Solving Simple Equations

by Jess H. Brewer

October 21, 2020

In each case, explain which principles you use:

1. Solve for $x: \quad x-5=2$

ANSWER: add 5 to both sides of the equation to get $x=7$.
2. Solve for x : $2 x+3=7$

ANSWER: first, subtract 3 from both sides of the equation to get $2 x=4$. Then divide both sides of the equation by 2 to get $x=2$.
3. Solve for x : $x^{2}-5=4$

ANSWER: add 5 to both sides of the equation to get $x^{2}=9$. Then ask, "What number multiplied by itself gives 9?" Answer: $x= \pm 3$
(Note that -3 works just as well as +3 .)
4. Solve for $x: \quad x^{2}=-1$

ANSWER: No real number multiplied by itself is -1 , so we have to invent the imaginary number $i \equiv \sqrt{-1}$ giving $\quad x= \pm i$. (Note that $-i$ works just as well as $+i$.)
5. Solve for $x: \quad x^{2}-2 x=-1$

ANSWER: add 1 to both sides of the equation to get it into the standard form for a quadratic equation: $\quad a x^{2}+b x+c=0$ with $a=1, b=2$ and $c=1$. You may immediately recognize this as $(x-1)^{2}=0$, giving $x-1=0$ or $x=1$.
If not, you can always "plug in" to the Quadratic Formula,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Noting that $b^{2}=4 a c=0$ gives $x=2 / 2=1$.
(This time there is only one result.)
6. Solve for x : $2 x^{2}-3 x-4=0$

ANSWER: This time we go straight to the Quadratic Formula, with $a=2, b=$ -3 and $c=-4$:
$x=\frac{3 \pm \sqrt{9+32}}{4}$ or $x=\frac{3}{4} \pm \frac{\sqrt{41}}{4}$
(There is no need to try to simplify further.)

