Simple Harmonic Motion

(b)

(c)

(d)

(e)

time t

Simple Harmonic Motion

(a)

Many types of time-dependence are oscillatory,
(b)

(c)

(d)

(e)

Simple Harmonic Motion

(a)

Many types of time-dependence are oscillatory,
(b)

many are periodic,
(c)

(d)

(e)

time t

Simple Harmonic Motion

(a)

Many types of time-dependence are oscillatory,
(b)

many are periodic,
but only one type is "harmonic",
namely,
(d)

(e)

Simple Harmonic Motion

(a)

Many types of time-dependence are oscillatory,
(b)

many are periodic,
but only one type is "harmonic",
namely,
(c)

(d)

(e)

Projecting the Wheel

Projecting the Wheel

Picture a wheel spinning at constant angular velocity ω.

Projecting the Wheel

Picture a wheel spinning at constant angular velocity ω.

Now picture the motion of the shadow of a pin on the
 rim of the wheel (at high noon on the Equator).

Projecting the Wheel

Picture a wheel spinning at constant angular velocity ω.

Now picture the motion of the shadow of a pin on the
 rim of the wheel (at high noon on the Equator).

This is called (reasonably) the projected motion of the pin.

A Little Mathematics (SWOP):

A Little Mathematics (SWOP):

Small For $\theta \ll 1, \cos (\theta) \approx 1-\frac{1}{2} \theta^{2}$
Angles:
and $\sin (\theta) \approx \theta$.

A Little Mathematics (SWOP):

Small For $\theta \ll 1, \cos (\theta) \approx 1-\frac{1}{2} \theta^{2}$
Angles:
and $\sin (\theta) \approx \theta$.

Taylor Series Expansions for Exponential \& Sinusoidal Functions:
$\exp (z)=1+z+\frac{1}{2} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\cdots$
$\cos (z)=1$
$-\frac{1}{2} z^{2}$
$+\frac{1}{4!} z^{4}$
$\sin (z)=$
z

$$
-\frac{1}{3!} z^{3}
$$

Derivatives of the Cosine Function

Derivatives of the Cosine Function

Derivatives of the Cosine Function

$$
v \equiv \mathrm{~d} x / \mathrm{d} t=-\omega r \sin (\omega t+\varphi)
$$

Derivatives of the Cosine Function

$$
v \equiv \mathrm{~d} x / \mathrm{d} t=-\omega r \sin (\omega t+\varphi)
$$

$$
a \equiv \mathrm{~d}^{2} x / \mathrm{dt}^{2}=-\omega^{2} r \cos (\omega t+\varphi)
$$

Derivatives of the Cosine Function

Note:

$$
v \equiv \mathrm{~d} x / \mathrm{d} t=-\omega r \sin (\omega t+\varphi)
$$

$d^{2} x / d t^{2}=-\omega^{2} x$

$$
a \equiv \mathrm{~d}^{2} x / \mathrm{dt}^{2}=-\omega^{2} r \cos (\omega t+\varphi)
$$

The Spring Pendulum

The Spring Pendulum

$F=m a$

The Spring Pendulum

The Spring Pendulum

The Spring Pendulum

So $\quad \boldsymbol{a} \equiv \mathrm{d}^{2} x / d t^{2}=-\omega^{2} \boldsymbol{x} \quad$ if $\quad \omega^{2}=k / m \quad$ or $\quad \omega=\sqrt{k / m}$

The Spring Pendulum

So $\quad \boldsymbol{a} \equiv \mathrm{d}^{2} x / d t^{2}=-\omega^{2} \boldsymbol{X} \quad$ if $\quad \omega^{2}=k / m \quad$ or $\quad \omega=\sqrt{k / m}$

Our old friend, the Exponential:

Our old friend, the Exponential:

Remember $\mathrm{d} x / \mathrm{d} t=-\kappa x \quad \Leftrightarrow \quad x(t)=x_{0} \exp (-\kappa t) \quad$?

Our old friend, the Exponential:

Remember $\quad \mathrm{d} x / \mathrm{d} t=-\kappa x \quad \Leftrightarrow \quad x(t)=x_{0} \exp (-\kappa t) \quad ?$

The second derivative would be $\quad d^{2} x / d t^{2}=\kappa^{2} x, \quad$ right?

Our old friend, the Exponential:

Remember $\mathrm{d} x / \mathrm{d} t=-\kappa x \quad \Leftrightarrow \quad x(t)=x_{0} \exp (-\kappa t) \quad ?$

The second derivative would be $\quad d^{2} x / d t^{2}=\kappa^{2} x, \quad$ right?
Well, now we have a new equation $d^{2} x / d t^{2}=-\omega^{2} x$, which means the exponential function would be a solution if only we could have $\kappa^{2}=-\omega^{2}$.

Our old friend, the Exponential:

Remember $\mathrm{d} x / \mathrm{d} t=-\kappa x \Leftrightarrow x(t)=x_{0} \exp (-\kappa t) \quad$?
The second derivative would be $\quad \mathrm{d}^{2} x / \mathrm{dt}^{2}=\mathrm{K}^{2} x$, right?
Well, now we have a new equation $d^{2} x / d t^{2}=-\omega^{2} x$, which means the exponential function would be a solution if only we could have $\kappa^{2}=-\omega^{2}$.

Of course this is impossible. No real number is negative when squared.

Our old friend, the Exponential:

$$
\text { Remember } \quad \mathrm{d} x / \mathrm{d} t=-\kappa x \quad \Leftrightarrow \quad x(t)=x_{0} \exp (-\kappa t) \quad ?
$$

The second derivative would be $\quad d^{2} x / d t^{2}=\kappa^{2} x, \quad$ right?
Well, now we have a new equation $d^{2} x / d t^{2}=-\omega^{2} x$, which means the exponential function would be a solution if only we could have $\kappa^{2}=-\omega^{2}$.

Of course this is impossible. No real number is negative when squared.
But what if there were such a number? Use your imagination! $i=\sqrt{-1}$

Our old friend, the Exponential:

Remember $\mathrm{d} x / \mathrm{d} t=-\kappa x \Leftrightarrow x(t)=x_{0} \exp (-\kappa t) \quad$?
The second derivative would be $\quad \mathrm{d}^{2} x / \mathrm{dt}^{2}=\mathrm{K}^{2} x, \quad$ right?
Well, now we have a new equation $d^{2} x / d t^{2}=-\omega^{2} x$, which means the exponential function would be a solution if only we could have $\kappa^{2}=-\omega^{2}$.

Of course this is impossible. No real number is negative when squared.
But what if there were such a number? Use your imagination! $i=\sqrt{-1}$
Then we could solve our differential equation in one step:

$$
x(t)=x_{0} \exp (i \omega t)
$$

Our old friend, the Exponential:

Remember $\mathrm{d} x / \mathrm{d} t=-\kappa x \Leftrightarrow x(t)=x_{0} \exp (-\kappa t) \quad$?
The second derivative would be $\quad d^{2} x / \mathrm{dt}^{2}=\kappa^{2} x, \quad$ right?
Well, now we have a new equation $d^{2} x / d t^{2}=-\omega^{2} x$, which means the exponential function would be a solution if only we could have $\mathrm{K}^{2}=-\omega^{2}$.

Of course this is impossible. No real number is negative when squared.
But what if there were such a number? Use your imagination! $i=\sqrt{-1}$
Then we could solve our differential equation in one step:

$$
x(t)=x_{0} \exp (i \omega t)
$$

- but what does this mean?

Complex Exponentials

Complex Exponentials

Taylor Series Expansions for Exponential \& Sinusoidal Functions:

Complex Exponentials

Taylor Series Expansions for Exponential \& Sinusoidal Functions:

$$
\begin{array}{rlrlll}
\exp (z) & =1 & +z & +\frac{1}{2} z^{2} & +\frac{1}{3!} z^{3} & +\frac{1}{4!} z^{4}
\end{array}+\cdots .
$$

Complex Exponentials

Taylor Series Expansions for Exponential \& Sinusoidal Functions:

$$
\begin{aligned}
& \exp (z)=1+z+\frac{1}{2} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\cdots \\
& \text { Recall } \quad \cos (z)=1 \quad-\frac{1}{2} z^{2} \quad+\frac{1}{4} z^{4} \quad \cdots \quad \text { What if } z=i \theta \text { ? } \\
& \sin (z)=z \quad-\frac{1}{3!} z^{3} \quad+\cdots \\
& \exp (i \theta)=1+i \theta-1 / 2!\theta^{2}-1 / 3!i \theta^{3}+1 / 4!\theta^{4}+\cdots
\end{aligned}
$$

Complex Exponentials

Taylor Series Expansions for Exponential \& Sinusoidal Functions:

$$
\begin{aligned}
& \exp (z)=1+z+\frac{1}{2} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\cdots \\
& \text { Recall } \quad \cos (z)=1 \quad-\frac{1}{2} z^{2} \quad+\frac{1}{4} z^{4} \quad \cdots \quad \text { What if } z=i \theta \text { ? } \\
& \sin (z)=z \quad-\frac{1}{3!} z^{3} \quad+\cdots \\
& \exp (i \theta)=1+i \theta-1 / 2!\theta^{2}-1 / 3!i \theta^{3}+1 / 4!\theta^{4}+\cdots \\
& \cos (\theta)=1 \quad-1 / 2!\theta^{2}+1 / 4!\theta^{4}+\cdots
\end{aligned}
$$

Complex Exponentials

Taylor Series Expansions for Exponential \& Sinusoidal Functions:

$$
\begin{aligned}
& \exp (z)=1+z+\frac{1}{2} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\cdots \\
& \text { Recall } \cos (z)=1 \quad-\frac{1}{2} z^{2} \quad+\frac{1}{4} z^{4} \quad \cdots \quad \text { What if } z=i \theta \text { ? } \\
& \sin (z)=\quad-\frac{1}{3!} z^{3} \quad+\cdots \\
& \exp (i \theta)=1+i \theta-1 / 2!\theta^{2}-1 / 3!i \theta^{3}+1 / 4!\theta^{4}+\cdots \\
& \cos (\theta)=1 \\
& -1 / 2!\theta^{2} \\
& +1 / 4!\theta^{4}+\cdots \\
& i \sin (\theta)= \\
& i \theta \\
& -1 / 3!i \theta^{3} \\
& +\cdots
\end{aligned}
$$

Complex Exponentials

Taylor Series Expansions for Exponential \& Sinusoidal Functions:

Recall $\cos (z)=$	1		$+\frac{1}{4} z^{4}-\cdots$	What if	$z=i \theta$?
$\sin (z)=$	z	$-\frac{1}{3}: z^{3}$	+ +		
$\exp (i \theta)=1$	$+i \theta$	$-1 / 2!\theta^{2}$	$-1 / 3!i \theta^{3}$	$+1 / 4!\theta^{4}$	+ $\cdot \cdots$
$\cos (\theta)=1$		$-1 / 2!\theta^{2}$		$+1 / 4!\theta^{4}$	+
$i \sin (\theta)=$	$i \theta$		$-1 / 3!i \theta^{3}$		+

This means $\quad e^{i \theta}=\cos \theta+i \sin \theta$

Quadratic Potential Minimum

$$
F=-\mathrm{dU} / \mathrm{d} x=-k x
$$

Simple Harmonic Motion

Linear Restoring Force (Hooke's Law)
$F=-k x$
i
Quadratic Potential Minimum

$$
U=1 / 2 k x^{2}
$$

plus

Inertial Factor
m

SHM

$\frac{d^{2} x}{d \bar{t}^{2}}=-\omega^{2} x$
I

$$
x=x_{0} \cos (\omega t+\varphi)
$$

$$
v \equiv \frac{\mathrm{~d} x}{\mathrm{~d} t}=-\omega x_{0} \sin (\omega t+\varphi)
$$

$$
a \equiv \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x_{0} \cos (\omega t+\varphi)
$$

$$
\omega^{2}=k / m
$$

Damped Harmonic Motion:

Damped Harmonic Motion:

Viscous damping:

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{\kappa} \mathrm{~d} x / \mathrm{d} t \quad \Leftrightarrow \quad v(t)=v_{0} \exp (-\kappa t)
$$

Damped Harmonic Motion:

Viscous damping:

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{\kappa d} x / \mathrm{d} t \Leftrightarrow v(t)=v_{0} \exp (-\kappa t)
$$

With a linear restoring force and viscous damping, the equation is

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{K} \mathrm{~d} x / \mathrm{d} t-\omega^{2} x
$$

Damped Harmonic Motion:

Viscous damping:

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{\kappa} \mathrm{~d} x / \mathrm{d} t \quad \Leftrightarrow \quad v(t)=v_{0} \exp (-\kappa t)
$$

With a linear restoring force and viscous damping, the equation is

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{k} \mathrm{~d} x / \mathrm{d} t-\omega^{2} x
$$

which still might be satisfied by $\quad x(t)=x_{0} \exp (Q t)$ with some Q.

Damped Harmonic Motion:

Viscous damping:

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{\kappa d} x / \mathrm{d} t \quad \Leftrightarrow \quad v(t)=v_{0} \exp (-\kappa t)
$$

With a linear restoring force and viscous damping, the equation is

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{k} \mathrm{~d} x / \mathrm{d} t-\omega^{2} x
$$

which still might be satisfied by $\quad x(t)=x_{0} \exp (Q t)$ with some Q.
Let's try! Plug this $x(t)$ back into the equation, giving

$$
Q^{2} x=-\kappa Q x-\omega^{2} x \quad \text { or } \quad Q^{2}+\kappa Q+\omega^{2}=0
$$

Damped Harmonic Motion:

Viscous damping:

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{\kappa} \mathrm{~d} x / \mathrm{d} t \quad \Leftrightarrow \quad v(t)=v_{0} \exp (-\kappa t)
$$

With a linear restoring force and viscous damping, the equation is

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{k} \mathrm{~d} x / \mathrm{d} t-\omega^{2} x
$$

which still might be satisfied by $\quad x(t)=x_{0} \exp (Q t)$ with some Q.
Let's try! Plug this $x(t)$ back into the equation, giving

$$
\begin{gathered}
Q^{2} x=-\kappa Q x-\omega^{2} x \quad \text { or } \quad Q^{2}+\kappa Q+\omega^{2}=0 \\
\text { which has the solution } \quad 2 Q=-\kappa \pm \sqrt{\kappa^{2}-4 \omega^{2}}
\end{gathered}
$$

Damped Harmonic Motion:

Viscous damping:

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{\kappa d} x / \mathrm{d} t \quad \Leftrightarrow \quad v(t)=v_{0} \exp (-\kappa t)
$$

With a linear restoring force and viscous damping, the equation is

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\mathrm{k} \mathrm{~d} x / \mathrm{d} t-\omega^{2} x
$$

which still might be satisfied by $\quad x(t)=x_{0} \exp (Q t)$ with some Q.
Let's try! Plug this $x(t)$ back into the equation, giving

$$
\begin{gathered}
Q^{2} x=-\kappa Q x-\omega^{2} x \quad \text { or } \quad Q^{2}+\kappa Q+\omega^{2}=0 \\
\text { which has the solution } \quad 2 Q=-\kappa \pm \sqrt{\kappa^{2}-4 \omega^{2}}
\end{gathered}
$$

Again, what does this mean?

Damped Harmonic Motion:

Damped Harmonic Motion:

$$
\begin{aligned}
& \text { If } 2 Q=-\kappa \pm \sqrt{\kappa^{2}-4 \omega^{2}} \text { then } \\
& Q=-1 / 2 \kappa \pm i \omega \sqrt{1-1 / 4 \kappa^{2} / \omega^{2}} \text {, so }
\end{aligned}
$$

$$
x(t)=x_{0} \mathrm{e}^{-1 / 2 \kappa t} \exp \left(\pm i \omega^{\prime} t\right) \quad \text { where } \quad \omega^{\prime}=\omega \sqrt{1-1 / 4 \mathrm{~K}^{2} / \omega^{2}}
$$

Damped Harmonic Motion:

If $2 Q=-\kappa \pm \sqrt{\kappa^{2}-4 \omega^{2}}$ then

$$
Q=-1 / 2 \mathrm{~K} \pm i \omega \sqrt{1-1 / 4 \mathrm{~K}^{2} / \omega^{2}} \text {, so }
$$

$x(t)=x_{0} \mathrm{e}^{-1 / 2 k t} \exp \left(\pm i \omega^{\prime} t\right) \quad$ where $\quad \omega^{\prime}=\omega \sqrt{1-1 / 4 \mathrm{~K}^{2} / \omega^{2}}$

TRIT

for now

