VECTOR NOTATION

Jess H. Brewer

Vector Addition \& Subtraction

Unit Vectors

Vector Addition \& Subtraction

Multiplication of Vectors

Let $\boldsymbol{A}=A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k} \quad$ and $\quad \boldsymbol{B}=B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}$

Multiplication of Vectors

Let $\boldsymbol{A}=A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k} \quad$ and $\quad \boldsymbol{B}=B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}$

The scalar product $\boldsymbol{A} \cdot \boldsymbol{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

Multiplication of Vectors

Let $\boldsymbol{A}=A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k} \quad$ and $\quad \boldsymbol{B}=B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}$

The scalar product $\boldsymbol{A} \cdot \boldsymbol{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

The vector product $\boldsymbol{A} \times \boldsymbol{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \boldsymbol{i}$

$$
\begin{aligned}
& +\left(A_{z} B_{x}-A_{x} B_{z}\right) \boldsymbol{j} \\
& +\left(A_{x} B_{y}-A_{y} B_{x}\right) \boldsymbol{k}
\end{aligned}
$$

