 1 + z + \frac{1}{2}z^{2} + \frac{1}{3!}z^{3} + \frac{1}{4!}z^{4} + \cdots$$

$$\operatorname{Recall} \quad \cos(z) = 1 \quad -\frac{1}{2}z^{2} \quad +\frac{1}{4!}z^{4} - \cdots \quad \text{What if} \quad z = i\theta ?$$

$$\sin(z) = z \quad -\frac{1}{3!}z^{3} \quad + \cdots$$

$$\exp(i\theta) = 1 + i\theta - \frac{1}{2!}\theta^{2} - \frac{1}{3!}i\theta^{3} + \frac{1}{4!}\theta^{4} + \cdots$$

$$cos(\theta) = 1 + t\theta - \frac{1}{2!}\theta^{2} + \frac{1}{4!}\theta^{4} + \cdots$$

$$cos(\theta) = 1 - \frac{1}{2!}\theta^{2} + \frac{1}{4!}\theta^{4} + \cdots$$

$$i\sin(\theta) = i\theta \qquad -1/3! i\theta^3 + \cdots$$

Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:

$$\exp(z) = 1 + z + \frac{1}{2}z^{2} + \frac{1}{3!}z^{3} + \frac{1}{4!}z^{4} + \cdots$$

$$\cos(z) = 1 - \frac{1}{2}z^{2} + \frac{1}{4!}z^{4} - \cdots$$

$$\sin(z) = z - \frac{1}{3!}z^{3} + \cdots$$
What if $z = i\theta$?

$$\exp(i\theta) = 1 + i\theta -\frac{1}{2!}\theta^2 -\frac{1}{3!}i\theta^3 + \frac{1}{4!}\theta^4 + \cdots$$

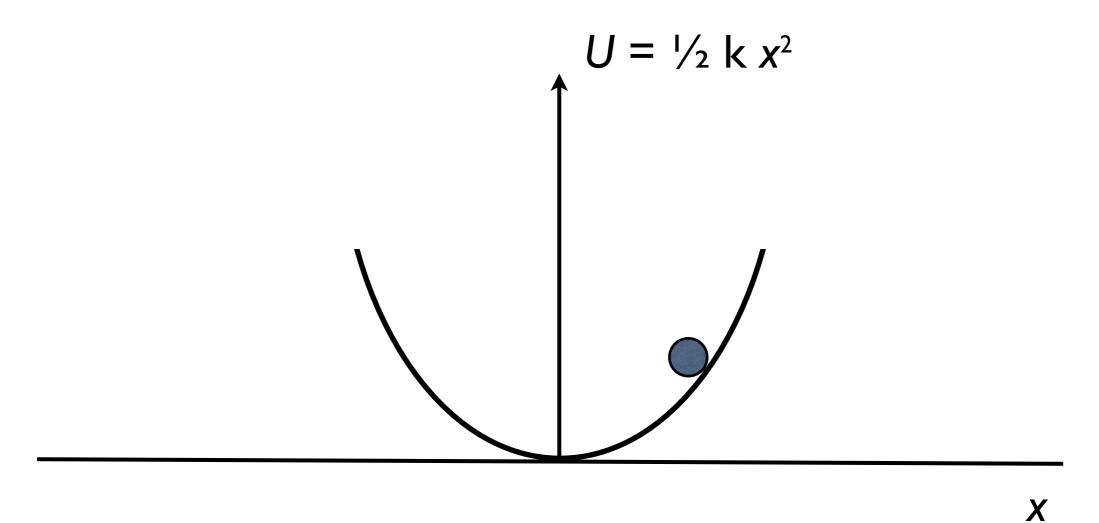
$$\cos(\theta) = 1 -\frac{1}{2!}\theta^2 + \frac{1}{4!}\theta^4 + \cdots$$

$$i\sin(\theta) = i\theta -\frac{1}{3!}i\theta^3 + \cdots$$

This means

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Quadratic Potential Minimum



$$F = -dU/dx = -kx$$

Simple Harmonic Motion

Linear Restoring Force (Hooke's Law)

$$F = -kx$$

Quadratic Potential Minimum

$$U = \frac{1}{2} k x^2$$

plus

Inertial Factor m

SHM

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x$$

$$x = x_0 \cos(\omega t + \varphi)$$

$$\mathbf{v} = \frac{\mathrm{d}x}{\mathrm{d}t} = -\mathbf{w} x_0 \sin(\omega t + \varphi)$$

$$a = \frac{d^2x}{dt^2} - \omega^2 x_0 \cos(\omega t + \varphi)$$

$$\omega^2 = k/m$$

Viscous damping:

$$d^2x/dt^2 = -\kappa dx/dt \iff v(t) = v_0 \exp(-\kappa t)$$

Viscous damping:

$$d^2x/dt^2 = -\kappa dx/dt \iff v(t) = v_0 \exp(-\kappa t)$$

With a linear restoring force and viscous damping, the equation is

$$d^2x/dt^2 = - \kappa dx/dt - \omega^2 x$$

Viscous damping:

$$d^2x/dt^2 = -\kappa dx/dt \iff v(t) = v_0 \exp(-\kappa t)$$

With a linear restoring force and viscous damping, the equation is

$$\frac{d^2x}{dt^2} = -\kappa \frac{dx}{dt} - \omega^2 x$$

which still might be satisfied by $x(t) = x_0 \exp(Qt)$ with some Q.

Viscous damping:

$$d^2x/dt^2 = -\kappa dx/dt \iff v(t) = v_0 \exp(-\kappa t)$$

With a linear restoring force and viscous damping, the equation is

$$d^2x/dt^2 = - \kappa dx/dt - \omega^2 x$$

which still might be satisfied by $x(t) = x_0 \exp(Qt)$ with some Q.

Let's try! Plug this x(t) back into the equation, giving

$$Q^2 x = -\kappa Q x - \omega^2 x$$
 or $Q^2 + \kappa Q + \omega^2 = 0$

Viscous damping:

$$d^2x/dt^2 = -\kappa dx/dt \iff v(t) = v_0 \exp(-\kappa t)$$

With a linear restoring force and viscous damping, the equation is

$$d^2x/dt^2 = - \kappa dx/dt - \omega^2 x$$

which still might be satisfied by $x(t) = x_0 \exp(Qt)$ with some Q.

Let's try! Plug this x(t) back into the equation, giving

$$Q^2 x = -\kappa Q x - \omega^2 x$$
 or $Q^2 + \kappa Q + \omega^2 = 0$

which has the solution $2Q = -\kappa \pm \sqrt{\kappa^2 - 4\omega^2}$

Viscous damping:

$$d^2x/dt^2 = -\kappa dx/dt \iff v(t) = v_0 \exp(-\kappa t)$$

With a linear restoring force and viscous damping, the equation is

$$d^2x/dt^2 = - \kappa dx/dt - \omega^2 x$$

which still might be satisfied by $x(t) = x_0 \exp(Qt)$ with some Q.

Let's try! Plug this x(t) back into the equation, giving

$$Q^2 x = -\kappa Q x - \omega^2 x$$
 or $Q^2 + \kappa Q + \omega^2 = 0$

which has the solution $2Q = -\kappa \pm \sqrt{\kappa^2 - 4\omega^2}$

Again, what does this mean?

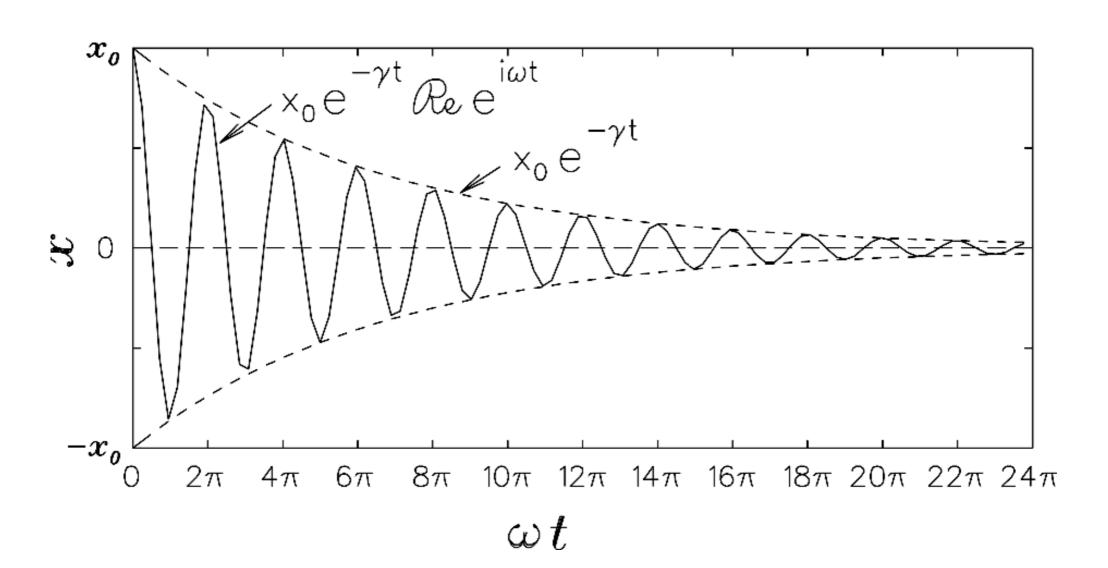
If
$$2Q = -\kappa \pm \sqrt{\kappa^2 - 4\omega^2}$$
 then
$$Q = -\frac{1}{2}\kappa \pm i\omega\sqrt{1 - \frac{1}{4}\kappa^2/\omega^2}, \text{ so}$$

$$x(t) = x_0 e^{-\frac{1}{2}Kt} \exp(\pm i \omega' t)$$
 where $\omega' = \omega \sqrt{1 - \frac{1}{4} \kappa^2/\omega^2}$

If
$$2Q = -\kappa \pm \sqrt{\kappa^2 - 4\omega^2}$$
 then

$$Q = -\frac{1}{2} \kappa \pm i \omega \sqrt{1 - \frac{1}{4} \kappa^2 / \omega^2}$$
, so

$$x(t) = x_0 e^{-\frac{1}{2}Kt} \exp(\pm i \omega' t)$$
 where $\omega' = \omega \sqrt{1 - \frac{1}{4} \kappa^2/\omega^2}$



for now