The University of British Columbia

Physics 108 Assignment \#5 SOLUTIONS: POTENTIAL \& CAPACITANCE

Wed. 2 Feb. 2005 - finish by Wed. 9 Feb.

1. CLASSICAL RADIUS OF THE ELECTRON: You are probably familiar with Einstein's famous equation $E=m c^{2}$. If m is the mass of an electron and E is the electrostatic potential energy required to "assemble" the electron from bits of charge infinitely distant from each other into a uniform spherical shell of radius r_{0} and net charge e, find the numerical value of r_{0} in meters. ${ }^{1}$
ANSWER: Start with no charge, then bring successive bits $d Q$ in to add uniformly to the charge Q of the shell. A given bit of charge acquires an electrostatic potential energy $d E=k_{E} Q d Q / r_{0}$ in the process. Thus the total energy E required to assemble the shell is $E=k_{E} / r_{0} \int_{0}^{e} Q d Q=\frac{1}{2} k_{E} e^{2} / r_{0}$. If we set this equal to $m c^{2}$ we get
$r_{0}=\frac{1}{2} k_{E} \frac{e^{2}}{m c^{2}}=\frac{\left(8.998 \times 10^{9}\right)\left(1.6022 \times 10^{-19}\right)^{2}}{2\left(9.11 \times 10^{-31}\right)\left(2.998 \times 10^{8}\right)^{2}}$ or $r_{0}=1.409 \times 10^{-15} \mathrm{~m}$. The Compton wavelength of the electron is twice as big, 2.818 fm , where "fm" stands for "femtometers" or "fermis" (named after Enrico Fermi); both are the same as $10^{-15} \mathrm{~m}$.
2. CAPACITOR WITH INSERT: Suppose we have a capacitor made of two large flat parallel plates of the same area A (and the same shape), separated by an air gap of width d. Its capacitance is C. Now we slip another planar conductor of width $d / 2$ (and the same area and shape) between the plates so that it is centred halfway in between. What is the capacitance C^{\prime} of the new system of three conductors, in terms of the capacitance C of the original pair and the other parameters given? (Neglect "edge effects" and any dielectric effect of air.)
ANSWER: The original capacitance was $C=\epsilon_{\circ} A / d$. The capacitor with the insert is equivalent to two identical capacitors in series, each of which has a gap of $d / 4$ between its plates, so that $C_{1}=C_{2}=4 C$. The equivalent capacitance of two capacitors in series is given by $1 / C^{\prime}=1 / C_{1}+1 / C_{2}=2 / 4 C=1 / 2 C$. Thus $C^{\prime}=2 C$.
3. ARRAY of CAPACITORS: The battery B supplies 12 V . The capacitances are $C_{1}=1 \mu \mathrm{~F}, C_{2}=2 \mu \mathrm{~F}, C_{3}=4 \mu \mathrm{~F}$ and $C_{4}=3 \mu \mathrm{~F}$.
(a) Find the charge on each capacitor when switch S_{1} is closed but switch S_{2} is still open. ANSWER: Let Q_{i} denote the charge on the $i^{\text {th }}$ capacitor C_{i}. From charge conservation we have $Q_{1}=Q_{3}$ and $Q_{2}=Q_{4}$. Both pairs of capacitors in series (1 and $3 ; 2$ and 4) must make up the full voltage: $V_{B}=Q_{1} / C_{1}+Q_{3} / C_{3}=Q_{2} / C_{2}+Q_{4} / C_{4}$. Therefore $V_{B}=$ $Q_{1}\left[1 / C_{1}+1 / C_{3}\right]=Q_{2}\left[1 / C_{2}+1 / C_{4}\right]$ yielding $Q_{1}=Q_{3}=12 /\left(10^{6} / 1+10^{6} / 4\right)$ and $Q_{2}=Q_{4}=12 /\left(10^{6} / 2+10^{6} / 3\right)$ or $Q_{1}=Q_{3}=9.6 \times 10^{-6} \mathrm{C}$ and $Q_{2}=Q_{4}=14.4 \times 10^{-6} \mathrm{C}$.

(b) What is the charge on each capacitor if S_{2} is also closed? ANSWER: Now C_{1} and C_{2} are effectively just one big capacitor $C_{12}=C_{1}+C_{2}=3 \mu \mathrm{~F}$ and similarly for $C_{34}=C_{3}+C_{4}=7 \mu \mathrm{~F}$. Charge conservation now requires $Q_{12} \equiv Q_{1}+Q_{2}=Q_{34} \equiv Q_{3}+Q_{4}$ and the two effective capacitors in series must make up the full voltage:
$V_{B}=Q_{12} / C_{12}+Q_{34} / C_{34}$. Thus $V_{B}=Q_{12}\left[1 / C_{12}+1 / C_{34}\right]$, giving $Q_{12}=Q_{34}=12 /\left(10^{6} / 3+10^{6} / 7\right)$ $=25.2 \times 10^{-6} \mathrm{C}$. Meanwhile the voltage across C_{1} must be the same as that across $C_{2}: Q_{1} / C_{1}=Q_{2} / C_{2}$
$\Longrightarrow Q_{2}=Q_{1}\left(C_{2} / C_{1}\right)=\frac{2}{1} Q_{1} \Longrightarrow Q_{12}=\left(1+\frac{2}{1}\right) Q_{1}$ or $Q_{1}=\frac{1}{3} Q_{12}=8.4 \times 10^{-6} \mathrm{C}$ and
$Q_{2}=Q_{12}-Q_{1}=16.8 \times 10^{-6} \mathrm{C}$. Similarly, $Q_{3} / C_{3}=Q_{4} / C_{4} \Longrightarrow Q_{4}=Q_{3}\left(C_{4} / C_{3}\right)=\frac{3}{4} Q_{3}$
$\Longrightarrow Q_{34}=\left(1+\frac{3}{4}\right) Q_{3}$ or $Q_{3}=\frac{4}{7} Q_{34}=14.4 \times 10^{-6} \mathrm{C}$ and $Q_{4}=Q_{34}-Q_{3}=10.8 \times 10^{-6} \mathrm{C}$.

[^0]4. THUNDERCLOUD CAPACITOR: A large thundercloud hovers over the city of Vancouver at a height of 1.0 km . Between the cloud and the ground (both of which we may treat as parallel conducting plates, neglecting edge effects) the electric field is about $300 \mathrm{~V} / \mathrm{m}$. The cloud has a horizontal area of $100 \mathrm{~km}^{2}$.
(a) Estimate the number of Coulombs [C] of positive charge in the cloud, assuming that the ground has the same surface density of negative charge.

ANSWER: The electric field between two flat plates with surface charge densities $\pm \sigma$ is given by $E=\sigma / \epsilon_{\mathrm{o}}$. Thus $\sigma=\epsilon_{\circ} E=8.85 \times 10^{-12} \times 300=2.656 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}$. Over an area of $A=100 \times 10^{6}=10^{8} \mathrm{~m}^{2}$, this gives a total charge of $Q=\sigma A=0.2656 \mathrm{C}$.
(b) Estimate the number of joules [J] of energy contained in the air between the cloud and the ground.

ANSWER: The energy density stored in an electric field is given by $U / V=\frac{1}{2} \epsilon_{0} E^{2}$ $=0.5 \times 8.85 \times 10^{-12} \times(300)^{2}=3.984 \times 10^{-7} \mathrm{~J} / \mathrm{m}^{3}$. The volume between the cloud and the ground is $V=1000 \times 10^{8}=10^{11} \mathrm{~m}^{3}$, so $U=3.984 \times 10^{4} \mathrm{~J}$.

[^0]: ${ }^{1}$ The value you calculate will not agree with the value you look up; this is because the r_{0} listed in textbooks is actually the Compton radius of the electron and has a completely different meaning. Nevertheless, numerous texts glibly describe r_{0} as defined in this problem. The amazing thing is that the two values are so close!

