Solving Integrals

by Jess H. Brewer

October 22, 2020

1. Find the integral with respect to x of $y(x)=2 x-5$. ANSWER: We're looking for the function $f(x)$ whose derivative is $f^{\prime}(x)=2 x-5$. Now, within an arbitrary constant, the integral of a sum of terms is the sum of the integrals of those terms: $\int[a(x)+b(x)] d x=\int a(x) d x+\int b(x) d x$. In this case $a(x)=2 x$ and $b(x)=-5$. A constant like -5 is the derivative of that constant times x, and x itself is the derivative of $\frac{1}{2} x^{2}$, so $\int[2 x-5] d x=x^{2}-5 x+$ const. .
2. Find the integral with respect to x of $y(x)=x^{3}+x^{2}$. ANSWER: $\frac{d}{d x} x^{4}=4 x^{3}$ and $\frac{d}{d x} x^{3}=3 x^{2}$, so $\int\left[x^{3}+x^{2}\right] d x=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+$ const.
3. Find the integral with respect to x of $y(x)=-3 / x$. ANSWER: The integral of a constant times a function of x is the constant time the integral of the function. (In simpler language, "You can just pull constants outside the integral!") $\int(-3 / x) d x=-3 \int(1 / x) d x$ and we know that $\ln (x)$ is the integral of $1 / x$, so $\int(-3 / x) d x=-3 \ln (x)+$ const.
4. Find the integral with respect to x of $y(x)=e^{x}$. ANSWER: The exponential function is defined by its property of being its own derivative - and therefore also its own integral: $\int e^{x} d x=e^{x}+$ const.
5. Find the integral with respect to x of $y(x)=e^{i x}=\cos (x)+i \sin (x)$. ANSWER: $\frac{d}{d x} e^{i x}=i e^{i x}$, so $\int e^{i x} d x=\frac{e^{i x}}{i}+$ const. 1
[^0]
[^0]: ${ }^{1}$ Now, since $1 / i=-i$ and $e^{i x}=\cos (x)+i \sin (x)$, we can also write $\int e^{i x} d x=-i \cos (x)+\sin (x)+$ const. . By the same token, note that $\frac{d}{d x}[\cos (x)+i \sin (x)]=i \cos (x)-\sin (x)$, and since the real and imaginary parts can be differentiated independently, we have also found the derivatives of the trigonometric functions $\frac{d}{d x} \cos (x)=-\sin (x)$ and $\frac{d}{d x} \sin (x)=\cos (x)$. These are quite useful to know!

