# Derivatives of Functions 

by Jess H. Brewer

October 25, 2020

1. Take the derivative with respect to $x: y(x)=3$. ANSWER: The derivative (rate of change) of a constant is zero. (It's a constant. It doesn't change!) $d y / d x=0$.
2. Take the derivative with respect to $x: \quad y(x)=2 x+1$. ANSWER: Use the definition of the derivative: $\frac{d y}{d x} \equiv \lim _{\Delta x \rightarrow 0} \frac{y(x+\Delta x)-y(x)}{\Delta x}$. In this case $y(x+\Delta x)=2(x+\Delta x)+1$ and $y(x)=2 x+1$, so $\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{2 x+2 \Delta x+1-(2 x+1)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x}{\Delta x}$ or $\frac{d y}{d x}=2$.
(You could also just use the general formula $\frac{d}{d x} x^{p}=p x^{p-1}$.)
3. Take the derivative with respect to $x: y(x)=3 x^{2}$. ANSWER: Here you could also work out the algebra from the definition of a derivative, but it's easier to just use the Product Law $\frac{d}{d x}[f(x) \times g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ with $f(x)=3$ and $g(x)=x^{2}$, giving $f^{\prime}(x)=0$ and $g^{\prime}(x)=2 x$ (from the power law formula above), so that $\frac{d y}{d x}=6 x$.
4. Take the derivative with respect to $x: \quad y(x)=2 x^{9}$. ANSWER: The same approach as in the previous example gives $\frac{d y}{d x}=18 x^{8}$.
5. Take the derivative with respect to $x: \quad y(x)=\frac{3}{x^{3}}$. ANSWER: Rewrite in negative-exponent notation: $y(x)=3 x^{-3}$ and use the same power-law formula as above: $\frac{d y}{d x}=-9 x^{-4}$.
6. Take the derivative with respect to $x: \quad y(x)=y_{0} e^{-\lambda x}$. ANSWER: Let $u(x)=-\lambda x\left(\frac{d u}{d x}=-\lambda\right)$ so that $e^{-\lambda x}=e^{u}$ and $\frac{d}{d u} e^{u}=e^{u}$ (the defining property of the exponential function) and apply the Chain Rule: $\frac{d}{d x}\{y[u(x)]\}=\frac{d y}{d u} \cdot \frac{d u}{d x}$ to get $\frac{d y}{d x}=-\lambda y_{0} e^{-\lambda x}$.
7. Take the derivative with respect to $x: \quad y(x)=e^{x^{2}}$. ANSWER: Again we define a "helper function" to use with the Chain Rule: in this case $u(x)=x^{2}$ so that $\frac{d u}{d x}=2 x$ and again $y(x)=e^{u}$. Thus $\frac{d y}{d x}=2 x e^{x^{2}}$.
8. Take the derivative with respect to $x: \quad y(x)=\ln x$ ANSWER: Remember that $\ln (x)$ is the integral of $1 / x$, so $\frac{d y}{d x}=\frac{1}{x}$.
