Vector Calculus

by Jess H. Brewer

October 30, 2020

$$
\text { Definition of Gradient operator: } \overrightarrow{\boldsymbol{\nabla}} \equiv \hat{\boldsymbol{i}} \frac{\partial}{\partial x}+\hat{\boldsymbol{j}} \frac{\partial}{\partial y}+\hat{\boldsymbol{k}} \frac{\partial}{\partial z}
$$

VECTOR IDENTITIES

TRIPLE
PRODUCTS:

$$
\begin{aligned}
\vec{A} \cdot(\vec{B} \times \vec{C}) & =\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \\
\vec{A} \times(\vec{B} \times \vec{C}) & =\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})
\end{aligned}
$$

PRODUCT

$$
\vec{\nabla}(f g)=f(\vec{\nabla} g)+g(\vec{\nabla} f)
$$

RULES:

$$
\begin{aligned}
\vec{\nabla}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}) & =\overrightarrow{\boldsymbol{A}} \times(\vec{\nabla} \times \vec{B})+\overrightarrow{\boldsymbol{B}} \times(\vec{\nabla} \times \vec{A})+(\overrightarrow{\boldsymbol{A}} \cdot \vec{\nabla}) \overrightarrow{\boldsymbol{B}}+(\overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{A}} \\
\overrightarrow{\boldsymbol{\nabla}} \cdot(f \overrightarrow{\boldsymbol{A}}) & =f(\vec{\nabla} \cdot \vec{A})+\overrightarrow{\boldsymbol{A}} \cdot(\vec{\nabla} f) \\
\vec{\nabla} \cdot(A B) & =\overrightarrow{\boldsymbol{B}} \cdot(\vec{\nabla} \times \vec{A})-\overrightarrow{\boldsymbol{A}} \cdot(\vec{\nabla} \times \vec{B}) \\
\vec{\nabla} \times(f \overrightarrow{\boldsymbol{A}}) & =f(\vec{\nabla} \times \vec{A})-\overrightarrow{\boldsymbol{A}} \times(\vec{\nabla} f) \\
\vec{\nabla} \times(A B) & =(\overrightarrow{\boldsymbol{B}} \cdot \vec{\nabla}) \overrightarrow{\boldsymbol{A}}-(\overrightarrow{\boldsymbol{A}} \cdot \vec{\nabla}) \overrightarrow{\boldsymbol{B}}+\overrightarrow{\boldsymbol{A}}(\vec{\nabla} \cdot \vec{B})-\overrightarrow{\boldsymbol{B}}(\vec{\nabla} \cdot \vec{A})
\end{aligned}
$$

SECOND
DERIVATIVES:

$$
\begin{aligned}
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A}) & =0 \\
\vec{\nabla} \times(\vec{\nabla} f) & =0 \\
\vec{\nabla} \times(\vec{\nabla} \times \vec{A}) & =\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}
\end{aligned}
$$

FUNDAMENTAL THEOREMS

GRADIENT THEOREM:

$$
\begin{aligned}
& \int_{a}^{b}(\vec{\nabla} f) \cdot d \vec{\ell}=f(b)-f(a) \\
& \iiint(\vec{\nabla} \cdot \vec{A}) d \tau=\oiint \vec{A} \cdot d \vec{a}
\end{aligned}
$$

Stokes' (CURL) THEOREM:

$$
(\vec{\nabla} \times \vec{A}) \cdot d \vec{a}=\oint \vec{A} \cdot d \vec{\ell}
$$

$$
\text { DELTA FUNCTION: } \quad \vec{\nabla} \cdot\left(\frac{\hat{\mathcal{R}}}{\mathcal{R}^{2}}\right)=-\nabla^{2}\left(\frac{1}{\mathcal{R}}\right)=4 \pi \delta^{3}(\overrightarrow{\mathcal{R}})
$$

