The University of British Columbia

Physics 108 Assignment \# 5: POTENTIAL \& CAPACITANCE

Wed. 2 Feb. 2004 - finish by Wed. 9 Feb.

1. CLASSICAL RADIUS OF THE ELECTRON: You are probably familiar with Einstein's famous equation $E=m c^{2}$. If m is the mass of an electron and E is the electrostatic potential energy required to "assemble" the electron from bits of charge infinitely distant from each other into a uniform spherical shell of radius r_{0} and net charge e, find the numerical value of r_{0} in meters. ${ }^{1}$
2. CAPACITOR WITH INSERT: Suppose we have a capacitor made of two large flat parallel plates of the same area A (and the same shape), separated by an air gap of width d. Its capacitance is C. Now we slip another planar conductor of width $d / 2$ (and the same area and shape) between the plates so that it is centred halfway in between. What is the capacitance C^{\prime} of the new system of three conductors, in terms of the capacitance C of the original pair and the other parameters given? (Neglect "edge effects" and any dielectric effect of air.)
3. ARRAY of CAPACITORS: The battery B supplies 12 V . The capacitances are $C_{1}=1.0 \mu \mathrm{~F}, C_{2}=2.0 \mu \mathrm{~F}, C_{3}=4.0 \mu \mathrm{~F}$ and $C_{4}=$ $3.0 \mu \mathrm{~F}$. (a) Find the charge on each capacitor when switch S_{1} is closed but switch S_{2} is still open. (b) What is the charge on each capacitor if S_{2} is also closed?

4. THUNDERCLOUD CAPACITOR: A large thundercloud hovers over the city of Vancouver at a height of 1.0 km . Between the cloud and the ground (both of which we may treat as parallel conducting plates, neglecting edge effects) the electric field is about $300 \mathrm{~V} / \mathrm{m}$. The cloud has a horizontal area of $100 \mathrm{~km}^{2}$.
(a) Estimate the number of Coulombs [C] of positive charge in the cloud, assuming that the ground has the same surface density of negative charge.
(b) Estimate the number of joules [J] of energy contained in the air between the cloud and the ground.
[^0]
[^0]: ${ }^{1}$ The value you calculate will not agree with the value you look up; this is because the r_{0} listed in textbooks is actually the Compton radius of the electron and has a completely different meaning. Nevertheless, numerous texts glibly describe r_{0} as defined in this problem. The amazing thing is that the two values are so close!

