Fun with Functions

by Jess H. Brewer

October 26, 2020

In each case, explain which is the independent variable and which is the dependent variable, assign a mathematical symbol for each, explain what units they are measured in, and propose a mathematical function describing exactly how the dependent variable depends on the independent variable.
For instance, a car travelling at a constant velocity v (in kph) goes a distance x (in km) in a time t (in hours): $x(t)=v t$.

1. Neglecting air friction, the downward velocity of a ball dropped from the Leaning Tower of Pisa will speed up by $g=9.81 \mathrm{~m} / \mathrm{s}$ every second.
ANSWER: Let v be the downward velocity in meters per second (m / s) and t be the elapsed time in seconds (s); then $v(t)=g t$.
2. The vertical distance travelled by the ball in the previous problem will increase as $g / 2$ times the square of the elapsed time.
ANSWER: Let y be the vertical distance fallen in meters (m) and again let t be the elapsed time in seconds (s); then $y(t)=\frac{1}{2} g t^{2}$.
3. The value of a share in a certain airline stock was $\$ 100$ on March 1, 2020, and has dropped at a constant rate since then. It is now worth half what it was on that day.
ANSWER: Let S be the value of the share in dollars (\$) and t be the elapsed time in days; then $S(t)=S_{0} / 2^{t / T}$ where $S_{0}=\$ 100$ and T is the number of days since March 1, 2020.
4. If inflation is constant at 5% per year, how does the buying power of $\$ 1$ vary with time?

ANSWER: Let B be the buying power of a dollar compared with that at time $t=0, B_{0}$; then $B(t)=B_{0} \exp (-\lambda t)$ where t is in years and $\lambda=0.05 \mathrm{y}^{-1}$.
5. Helium slowly leaks right through the rubber membrane of a spherical helium balloon, causing its volume to decrease by a factor of two every day. What function describes the balloon's radius as a function of the number t of days since it was filled if its initial diameter was 0.4 m ? ANSWER: First note that the volume V is proportional to the cube of the radius $r, V=\frac{4}{3} \pi r^{3}$, so if the volume V decreases by a factor of two every day - which we can write $V(t)=V_{0} / 2^{t}$ where V_{0} is the initial volume and t is the number of elapsed days - then the radius $r=\left[\frac{3 V}{4 \pi}\right]^{1 / 3}$ varies as $r(t)=\frac{r_{0}}{2^{t / 3}}$ where $r_{0}=0.2 \mathrm{~m}$.

