Differential Equations

by Jess H. Brewer

October 28, 2020

- 1. Which of the following **cannot** be expressed in terms of a DIFFERENTIAL EQUATION?
 - (a) Economic Inflation
 - (b) Radioactive Decay
 - (c) Propagation of Sound
 - (d) Propagation of Light
 - (e) Free Fall during Skydiving
 - (f) Infections during a Pandemic
 - (g) Population Growth

ANSWER: None of the above!

- (a) Economic Inflation: $\frac{dV}{dt} = -kV$ where V(t) is the value of a dollar as a function of time t and k is the inflation rate.
- (b) Radioactive Decay: $\frac{dN}{dt} = -\lambda N$ where N(t) is the number of the specified type of radioactive nuclei in a sample as a function of time t, $\lambda = 1/\tau$ and τ is the mean lifetime of such a nucleus.
- (c) Propagation of Sound: $\frac{d^2P}{dx^2} \frac{1}{c^2}\frac{d^2P}{dt^2}$ where P(x,t) is the value of the air pressure as a function of position x and time t and c is the speed of sound.
- (d) Propagation of Light: $\frac{d^2E}{dx^2} \frac{1}{c^2}\frac{d^2E}{dt^2}$ where E(x,t) is the electric field as a function of position x and time t and c is the speed of light.
- (e) Free Fall during Skydiving: $\frac{dv}{dt} = g \gamma v^2 \lambda v$ where v(t) is the downward velocity as a function of time t, $g = 9.81 \text{ m/s}^2$ is the acceleration of gravity, γ is the turbulent drag coefficient and λ is the viscous drag coefficient.
- (f) Infections during a Pandemic: $\frac{dN}{dt} = \frac{R_0}{T_{\text{incub}}}N$ where N(t) is the number of people infected as a function of time t, R_0 is the average number of new people infected by each victim and T_{incub} is the average incubation time.
- (g) Population Growth: $\frac{dN}{dt} = \frac{n_b}{T_{repr}}N \frac{N}{T_{life}}$ where N(t) is the number of people as a function of time t, T_{life} is the average life expectancy, T_{repr} is the average time a woman is capable of reproduction, and n_b is the average number of babies each woman has in her lifetime.