Vectors

by Jess H. Brewer

October 28, 2020

1. If you walk 30 m directly across a football field and then 40 m lengthwise (toward the goalposts), how much further have you walked than if you just walked directly from your starting point to your destination, "as the crow flies"? ANSWER: Call the direction across the field x and the lengthwise direction y. These directions are perpendicular (orthogonal) so the total distance d is given by the Pythagorean theorem: $d^{2}=x^{2}+y^{2}$ or, in this case, $d=\sqrt{30^{2}+40^{2}}=50 \mathrm{~m}$, which is $30+40-50=20 \mathrm{~m}$ extra distance.
2. If you're relaxing on a beach, how far away is an airplane that is 10 km North and 10 km East, flying at an altitude of $10,000 \mathrm{~m}$? ANSWER: The vector from you to the airplane is $\overrightarrow{\mathbf{r}}=(\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}})$ times 10 km , so the total distance is $\sqrt{1^{2}+1^{2}+1^{2}} \times 10 \mathrm{~km}$ or $\sqrt{3} \times 10 \mathrm{~km}$ or about 17.32 km .
3. Find the SCALAR PRODUCT of these two vectors: $\overrightarrow{\mathbf{A}}=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\overrightarrow{\mathbf{B}}=\hat{\imath}-\hat{\jmath}-\hat{k} \quad$ ANSWER: $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=(+1)(+1)+(+1)(-1)+(+1)(-1)=1-1-1$ or $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=-1$. The minus sign means that $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are predominantly in opposite directions.
4. What is the UNIT VECTOR in the direction of the vector $\overrightarrow{\mathbf{A}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$? ANSWER: To get the Unit vector $\hat{\mathbf{A}}$, we divide $\overrightarrow{\mathbf{A}}$ by its own magnitude $A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}=\sqrt{1^{2}+2^{2}+3^{2}}=$ $\sqrt{14} \approx 3.7416574: \hat{\mathbf{A}}=\frac{\hat{\imath}+2 \hat{\jmath}+3 \hat{k}}{\sqrt{14}}$ or $\hat{\mathbf{A}} \approx 0.26726124 \hat{\imath}+0.53452248 \hat{\jmath}+0.80178372 \hat{k}$. (In a marked assignment, preference would be given to the exact answer in terms of $\sqrt{14}$.)
5. What is the VECTOR PRODUCT of these two vectors: $\overrightarrow{\mathbf{A}}=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\overrightarrow{\mathbf{B}}=\hat{\imath}-\hat{\jmath}-\hat{k}$? ANSWER: Recall the definition of the vector (or "cross") product:

$$
\begin{align*}
\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}} & =\hat{\imath}\left(A_{y} B_{z}-A_{z} B_{y}\right) \\
& +\hat{\jmath}\left(A_{z} B_{x}-A_{x} B_{z}\right) \\
& +\hat{k}\left(A_{x} B_{y}-A_{y} B_{x}\right) . \tag{1}
\end{align*}
$$

so in this case

$$
\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=\hat{\imath}[(1)(-1)-(1)(-1)]+\hat{\jmath}[(1)(1)-(1)(-1)]+\hat{k}[(1)(-1)-(1)(1)]
$$

or $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=2 \hat{\jmath}-2 \hat{k}$.

